A Java Programming Tool for
Students with Visual Disabilities

Ann C. Smith Joan M. Francioni Sam D. M atzek
Computer Science Dept. Computer Science Dept. Computer Science Dept.
Saint Mary's University Winona State University Saint Mary’s University

Winona, MN 55987
507/457-1430

asnm th@s. snum. edu

ABSTRACT

This paper reports on a tool for assisting students with
visual disabilities in learning how to program. The tool is
meant to be used by computer science majors learning the
programming language Java. As part of the developmental
process of building this tool, we have implemented a rapid
prototype to be used by people with disabilities in order to
define appropriate requirements for the full version of the
tool. Thisrequires that the prototype is completely usable
via a keyboard and speech interface, and it is easily
adaptable for trying out different strategies. In this paper,
we present the motivation and philosophy of the full toal,
called JavaSpeak. We aso present the details of a
prototype implementation of JavaSpeak.

Keywords
Java, programming tool, students with visual disahilities,
learning to program

INTRODUCTION

Nationally, the trend for the number of Computer Science
majors at the college level has increased significantly over
the past five years. [7] On the other hand, there are very
few students with visual disabilities among these large
numbers of computer science majors — even though
computer science is currently a popular major choice for
high school students with disabilities planning to go to
college[3]. Thissituation is not because the subject matter
is inherently unlearnable by students with visua
disabilities. Rather it is because of barriers that exist for
these students to study computer science in a traditional
computer science curriculum. For example, one barrier is
simply the way in which most computer science courses
are

Winona, MN 55987
507/457-2336

j oanf @v nd. wi nona. nsus. edu

Paper published in proceedings of ACM Assets 2000,
Washington, D.C., November 2000, pp. 142-148.

Winona, MN 55987
507/457-1430

sdmat zek@s. smum. edu

taught — a way that makes heavy use of visual images and
abstractions. This is the case in the classroom as well as
in textbooks. Another barrier is that the science and
mathematics courses of a computer science curriculum are
usually not set up to use assistive technology that is
specifically designed for these kinds of classes. The
technology exists; it is just not readily available in most
universities. A third barrier for students with visual
disabilities comes into play in actualy learning to
program.

Learning to program is a major part of being a computer
science student and, as such, is the main emphasis of the
first couple of years in a computer science curriculum. It
is a challenging task for many students, with or without
any kind of disability, and many tools and techniques have
been developed to assist students in learning this skill. In
essence, students have to learn how to both formulate an
algorithmic solution to a problem and then trandate that
solution into a semantically equivalent program, which is
also syntactically correct. Asthey develop their programs,
they need to be able to group individual tokens (words and
symbols) of the language together as syntactic units.
These syntactic units are then further grouped together to
form larger syntactic units. As the program grows, it
must be understood both in the small and in the large.

For students with visual disabilities, these tasks take on an
extralevel of difficulty. Using existing screen readers, they
can have their programs spoken out loud for them.
However, they must still process everything in the program
sequentially. This is somewhat equivalent to trying to
write or read this paper without any newlines, blank lines,
section headings, page breaks, or special character fonts.
If you can get it al in the first pass, great. But having to
go back and find a part of a sentence that you have already
written or read is not an easy task.

We are involved in a long-term project to try and make the
computer science curriculum accessible to students with
visual disabilities by addressing, in particular, the three

barriers named above. As part of our work to teach
students with visual disabilities how to program, we are
developing a specialized programming environment for
the Java programming language, called JavaSpeak.

Basically, JavaSpeak is an editor with aural feedback
designed to provide a user with useful information about a
program’s structure and semantics. It is designed to parse
the program and "speak” the program’s structure to a blind
user, in much the same way that separate lines and
indentation and color all help to "show" the structure of a
program to a sighted user. In this paper, we present the
design philosophy for this tool and give the details of a
prototype version of JavaSpeak.

The paper is organized as follows. First we discuss other
research related to this work. An overview of JavaSpeak
and the details of the prototype follow this. Future plans
are then discussed, followed by the concluding remarks
section.

BACKGROUND

In his book on auditory user interfaces (AUI), Raman
describes a speech-enabling approach to developing
applications that separates information and computation
from the user interface [15]. When this is done, it is
possible for different user interfaces to portray the
functionality of the application in a manner most suited to
a given user environment. In other words, if the
information and computation is available separate from the
user interface, the user interface is free to present that
information in either a graphical way or in an auditory
way — or even in any other way.

This approach has been taken by a number of tools for
increasing the accessibility of underlying applications.
Raman, himself, used this approach for both AsTeR [13], a
system for producing aural renderings of documents
written in LaTeX, and Emacspeak [14], atool that extends
the Emacs editor to provide a "speech-enabled desktop”
(see subsection on Emacspeak below). With these two
programs, he demonstrated early on the benefits of
integrating speech into the human-computer interaction as
opposed to simply generating a spoken version of visual
output. Commercia tools like Jaws for Windows [9] and
Outspoken [12] have since extended this concept for
navigating Microsoft Windows environments.

HTML documents on the web make use of this approach as
well by maintaining a clear separation between
information and the user interface. Graphical browsers
use the HTML tags to express information in a way that
makes sense visually. Similarly, auditory web browsers
can use the HTML tags to govern how to present the same
information in away that makes sense aurally. Emacspeak
includes such a speech interface for web browsing through
Emacs. Two other examples of stand-alone auditory

systems for Web access are IBM’s Home Page Reader [5]
and the BrookesTak [16] tool. In addition to presenting
the basic text in a spoken version, each of these tools offer
ways for the user to effectively navigate through the web
page. For example, Home Page Reader provides a “ Where
am 1?77 command that tells the location of an element on
the current page. BrookesTak has a page summarization
feature that analyzes the page information and forms an
abstract of the page approximately 1/5" the size of the
original page. All three tools use different voices to give
different cognitive cues. The techniques developed for
these and other auditory web tools, as well as those
developed for tools that speak mathematical equations
(e.0., MAVIS [10Q]), offer a rich new vocabulary for AUIs
that can be used in JavaSpeak.

Little formal research has been done on the topic of
assisting people with visual disabilities in learning to
program. One exception to this is a project led by Ivan
Kopecek at the Faculty of Informatics in Czech Republic
[11]. The project is designed around the logic
programming language Prolog. In logic programming, the
computer is provided with a specification of the problem in
the form of facts and rules, as opposed to a sequence of
steps reflecting a specific solution to the problem. The
conjecture is that people with visual disabilities may be
able to learn this style of programming more easily than
imperative or object-oriented programming. Since our
project is related to students learning an object-oriented
language, we can not use this work directly. However,
some of their experiences gained in working with blind
programmers will be beneficial.

We have done preliminary interviews with blind
programmers to gain some insight into how they program.
By far, the most common technique mentioned is the use
of comments to mark the beginnings and ends of syntactic
structures. The second most common thing mentioned is
the use of meaningful identifier names.

Emacspeak

Emacspeak provides a complete speech interface to a
number of user applications. In particular, it provides
functions geared directly to programming, such as
speaking program code in a meaningful way, browsing
source code, and interfacing with the compiler error output
and the debugger. For someone who knows how to
program aready and is familiar with a Unix environment,
this tool provides a very effective eyes-free environment.

The main difference between Emacspeak and JavaSpeak is
that JavaSpeak is designed, a-priori, as a tool for students
who are just learning to program. As such, the goal is for
the tool to help students learn the connection between the
syntax of the language and the semantics of the language.
JavaSpeak will make use of some of the techniques
introduced in Emacspeak but, in many ways, it will not be
as powerful as Emacspeak for experienced programmers.

But for students who are just learning to program,
JavaSpeak will provide feedback appropriate to their level
of understanding in such a way as to hopefully build upon
this.

DEVELOPMENT PROCESS FOR JAVASPEAK

The speech-enabling approach of Raman’s described above
is the approach that we are following with JavaSpeak. As
such, we need to first identify the information that is
important to be presented. Only then can we define an
effective way of aurally presenting the information.

As computer science educators for a number of years, we
have a large amount of experience working with students
who are learning to program. We do not, however, have
much experience working with students who have visua
disabilities. So, athough we have basic pedagogical
knowledge of what kind of information should be
presented to help a student learn to program, we do not
know if this information is exactly what a blind student
needs to learn how to program. Therefore, we need to
work directly with students and programmers who have
visual disabilitiesto figure this out.

Our approach to this problem has been to develop a rapid
prototype of JavaSpeak, with a very flexible
implementation, that can be used as a mechanism for
gaining user feedback. After users with visual disabilities
have had a chance to experiment with the prototype, their
feedback will then drive the development of the full set of
functional specifications for the JavaSpeak tool.

Initial Pedagogical Requirements for JavaSpeak

To learn how to program, students first learn the simple
syntactic units in the language. In general, thisis not very
difficult for them to do. It is when students start
combining simple syntactic units together to form larger
syntactic units that they run into trouble. For example,
consider the simple if-el se statement below:

if (x ==0)

System out. println(*“Done”);

el se Systemout. println(“Continue”);

Students who understand the basic idea of a conditional
can learn an if-else statement fairly quickly, even when
they don’'t use any indentation. But consider combining
two if statements with only one else part as shown below:

if (x ==0)
if (y ==0)
System out. println(“Done”);
. else x = vy;

PwbdPE

Understanding whether the else statement at line 4 goes
with the if at line 1 or the if at line 2 is a much harder
concept for students to figure out. (A note to non-
programmers. no matter how the statements are indented,
the else of line 4 goes with the if of line 2.)

In addition to students learning how to write correct
programs in the sense that the right answers are computed,
they must also learn how to design and organize their
programs in an appropriate way. Java programs are
organized around object-oriented and traditional structured
programming paradigms. Even though students start with
small programs in the early classes, we still enforce
organizational concepts from the beginning. Nonetheless,
it is sometimes difficult for them to learn these concepts.

The above discussion illustrates two different foci of
learning to program: the syntactic structure of the
program and the organizational structure of the program.
The syntactic structure category is related to how program
components work together and is based directly on the
definition of the programming language. The
organizational structure category is related to how the user
as a human arranges the code to keep track of what’s
going on. Incorrect syntactic structure should signal to the
user that errors were made during the algorithm to
language trandation phase of program development. An
organizational structure that is difficult to decipher should
signal to the user that there were errors made during the
algorithm development or design phase of program
development.

To help students learn how to program, we want to provide
pedagogical information about both the syntactic and the
organizational structures of their programs. In Table 1, we
have identified a set of seven basic kinds of information
related to these two structures that JavaSpeak should be
able to represent aurally to the user. For clarification, the
table includes example visual techniques that are often
used in programming environments to depict the named
concept. Numbers 1-4 are related to the syntactic structure
of the program; numbers 5-7 to the organizationa
structure.

Kind of Information Indicates

Visual Presentation Techniques

1. Phrasing

structure of a syntactic unit

newlines; language punctuation; color

2. Blocks
are logically related

groups of statements that

indentation; blank lines

3. Nesting Levels
units

nested hierarchy of syntactic

cascading indentation; newlines

Differentiation reserved words, special

kinds of identifiers

color; font; naming conventions (e.g.,
capitalized class names, upper case symbolic
constants)

5. ldentifier Names meaningful names

mixed case for multiple words (e.g.
FirstName)

6. Background parts not currently being

considered

compacting text; color and font; alignment;
special character combinations (e.g., //)

7. Constituent Parts

hierarchy

data members vs. methods,
composition, inheritance

spatial conventions; heading separation
CharaCterS (eg /**************/)

Table 1. Pedagogical Information Required of Prototype

JAVASPEAK PROTOTYPE

The intent of the full JavaSpeak tool isto generate auditory
contextual cues about a program, which are based on the
definition of the Java programming language, that will
assist visually impaired students in learning how to
program. The JavaSpeak prototype’s main requirement,
therefore, is to maximize our ahility to gain user feedback
about ways in which auditory cues can support this
process. In this section, we describe the details of the
working JavaSpeak prototype, with which we are starting
our usability tests.

Prototype Requirements

There are three primary requirements for the JavaSpeak
prototype. Specificaly, the prototype must

(1) Be completely usable by someone without sight. This
implies both the use of the tool and navigation within

the program must be accessible via a keyboard and
speech interface.

(2) Capture compiler-related information about a program
that facilitates an aural rendering of the information

listed in Table 1.

Be designed to be easily extensible and adaptable. In
particular, the tool must support experimentation with
different configurations and different aural renderings
of a program’s structure.

3

Prototype Design

The JavaSpeak prototype has the look of a traditional GUI
program editor with a text area and a drop down menu
system. There are five menu options. File, Edit, Focus,
Reader, and Help. Table 2 shows the choices available
under each menu option.

File Edit Focus Reader Help
New Cut Select Text 1. Basic Compilation Unit | Contents
Open Copy Set Range 2. Data Members
Save Paste Stop Reading | 3. Method Names
Save As Select All 4. Full Method Data
Options 5. Block Statements
Exit 6. Full Block Data

7. Token
8. Character

Table 2. Menu Options of Editor

The File and Edit options provide basic word processing
capability. The Focus options provide ways to select the
part of the program to be read and to stop the reading of
the program. The Reader options start an aural rendering
of the selected part of the program at one of severa pre-
defined levels of syntactic granularity. The Help option
provides assistance with both JavaSpeak tool usage and
introductory level Java programming in general.

The design of the prototype is divided into three main
parts: the navigational subsystem, the syntactic reader
subsystem, and the aural cue functions.

Navigational Subsystem

Tool navigation functions and menu option selection are
both function-key driven. The function-key mappings we
use currently model those used in Jaws for Windows [9].
In addition to the standard word processing navigation
functions, users are provided with the ability to select a
subset of their program for the aural rendering. The
focus of the rendering can be defined to go from the
beginning to the end of the program, to start at a specific
line number, or to only render arange of line numbers.

Syntactic Reader Subsystem

The syntactic reader subsystem (SRS) is central to
JavaSpeak as a teaching tool. It provides the user with
aural cues to help make the conceptual connection
between the written text and the definition and structure
of the Java language. The basic strategy of the SRS isto
parse a given program and generate an aural rendering of
the program that is then passed to IBM’s ViaVoice [6]
program for the actual speech output.

The rendering of aural cues by the SRS is a configurable
parameter in the JavaSpeak prototype. Cues can be given
in many forms (see below) and can serve to highlight any
level of program structure granularity, from the smallest
granularity (token by token), to a mid-level granularity
(e.g., block statement), to the largest granularity
(compilation unit). Table 3 gives an example of a section
of code and the renderings of this code at three different
granularity levels. (Only the first part of the rendering
for Level 7 is shown.) A desired outcome from the
experimental use of the prototype is to gain a better
understanding of which combinations of aural forms and
program levels provide the user with the most useful
contextual information.

Java Code Segment Level 1

Compilation Unit

Level 5 Level 7
Block Statement Tokens

public class MyC ass {
String x;
int test(String s) {
Systemout.println(“hi”);
if (x == s) {
for(int i=0; i<2; i++) {
Systemout.print(“*");
Systemout.print(“-“);
}
System out. println();

begin class declaration
public class my class
end class my class

begin class declaration | begin class declaration

public class my class public class my class

begin method test string x

begin if begin method int test
begin for begin parameters
end for string s

end if end parameters

end method test open brace

end class my class system dot out dot print line,

open parenthesis, open
guote, hi, close quote, close
parenthesis

begin if

if xisequal to s
open brace
begin for

forint i assigned O, i less
than 2, i plus plus

open brace

Table 3. Renderings of Code Segment at Different Granularities

Aural Cue Functions

Aural cue functions include a variety of techniques such
as text-insertion, symbol-to-text-substitution, text-to-
alternate-text-substitution, and alteration of voice, tone,
and other sound characteristics. Following are brief
descriptions of each of these techniques along with
examples of the aural cues that may be produced by each
technique.

Text-insertion involves feeding additional text to the
speech reader at key syntactic points. For example, the
text “begin while expression” and “end while expression”
can be added to the aural rendering of awhile loop. The
added text has the effect of emphasizing the loop test
while distinguishing it from the loop body. This
emphasis not only serves to reinforce the generalized
concept of aloop’stest as separate from its body, but also
maps nicely to the language that we, as educators, use to
describe loop execution flow.

Symbol-to-text-substitution is about storing a
replacement string in place of each occurrence of the
symbol itself in the text string to be fed to the speech
reader. This technique provides the users with a cue as to
how the operator is used. For example, the symbol-to-
text-substitution of the symbols“= =" to thetext “is equal
to” or of the symbol “=" to the text “is assigned” helps to
clarify the difference in meaning between these
frequently interchanged operators.

Text-to-alternate-text-substitution is basically the same as
symbol-to-text-substitution. An example of its use is in
the text subgtitution of the function call phrase
“System.out.printin()” with the text “system dot out dot
print line.” The resulting aural rendition matches the
language that would typicaly be used by educators to
name this function call. Therefore this particular text
substitution cues the user into the connection between the
written text and common Java terminology.

Although each of these examples uses some sort of text
replacement, aural cues can be based on a character
reading. This is necessary for a student to be able to
relate the actual symbols (e.g., "= =") to their meaning
(e.0., "isequal to").

In addition to the above arual cue functions, we will also
experiment with different approaches to "syntax
coloring" [15]. By altering speech tone and emphasis,
the user can be aerted to special tokens (e.g., reserved
words), spacing, commenting, and syntactic units. For
example, comments can be read using a different voice
than program code, method names can be read with a
different voice than data members, and reserved words
can be emphasized by lowering or elevating the pitch.
This is the same sort of strategy used in auditory web

browsers that use male and female voices to distinguish
between links and non-links on a Web page.

Prototype Implementation

Two existing tools were used extensively in the
implementation of the syntactic reader subsystem: the
Java Compiler Compiler (JavaCC) [8] and IBM’s
Viavoice. JavaCC was used to generate code for a Java
parser that could then be modified as necessary to
generate aural renderings of a parsed program. ViaVvoice,
which has a published API, was used as our speech
reader.

A diagram showing the overal design of the syntactic
reader subsystem is shown in Figure 1. The Gener at or
class is an abstract class that provides an interface of
accessible functions to the outside world. All Generator
classes contain agener at e(St ri ng) method that takes
in a string containing the Java code for which the user
wishes to generate spoken output. The generat e()
method then returns another string representing an aural
rendering of the code, which is passed back to the main
program. In particular, LexGenerator generates a
rendering based solely on the tokens of the input, and
SyntaxGenerator generates one of several renderings at
levels based on the syntactical structure of the program.

Generator has a TokenReplacer class that manages
replacements for tokens. TokenReplacer classes contain a
get Repl acement (String) method that returns the
replacement for the token in String.

JavaCC was used to generate the SyntaxParser, the AST
(abstract syntax tree) classes, and various utility classes
including SyntaxParserTokenManager. LexGenerator
uses the SyntaxParserTokenManager to get the tokens
from the string passed to the gener at e() method. The
tokens are then passed to the PhoneticTokenReplacer,
after which they are appended to the string to be output.

The SyntaxGenerator is a little more complex. The
SyntaxGenerator's gener at e() method passes the input
string to the SyntaxParser, which generates a syntax tree
based on the structure of the code. The generate()
method then uses the SyntaxVisitor on the generated
abstract syntax tree. The SyntaxVisitor traverses the tree
and generates the correct rendering for a given level. The
SyntaxVisitor also filters the tokens in the input string
through a PhoneticTokenReplacer. It then returns the
rendering as a string to the SyntaxGenerator, which in
turn returns the string to the rest of the program.

Under the current (05/00) implementation, text returned
by the generators to the main program is passed to a
TextReader class (not shown) that uses the Java Speech
API to read the text in a separate thread.

Abstract Generator

has-a
extend extenfs
Abstract
LexGenerator SyntaxGenerator A
has-a has-a has-a extends
SyntaxParser SyntaxVisito
SyntaxParserTokenManager
has-a
hes geperates is called on PhoneticTokenReplace

various utility classes

AST (Abstract Syntax Tree)

Figure 1. Syntactic Reader Subsystem

The technique of using different voice tones and emphases
while rendering program text is implemented by inserting
JSML (Java Speech Markup Language) tags into the text
stream to be read by ViaVoice.

NEXT PHASES OF DEVELOPMENT

The immediate next phase of development for this project
will be to work with programmers who have a visual
disability in using the JavaSpeak prototype. [Information
about this effort can be found at the JavaSpeak web site,
http://cs.smumn.edu/csmap/javaspeak.html.] Based on
these tests, and working in conjunction with the
programmers, we will define afirst set of requirements for
the full JavaSpeak. In [2] it is pointed out that “Blind
users of graphical user interfaces are especially affected by
arbitrary violations of design guidelines with respect to
application layout, behavior, and key mappings.” As much
as possible, we will define JavaSpeak to be consistent with
other tools developed for blind and visually impaired users.

We are developing JavaSpeak to be used by students in
introductory computer science classes, primarily CSI,
CS2, and Data Structures. When we have the next version
of JavaSpeak developed so that it can be used in real time
by visually impaired students taking CS1, we will get an
even clearer idea of what should and shouldn’t be included
in the tool. (As part of our long-term project, we have
funds for recruiting and supporting students with visual
disabilities in our computer science programs.)

The use of non-verbal cues in JavaSpeak is an area of
future exploration. A number of existing assistive tools
make effective use of non-verbal cues to varying degrees.
There has also been work done in the area of using non-
verbal sounds to represent the behavior of a program in
execution (e.g., [4] and [1]). Thistoo will be explored.

It will be very useful to students for JavaSpeak to give
interactive feedback and to support debugging activities.
We plan to work on both of these extensions.

CONCLUDING REMARKS

Our focus is on teaching students to learn how to program.
Therefore, we started out with our understanding as
teachers of how students learn to program. The
information we want to present is related to what will help
students learn the Java programming language as well as
to help them develop the art/skill of programming. As
such, we believe the tool can help students without visual
disabilities as well.

REFERENCES

1. ACM Specia Interest Group on Sound and
Computation, http://www.acm.org/sigsound

2. Bergman, Eric and Johnson, Earl, "Towards
Accessible Human-Computer Interaction,” in
Advances in Human-Computer Interaction, Vol. 5,
edited by Jakob Nielsen, 1995. Available at
http://www.sun.com/access/updt.HCI.advance.html

10.

Blackorby, J., Cameto, R., Lewis, A., & Hebbeler, K.,
"Study of Persons with Disabilities in Science,
Mathematics, Engineering, and Technology,” SRI
International, Menlo Park, CA, 1997.

Francioni, Joan and Jackson, Jay, "Breaking the
Silence: Auralization of Parallel Program Behavior,"”
in Journal of Parallel and Distributed Computing,
June 1993.

IBM, Home Page Reader, Available at
http://www.austin.ibm.com/sns/hpr.html

IBM, ViaVoice, Available at
http://www-4.ibm.com/software/speech/

Irwin, Mary Jane and Friedman, Frank, “1998-1999
CRA Taulbee Survey,” in CRN, publication of
Computing Research Association, March 2000.
Available at http://www.cra.org/CRN/online.html

JavaCC, The Java Parser Generator, Available at
http://www.metamata.com/JavaCC/

Jaws for Windows, http://www.hj.com/

Karshmer, Arthur, MAVIS (Mathematics Accessible to
Visually Impaired Students), New Mexico State
University, http://www.nmsu.edu/~mavis

11.

12.

13.

14.

15.

16.

Kopecek, Ivan, Programming for Visually Impaired
People, http://www.fi.muni.cz/~kopecek/pvip.htm

OUtSPOKEN,
http://www.humanware.com/E/E2/E2E.html

Raman, T. V., “AsTeR — Toward Modality-
Independent Electronic Documents,” DAGS 95, 1995,
http://cs.cornell.edu/home/raman/publications/dags-
95/paper.html

Raman, T. V., “Emacspeak — Direct Speech Access,”
in Proceedings of the Second Annual ACM
Conference on Assistive Technologies, Assets’ 96,
April 11 - 12, 1996, Vancouver Canada, pp. 32-36.
http://cs.cornell.edu/home/raman/emacspeak/publicati
ons/assets-96.html

Raman, T. V., Auditory User Interfaces. Toward the
Soeaking Computer, Kluwer Academic Publishers,
Boston, 1997.

Zajicek M., “Increased Accessibility to Standard Web
Browsing Software for Visually Impaired Users,”
ICCHP, 2000. Available via BrookesTalk home page,
http://www.brookes.ac.uk/schools/cms/research/speech
[btalk.htm

