

Proceedings of the 6th Winona Computer Science
Undergraduate Research Symposium

April 19, 2006

Table of Contents

 Title Author Page

Bayesian Filter for Blocking Spam Brandon Wienkes 1
 Winona State University

Automated Labeling of a segmented Image Chirs Lohfink 8
Using JESIA Winona State University

Functionally Testing PHP/MYSQL without Jesse Benson 13
Specifications Winona State University

An Automated Tool for Computing Software Nripendra Rai 18
Metrics Winona State University

The Correlation of Immersion and User Matthew Knutson 24
Satisfaction in Video Games Saint Mary’s University

 1

Bayesian Filter for Blocking Spam
Brandon Wienkes

Winona State University
MIS/CIS Majors BUSA Minor

608-553-0483

BDWienke1130@winona.edu

ABSTRACT

Spam emails are a nuisance and as spam blockers get more

efficient, spam writers get more creative. Spammers love to attack

corporations and even personal email. The Bayesian filter is an

effective filter that blocks spam emails. A JavaMail program for

spamming has been developed to study the effectiveness

of Bayesian filters.

Categories and Subject Descriptors

D.2.2 [Design Tools and Techniques]:

D.2.5 [Testing and Debugging]: Testing

General Terms

Networking, Spam Filtering

Keywords

Bayesian, filter, spam, ham

1. INTRODUCTION
In the corporate world, a company‟s connection to the outside

world is a key to its success. A company should not have to

worry about the credibility of its incoming emails.

“Spam refers to electronic junk mail or junk

newsgroup postings. Some people define

spam even more generally as any unsolicited

e-mail. In addition to being a nuisance, spam

also eats up a lot of network bandwidth.

Because the Internet is a public network, little

can be done to prevent spam, just as it is

impossible to prevent junk mail. However, the

use of software filters in e-mail programs can

be used to remove most spam sent through e-

mail.” [27]

Even though there are tools for preventing spam from getting into

an inbox [2], none can prevent all of the spam from getting

through [4]. Far too many times, a valid email may be blocked

and put in the junk mail folder. It is someone‟s job to check the

emails even though they have gone through the blocking process

already. Even at a personal level, it is a nuisance to sort through

emails when just trying to check our daily emails. This takes time

and we all know “time is money.” In fact, Barracuda Networks

wrote:

“Spam accounts for 45% of all e-mails, or 15

billion messages every day, and costs business

world-wide a total of $20 billion a year in lost

productivity and technology expenses,

according to the Radicati Group, a market

research firm in Palo Alto, CA. The firm

predicts the number of daily spams will rise to

more than 50 billion by 2007, and costs will

reach almost $200 billion per year.” [16]

In the last five years, there has been considerable effort to stop

spam. Sipior goes in depth about the legislative action that has

taken place and its failures [13]. Paul-Alexandru Chirita, Jörg

Diederich, and Wolfgang Nejdl have come up with new ideas of

using mail ranking systems where people on a network can

combine spam lists to block spammers [3]. Paul Graham shares

with us effective ways to block spam. Graham explains different

ways of blocking spam: mail server blacklists, Signature-Based

Filtering, Bayesian (aka Statistical) Filtering, Rule-Based (aka

Heuristic) Filtering, Challenge-Response Filtering, Laws, FFBs,

Slow Senders, and Penny per Mail [8]. However, when trying to

block spam, we may also block valid emails. Shlomo proposes an

idea of combining email models to prevent false positives (i.e.,

emails that are blocked when they shouldn‟t be) [9]. Dr. Neal

Krawetz gives a good overall summary of each aspect of spam and

its future [10]. The future looks promising for spammers given

that 45% of emails are spam and this number is rising [4], which

means we need to upgrade our algorithms and improve our filter

and spamming techniques. From this, we have learned that the

Bayesian spam filter has become an efficient spam filtering system

on the free market.

 The Bayesian filter described in section 2.1 gives us an

introduction into Paul Graham‟s filter. This section includes the

background information, the theory, and the algorithms behind the

Bayesian filter. The JavaMail API and the experimentation using

a JavaMail program to test email filters is introduced in section

2.3. The email filters are briefly explained in section 2.3.3 and

their results are displayed in section 3. Finally, my analyses of the

results from the filters are explained and the future of the

Bayesian filters is taken into consideration in the last section of

the paper.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Proceedings of the 5th Winona Computer Science Undergraduate

Research Seminar, April 20-21, 2006, Winona, MN, US.

mailto:BDWienke1130@winona.edu

 2

2. METHODOLOGY

2.1 Bayesian Filter
Bayesian spam filters calculate the probability of an email being

spam based on its body, which is partitioned into tokens. Unlike

simple content-based filters, Bayesian spam filtering is a learning

filter. It learns from both positive examples (i.e., spam) and

negative examples (i.e., legitimate email or ham) making it robust,

adaptable, and an efficient anti-spam approach. One solid aspect

of this type of filter is the low number of false-positives, which

are legitimate emails that are classified as spam, when truly they

are not. Often, it is more hazardous to the recipient to have their

email classified as junk when it truly is not, than actually

receiving spam.

2.1.1 Background
Bayesian filtering was proposed in 1998 by Sahami et al. [12], but

did not gain attention until 2002 when it was described in the

paper “A Plan for Spam” by Paul Graham [5]. Since that time it

has become a popular filtering system that is used to separate

spam email from ham email. Many modern mail programs such as

Mozilla Thunderbird implement Bayesian spam filtering. Server-

side email filters, such as SpamAssassin and ASSP (Anti-Spam

SMTP Proxy Server), make use of Bayesian spam filtering

techniques, and the functionality is sometimes embedded within

mail server software itself [12].

(let ((g (* 2 (or (gethash word good) 0)))

 (b (or (gethash word bad) 0)))

 (unless (< (+ g b) 5)

 (max .01

 (min .99 (float (/ (min 1

 (/ b nbad))(+ (min 1 (/ g ngood))

 (min 1 (/ b nbad)))))))))

Figure 1. The probability that each token in the email

contains spam. [5]

2.1.2 Theory
Paul Graham explained his theory in [5], and gave an overview of

how his Bayesian filter was used. Graham started off with two

groups of email messages: one group of spam and one group of

non-spam email both which are hash tables in code. The emails

were scanned in, including the headers, embedded html, and

JavaScript. In [5], Graham considered alphanumeric characters,

dashes, apostrophes, and dollar signs to be part of tokens, and

everything else to be a token separator. Graham improved his

technique by ignoring tokens that were all digits, and also

ignoring html comments [13]. Some improvements are: Case is

preserved, Exclamation points are constituent characters, Periods

and commas are constituents if they occur between two digits, $20

and $25, and finally tokens that occur within the To, From,

Subject, and Return-Path lines. [6] From there, Graham counts the

number of times each token was found in each group (spam and

ham) and puts them into separate hash tables. A third hash table

is created mapping each token to the probability that an email

contains spam. Figure 1 shows us how this probability is

calcualated.

Word is the token whose probability we are calculating. Good

and bad are the hash tables Graham created in the first step (two

groups of emails) and ngood / nbad are the number of occurrences

of the each word in those tables. To avoid false positives, Graham

has found that by doubling the numbers in the good hash table, it

helps the probability of having false positive emails (Figure 2:

line 1 (* 2…)). From here, he only considers words that occur

more than five times in total (Figure 2: line(unless (< (+

g b) 5)). At first, Graham decided to use .01 and .99 as the

probability to assign words that occur in one hash table but not in

the other [5]. (Figure 2: using .01 and .99 to determine the

probability)

“When new mail arrives, it is scanned into tokens, and

the most interesting fifteen tokens, where interesting is measured

by how far their spam probability is from a neutral .5, are used to

calculate the probability that the mail is spam” [5]. You calculate

the combined probability by looking at figure 2.

(let ((prod (apply #'* probs)))

 (/ prod (+ prod (apply #'* (mapcar

#'(lambda (x) (- 1 x)) probs)))))

Figure 2. Lisp code for combined probability. (probs is the list

of the top 15 spam words) [5]

To better understand combined probability and a better visual,

figure 3 shows us in a normal math equation, rather than in

pseudo code [7].

If a and b are the probabilities associated with two independent

pieces of evidence, then combined they indicate a probability of:

 ab

ab + (1 - a)(1 - b)

Figure 3. A mathematical representation of combined

probability.

As for words that have never been seen, Graham recommends

using a probability of .4, but thinks this can be adjusted for

improvements.

2.2 JavaMail
The JavaMail API provides a platform-independent and protocol-

independent framework to build mail and messaging applications

[19]. The JavaMail API is implemented as a Java platform

optional package and is also available as part of the Java platform,

Enterprise Edition. The API provides the user with a set of

 3

abstract classes defining objects that comprise a mail system.

From there, the API can be extended and can be sub-classed to

provide new protocols and to add functionality when necessary.

Developers can subclass JavaMail classes to provide the

implementations of particular messaging systems, such as IMAP4,

POP3, and SMTP [21]. IMAP stands for Internet Message Access

Protocol. It is a method of accessing electronic mail or bulletin

board messages that are kept on a (possibly shared) mail server

[28]. Short for Post Office Protocol, POP is a protocol used to

retrieve e-mail from a mail server. Most e-mail applications

(sometimes called an e-mail client) use the POP protocol,

although some can use the newer IMAP (Internet Message Access

Protocol) [30]. Short for Simple Mail Transfer Protocol, SMTP

is a protocol for sending e-mail messages between servers [31].

For the purpose of my paper and experimentation, all that was

needed is the SMTP portion of the JavaMail package. To use this

feature, we added the Mail.jar and Activation.jar files to our

project build path to send out emails on a SMTP mail server.

These jar files are available for download at [24] and [20],

respectively.

2.3 Experimentation
To examine how Bayesian filters work and how efficiently they

can stop spam, I created a spamming program where I spammed

my own email box with different spam filters. Section 2.3.1 gives

an overview of setting up a JavaMail program to send emails with

SMTP on a server. Section 2.3.2 shows how I created the

“random” spam emails and finally section 2.3.3 provides an

overview of the spam filters used in the experiment.

2.3.1 JavaMail Coding
Prior to coding the application, the Mail.jar and Activation.jar

files were downloaded. When adding them to the project build

path, make sure that these jars are stored in the project folders so

that it is easier to create executable jar files.

SendMail(S1, S2, S3, S4, S5) shows us how to send an email in

pseudo code. The inputs to this method are: S1 (the server we

plan to connect and send mail from), S2 (the Address from where

the email is from), S3 (the Address to where the email is intended

to go), S4 (the subject line of the email), and S5 (the body of the

email). All of these parameters are Strings.

SendMail is a void method but will send the email if there are no

exceptions and the „to Address‟ is relevant. It is wise to display a

message to the console to determine if the mail was sent.

We use the variables: properties: Properties (Java class), session:

Session (JavaMail class), message: MimeMessage (JavaMail

class), and tr: Transport (JavaMail class). The SendMail method

needs no other variables to accomplish its mission and it is

described below. sendMail(S1, S2, S3, S4, S5): The method

goes in the order as followed:

1. (Get the system properties.)

properties = getSystemProperties

“The Properties class represents a persistent set of properties. The

Properties can be saved to a stream or loaded from a stream. Each

key and its corresponding value in the property list is a string

[22]. The properties class allows us to store our SMTPs (secure

line) host or SMTP host, which we use when sending the email.

2. (Add the server to the properties)

 properties = properties.put("mail.smtp.host", S1)

3. (Add the server authorization to the properties)

 properties = properties.put("mail.smtp.auth", "true")

4. (Create an instance of a Session based on the properties. We

can also set the .setDebug feature to true, which will display the

connections to the console) We then create a default instance of a

session, part of the JavaMail API, based on these properties.

“The Session class represents a mail session and is not sub-

classed. It collects together properties and defaults used by the

mail API's. A single default session can be shared by multiple

applications on the desktop. Unshared sessions can also be

created. The Session class provides access to the protocol

providers that implement the Store, Transport, and

related classes.” [23] From the creation of this session, we can

finally create or MimeMessage (JavaMail class), which is

essential our email.

session = session.getDefaultInstance(properties)

5. try {

6. (Create a new MimeMessage based off of the Session just

created)

message = new message(session)

7. (Set the recipients to the email)

message = message.setRecipient(S3)

8. (Set the from address of the email) If we are on an open relay

network, we can set the fromAddress to anyone whom we please,

which is pretty scary. By this, I mean you can receive email from

a legitimate source and it still may be spam. As tests for our open

relay SMTP server, I sent emails to myself from

jesus@winona.edu and also emails from my friends to myself to

determine if a reply would actually send (which it did).

message = message.setFrom(S2)

9. (Set the subject of the email)

message = message.setSubject(S4)

10. (Set the body of the email)

message = message.setText(S5)

11. (Create a new Transport based off of the session. This

transport will do the connecting and sending of the email)

tr = session.getTransport("smtp")

12. (Connect to the server using a relevant ID and Password)

 tr.connect(S1,"UserID", "password")

13. (Send the message to the recipients)

tr.sendMessage(message, message.getAllRecipients())

14. (Close the connection to the server)

tr.close()

15.} catch (exception) {

16. (Print the exception to the console to find out why the email

did not send)

print exception}

mailto:jesus@winona.edu

 4

That is basically a mini JavaMail program in a nutshell. We can

increase the options of our email with more coding to include

priority, confirmation email, and even to see if they have opened

the email.

2.3.2 The Spammer
In order to send out spam emails, I needed to know which spam

words are actually included in an email. For this purpose, I used

the spam phrases from the list provided in [1]. Some included

phrases are: free cell phone, free degree, free diploma, free game,

free games, free gas, free gift, free list, etc. While creating the

emails, I kept track of the subject, which is determined whether it

is a spam or ham email, body, spam phrase count, and ham phrase

count. I used the java random generator to randomly pick how

many words/phrases and spam words will be in each email. If it is

a spam email, in this example, I figured that at most 50% of the

words could be considered spam and the rest filled in with ham

phrases. This shows us steps of doing this in java.

1. randomGenerator = new Random()

2. numberOfWords = Math.abs(randomGenerator.nextInt(500) +

1)

3. numberOfSpam =

Math.abs(randomGenerator.nextInt((int)Math.ceil((numberOfWor

ds*.5))));

By taking the absolute value, we prevent possible errors from

happening, where the pre-conditions to the generator are that the

numbers being passed in must be positive. From there, I keep

appending to a String by adding a random spam phrase then

followed by a ham word until all of the spam phrases have met

their requirements. This can be viewed in figure 4.

Figure 4. Java representation of filling the email with words.

To keep the data sets the same, the program actually uses a file

writer and prints out the emails to a text file. From there, I can

read in the text file as many times as needed while keeping the

same data but also allowing us to test different spam blockers. I

have tested each blocker with five text files each with 500 words.

The first text file is used for the Bayesian learning. I manually

went through the emails and classify each of the emails as ham or

spam. The second test is one with no spam emails. All of the

emails are considered non-spam. The third test is an email with

all spam emails having the possibility of having up to 30% of the

total phrase count being spam. The fourth and fifth are the same

but with 40% and 50%, respectively.

A randomly generated sample email is shown below in figure 5.

Body: get your reading consistent make money at home condemn

free list feudal slot-machine relevant cemetery separate

caricature occasion(ally) professor guarantee humour prevalent

proceed secretary schism omitted occur sensible sacrilegious

grammar anxious temperament preceding exhilaration

millionaire forty ninety opinion pilgrimage conscientious

existence occurrence desperate primitive analysis conscience

acquire embarrass receive meant psychology character

fictitious sensible fulfill (fulfil) prejudice prevalent

Subject: Ham

TotalSpam: 4

TotalWords: 47

Figure 5. A sample email filled with spam and ham phrases.

Obviously the email does not make grammatical sense. But, the

Bayesian filter does not look to see if the phrases are meaningful.

When we describe the tokens, we mean that each word is

separated like so: get, your, reading, consistent, make, money, at,

home…etc.

2.3.3.1 Junk-Out for Microsoft Outlook (Version

1.15.0049)

Junk-Out™ is an e-mail filtering program which adds directly into

Microsoft Outlook® and only runs when you need it [25]. Junk-

Out™ scans the content of each message's body and header, then

uses past experience of 'good', 'bad' and 'neutral' words in both

junk and non-junk messages to arrive at an overall probability for

the current message being junk. It then uses probability thresholds

to classify each message [26]. To make this possible, Figure 8

shows how the filter is setup. Junk-Out™ includes a 'seed

vocabulary' of over 30,000 'bad' words to provide initial 'past

experience' to the filter. Junk-Out™ tailors Bayesian filtering to

your individual e-mail style. Use the Start Up Wizard to provide

the initial 'past experience' of non-junk mail from your Sent Items,

and other folders you choose as good examples. Junk-Out™'s

Bayesian / content-based filter goes on learning as long as you go

on using it. Junk-Out™ adapts to changes in your own e-mail

style and to the ever-changing stratagems used by junk e-mailers.

[26]

2.3.3.2 SpamBayes (Version 1.90)

The SpamBayes project developed a statistical (referred to as

Bayesian) anti-spam filter, initially based on the work of Paul

Graham. The major difference between this and other Bayesian

filters using Graham‟s work is the emphasis on testing newer

approaches to scoring messages.

“The SpamBayes team tinkered with new

algorithms, tweaking existing algorithms, and,

most importantly, did enormous test runs,

slamming tens of thousands of messages

against each other, in an attempt to quantify

whether or not a change to the system was

beneficial. The new algorithm is a

combination of work from Gary Robinson and

Tim Peters, and provides not just a 'spam' and

 5

'ham' rating, but also an 'unsure' rating, for

those messages where it can't work out how to

rate the message [17].”

2.3.3.3 Outlook Spam Filter 3.0

Outlook Spam Filter 3.0 is an easy-to-use Microsoft Outlook®

add-on designed to provide an advanced protection against

spammers and unsolicited emails. The program uses Bayesian

filtering technology that identifies about 97% of incoming spam

messages [14]. The spam filter catches spam and puts it in its own

folder.

2.3.3.4 Spam Bully Outlook Version (3.0.0.30)

This filter uses a Bayesian spam filter and places the junk mail

inside the junk folder. This also allows for black/white lists, the

ability to report junk mail, forwarding good emails to your cell

phone, statistics, and multi-language interfaces [15].

2.3.3.5 Spam Reader 2.25

Spam Reader is a powerful anti-spam filter for

Microsoft Outlook combining ease-of-use and a high

degree of protection against unsolicited emails. A

Bayesian algorithm based on statistical analysis detects

up to 98% of spam messages. Spam Reader is easily

integrated into Microsoft Outlook and needs no

additional adjustments. It starts working immediately

after the installation [11]. Spam Reader uses the

Bayesian filter like the other software filters being

tested.

3. Results and Analysis
There are two measures that are important when comparing spam

filters: the number of spam emails missed by the filter (the false-

negative ratio) and the number of legitimate emails incorrectly

categorized as spam (the false-positive ratio). Of these, the false-

positive ratio is by far the most important; if one spam should

happen to slip by the filter it is easy to just click the spam button

and allow the Bayesian filter to place it in the spam folder and by

doing so, learning from its mistake. However, if a legitimate email

is placed in the spam folder, the recipient may never receive it.

The recipient should not have to check the spam folder for

legitimate emails; otherwise this would defeat the purpose of the

filter. Figure 6 shows us these numbers in percentages. Each

filter was tested with the same data sets. However, two of these

filters grabbed online sources for further learning which seems to

have skewed their results and in fact, made them slightly less

efficient.

Product

%

Caught

% False

Positives

% False

Negatives

Out-Junk 95.59% 0.00% 4.15%

Spam-Bayes 100.00% 0.00% 0.00%

Outlook 98.31% 1.63% 1.82%

Spam Filter

SpamBully 99.35% 1.63% 1.95%

Spam Reader 97.92% 1.71% 2.08%

Figure 6. Shows us the products results for catching spam,

false positives, and false negatives.

The Spam-Bayes software performed flawlessly in my tests.

Figure 7 shows the results of the 500 emails sent out that did not

contain spam phrases.

500

0

500

0

487

13

480

20

487

13
0

50

100

150

200

250

300

350

400

450

500

Number of

Emails

Out-Junk Spam-

Bayes

Outlook

Spam Filter

SpamBully Spam

Reader

Product

No Spam

No Spam Inbox

No Spam Spam

Figure 7. This chart shows us the number of emails classified

as legitimate and spam emails when testing with no spam.

Out-Junk and Spam-Bayes performed the best when all emails

were considered legitimate emails. The other software packages

are using previous knowledge from a source off the internet or its

own files which is why they are considering some emails as spam.

Figure 8 shows us the results for sending out spam that had a

possibility of having 30% of the total phrases being spam. In

total, 233 legitimate emails and 267 spam emails were sent out in

this data set.

0

50

100

150

200

250

300

Out-Junk Spam-

Bayes

Outlook

Spam

Filter

SpamBully Spam

Reader

Spam 30%

Inbox

False-Negatives

Possible-Spam

False-Positives

Spam

Figure 8. The results of the spam emails containing up to 30%

spam phrases.

Again, the Spam-Bayes performed flawlessly and Spam-Reader

performed poorly having 6 false positive emails. Out-Junk and

SpamBully come with the option to have an “unsure” or

“possible” junk folder where if the probabilities are undetermined,

it places them there. This is a nice feature which can help prevent

false positives when we are allowed to change the restrictive

probabilities.

Figure 9 shows the results of spam emails containing up to 40%

spam phrases. We should see a more efficient filter in each of the

 6

software programs. The spam and legitimate emails were

deadlocked at 250 a piece.

0

50

100

150

200

250

Out-Junk Spam-

Bayes

Outlook

Spam Filter

SpamBully Spam

Reader

Spam 40%

Inbox

False-Negatives

Possible-Spam

False-Positives

Spam

Figure 9. Results of the spam emails containing up to

40% spam phrases.

Spam-Bayes performed near perfection again, while the Outlook

Spam filter performed poorly with 3 false positives. Out-Junk,

Outlook Spam Filter, SpamBully, and Spam Reader all allowed a

few spam emails to slip by into the inbox but is not necessarily a

terrible thing. Figure 13 shows us the percentages of where the

emails fell into which folders when using SpamBully.

SpamBully - Spam 40%

51%

1%4%0%

44%

Inbox

False-Negatives

Possible-Spam

False-Positives

Spam

Figure 10. SpamBully’s results for filtering out the emails with

up to 40% Spam phrases per spam email.

In Figure 10, 1% of the spam emails were allowed into the inbox.

Since half of the emails were spam, SpamBully successfully

filtered 98% of the spam while avoiding filtering any legitimate

email. Another feature is that 4% of the emails were considered

“possible,” the results showed that all of these emails were spam.

 Figure 11 shows the results of the final test allowing

spam emails to have up to 50% spam phrases in them.

0

50

100

150

200

250

300

Out-Junk Spam-

Bayes

Outlook

Spam

Filter

SpamBully Spam

Reader

Spam 50%

Inbox

False-Negatives

Possible-Spam

False-Positives

Spam

Figure 11. Results of the spam emails containing up to 50%

spam phrases.

Outlook Spam Filter ended up with two false positives with four

false negatives and Spam Reader allowed one false positive with

four false negatives too.

My overall results from my testing conclude that Spam-Bayes to

be the most efficient filter. It showed perfection in my tests but

obviously is not perfect in real life situations. Spam-Bayes uses an

advanced algorithm using the chi-squared approach. This allows

for an unsure folder to be created and to address the problem with

Graham‟s algorithm of producing a score of 1 (spam) or 0 (ham)

[18].

3.1 The Future
The future looks promising to the Bayesian filter and negative to

spammers. However, sometimes installing and using the Bayesian

filter can be somewhat complicated. I had problems setting up my

Junk-Out software to filter though the POP rather than the IMAP

account. Now to a beginner, this may make no sense at all. Also,

it does take some time, a few minutes to scan all legitimate mails

into the learning process. However, the main feature is that when

trained to spot what is spam and what is legitimate mail, these

smart filters can catch, in many cases, more than 99% of junk

messages [32].

Eventually, people will find a way to break past the filters.

Graham has even stated that if someone sends an email with just a

link in it, the filter will probably not catch it. From there, Mr.

Graham-Cumming, who is a member of the Sophos Anti-Spam

Task Force, has found a way to beat Bayesian filters.

“To find out how to beat the filters Mr.

Graham-Cumming sent himself the same

message 10,000 times but to each one added a

fixed number of random words. When a

message got through he trained an "evil" filter

that helped to tune the perfect collection of

additional words. Soon he had generated a

short list of words that, if added to a spam

message, would guarantee its safe passage

into his inbox.” [29]

He admits that this was a long process. Basically what he did was

he took time to find out which words his Bayesian filter thought

were safe and then skewed the probabilities of the spam words

inside the email. He basically broke down the probability

algorithms. It is possible to stump these filters, but as for today, it

is a very beneficial software program that I would recommend to

everyone to prevent spam from entering their inbox.

4. REFERENCES

[1] Active Web Hosting. “Spam Keywords To Add To Your

Filter Lists” http://www.activewebhosting.com/faq/email-

filterlist.html Viewed: 3/21/06.

[2] Bradley, Tony. CISSP-ISSAP, Your Guide to Internet /

Network Security. “Free Spam-Blocking Software”

http://netsecurity.about.com/od/emailspamblocking/a/aafrees

pam.htm Viewed: 3/1/06

http://www.activewebhosting.com/faq/email-filterlist.html
http://www.activewebhosting.com/faq/email-filterlist.html
http://netsecurity.about.com/od/emailspamblocking/a/aafreespam.htm
http://netsecurity.about.com/od/emailspamblocking/a/aafreespam.htm

 7

[3] Chirita, Paul-Alexandru., Diederich, Jörg., Nejdl, Wolfgang.

“MailRank: Using Ranking for Spam Detection” in the ACM

Press of October 2005.

[4] Evett, Don. “Spam Safety Tips” ©2005 TopTenREVIEWS,

Inc.http://spam-filter-review.toptenreviews.com/spam-safety-

tips.html Viewed: 3/1/06

[5] Graham, Paul. “A Plan For Spam” In August 2002 of

http://www.paulgraham.com/spam.html Viewed: 3/19/06

[6] Graham, Paul. “Better Bayesian Filtering” In January 2003

of http://www.paulgraham.com/better.html Viewed: 3/20/06

[7] Graham, Paul. “Probability”

http://www.paulgraham.com/naivebayes.html Viewed:

3/29/06

[8] Graham, Paul. “Stopping Spam” in August 2003 of

http://www.paulgraham.com/stopspam.html Viewed:

2/12/06.

[9] Hershkop, Shlomo, Stolfo, Salvatore J. “Combining Email

Models for False Positive Reduction” in the ACM Press of

August 2005.

[10] Krawetz, Neal. “Anti-Spam Solutions and Security.” In

2/26/04 of http://www.securityfocus.com/infocus/1763

Viewed: 2/12/06.

[11] LuxContinent LLC © 2004-2006. March 28, 2006

http://www.spam-reader.com/ Viewed: 3/31/06.

[12] Sahami, M., Dumais, S., Heckerman, D., Horvitz, E. A

Bayesian approach to filtering junk e-mail, AAAI'98

Workshop on Learning for Text Categorization, 1998.

[13] Sipior, Janice C., Ward, Burke T., Bonner, P. Gregory.

“Should Spam be on the Menu?” in the ACM Press of June

2004.

[14] SoftLogica LLC. Copyright © 2003-2006, All rights

reserved. http://www.outlook-spam-filter.com/ Viewed:

3/31/06.

[15] Spam Bully Copyright 2002 – 2005 Axaware, LLC.

http://www.spambully.com/features.php Viewed: 3/31/06.

[16] “Spam Cost Calculator” Copyright © 2006 Barracuda

Networks

http://www.barracudanetworks.com/ns/resources/spam_cost_

calculator.php Viewed: 3/1/06

[17] SpamBayes Project. 2/16/2005.

http://spambayes.sourceforge.net/ Viewed: 3/31/06.

[18] SpamBayes Project. 2/16/2005.

http://spambayes.sourceforge.net/background.html Viewed:

4/4/06.

[19] Sun Microsystems. Copyright 1994-2006 Sun Microsystems,

Inc. http://java.sun.com/products/javamail/ Viewed: 3/1/06.

[20] Sun Microsystems. Copyright 1994-2006 JAF Downloads.

http://java.sun.com/products/javabeans/glasgow/jaf.html

Viewed: 3/22/06.

[21] Sun Microsystems. “Java Mail API Design Specification.”

September 2000.

http://java.sun.com/products/javamail/JavaMail-1.2.pdf

Viewed: 3/19/06

[22] Sun Microsystems. Copyright 1994-2006 Sun Microsystems,

Inc. “JavaTM 2 Platform, Standard Edition, v 1.4.2 API

Specification”

http://java.sun.com/j2se/1.4.2/docs/api/index.html Viewed:

3/21/06.

[23] Sun Microsystems. Copyright 1994-2006 Sun Microsystems,

Inc. “JavaMail API documentation”

http://java.sun.com/products/javamail/javadocs/index.html

Viewed: 3/21/06.

[24] Sun Microsystems. Copyright 1994-2006 JavaMail

Downloads.

http://java.sun.com/products/javamail/downloads/index.html

Viewed: 3/22/06.

[25] The Office Maven copyright © 2003-06 - All rights

Reserved.

http://www.theofficemaven.com/junkout/download.html

Viewed: 3/29/06.

[26] The Office Maven copyright © 2003-06 - All rights

Reserved.

http://www.theofficemaven.com/junkout/features.html#3_Ba

yesian_Filtering Viewed: 3/29/06.

[27] U.S. Department of Education. National Center for

Education Statistics. National Forum on Education Statistics.

Weaving a Secure Web Around Education: A Guide to

Technology Standards and Security, NCES 2003-381.

Washington, DC: 2003.

[28] University of Washington. “The IMAP Connection”

http://www.imap.org/ Viewed: 3/19/06.

[29] Ward, Mark .“How to Make Spam Unstoppable” BBC

News. 2/4/2004

http://news.bbc.co.uk/1/hi/technology/3458457.stm Viewed:

4/4/06.

[30] Webopedia Computer Dictionary. “POP”

http://www.webopedia.com/TERM/P/POP2.html Viewed:

3/19/06.

[31] Webopedia Computer Dictionary. “SMTP”

http://www.webopedia.com/TERM/S/SMTP.html Viewed:

3/19/06.

[32] Wikipedia: The Free Encyclopedia. “Bayesian Spam

Filtering” Last Modified: 17 March 2006.

http://en.wikipedia.org/wiki/Bayesian_spam_filtering.

Viewed: 3/19/06.

http://spam-filter-review.toptenreviews.com/spam-safety-tips.html
http://spam-filter-review.toptenreviews.com/spam-safety-tips.html
http://www.paulgraham.com/spam.html
http://www.paulgraham.com/better.html
http://www.paulgraham.com/naivebayes.html
http://www.paulgraham.com/stopspam.html
http://www.securityfocus.com/infocus/1763
http://www.spam-reader.com/
http://www.softlogica.com/
http://www.outlook-spam-filter.com/
http://www.spambully.com/features.php
http://www.barracudanetworks.com/ns/resources/spam_cost_calculator.php
http://www.barracudanetworks.com/ns/resources/spam_cost_calculator.php
http://spambayes.sourceforge.net/
http://spambayes.sourceforge.net/background.html
http://java.sun.com/products/javamail/
http://java.sun.com/products/javabeans/glasgow/jaf.html
http://java.sun.com/products/javamail/JavaMail-1.2.pdf
http://java.sun.com/j2se/1.4.2/docs/api/index.html
http://java.sun.com/products/javamail/javadocs/index.html
http://java.sun.com/products/javamail/downloads/index.html
http://www.theofficemaven.com/junkout/download.html
http://www.theofficemaven.com/junkout/features.html#3_Bayesian_Filtering
http://www.theofficemaven.com/junkout/features.html#3_Bayesian_Filtering
http://www.imap.org/
http://news.bbc.co.uk/1/hi/technology/3458457.stm
http://www.webopedia.com/TERM/P/POP2.html
http://www.webopedia.com/TERM/S/SMTP.html
http://en.wikipedia.org/wiki/Bayesian_spam_filtering

 8

Automated Labeling of a Segmented Image using JESIA
 Chris Lohfink

Department of Computer Science
Winona State University

Winona, MN 55987
cnlwsu@gmail.com

ABSTRACT

A Java-based Expert System for Image Analysis (JESIA) is being

developed at Winona State University for building a knowledge-

based image analysis system. It is capable of segmenting an

image using a Fuzzy C-Means (FCM) algorithm. This paper

describes a method for automatically labeling centroids of one of

these segmented images. The centroids are labeled by comparing

a segmented image to an annotated image generated by a human

expert, which is then used to find the feature space. This feature

space can then be used to label centroids in another segmented

image without the annotated image.

Categories and Subject Descriptors

I.2 [Artificial Intelligence]: Machine Learning

I.5 [Pattern Recognition]: Image Segmentation

General Terms

Algorithms, Image Segmentation, Expert System.

Keywords

JESIA, Image Segmentation, clusters, Fuzzy C-Means.

5. INTRODUCTION
Representing data with clusters has been around for awhile. The

area was researched by Duran and Odell [10] and by Diday and

Simon [12] and Michalski [11]. The use of centroids is a widely

accepted approach of representing these clusters [1]. This method

allows for easier understanding and processing in both symbolic

and conceptual clustering [2]. The clustering being used in image

segmentation was documented in Schachter et al. [13].

According to Greg Hamerly, the Fuzzy C-Means (FCM)

algorithm is one of the best segmentation algorithms currently

available [4]. But a problem that comes up with image

segmentation using clusters is the high computational complexity

[1]. The performance of a FCM algorithm for image segmentation

is also affected by the number of clusters in the data, uneven

distribution of data points, initialization of a clustering algorithm,

large variations of cluster‟s sizes, and the shape of clusters, etc.

[3]. A. K. Jain also suggests that the segmentation like this may

create non-isotropic or elongated objects [1].

The FCM algorithm works using fuzzy logic. Each datum has a

degree e of belongingness to each cluster. The degree of

belongingness is represented by a membership function μi given

for a point x.

 (1)

The membership function can be defined as :

 μi(x)=

 (2)

Where d(x,i) represents the distance from x to the centroid i. and

is computed as:

 d(x,i) = | f (x) - cluster(i) | (3)

Where cluster(i) is the value for a i, cluster and f(x) is the value of

a point x. These values come from images as grey value on grey

scale images [2]. The values of the cluster centroids are thus

computed based on the colors between areas of the images..

2. HYPOTHESIS

An algorithm can be developed for the labeling of fuzzy clusters

generated from the segmentation of an image under the guidance

of a human expert.

3. THE ALGORITHM

The labeling of a cluster starts by comparing a cluster to an

annotated training image created by a human expert. If there are

enough of the points in a cluster mapped to an annotated object,

the cluster will be labeled. As there is a chance that an object may

actually be separated into multiple clusters, so it is important for

an algorithm to be able to combine multiple clusters and label

them belonging to a single object.

Each point is compared to the human expert annotated image.

The algorithm stores the information found by this comparison as

given by Figure 1.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Proceedings of the 6thWinona Computer Science Undergraduate

Research Seminar, April 20–21, 2006, Winona, MN, US.





clustersnum

j

m

jxd

ixd.

1

1

2

),(

),(

1

 9

Type Record :

Var fcmId : Integer

 { value FCM gave for this cluster }

Var totalPointsCluster : Integer

 { total number of points in this

 cluster }

Var positivePoints : Integer

 { number of points in a expert

 annotated object }

Var unknown : Integer

 {number of points not found in any

 annotated object}

Var label : Integer

 { label given after the comparison }

Figure 1: Structure for data stored for processing in algorithm

Type Pixel :

Var x : Integer

 { a coordinate used to represent

 horizontal position }

Var y : Integer

 { a coordinate used to represent

 vertical position }

Var location : Integer, Integer

 {x,y coordinate pair representing

 location}

Var value : RGB

 { the RGB value of this pixel }

Figure 2: structure of a pixel, or point on the image

Within Figure 1, fcmId is an integer the FCM algorithm assigns to

a cluster. The value of totalPointsCluster is an integer of the total

number of points contained in this cluster. The value of

positivePoints is the number of points that fit into an annotated

region. The value of unknown is the number of points that do not

belong to any regions of interest. The label is a new label

assigned to the cluster given; the cluster has its majority points

fall into a region of interest. The value will be outside the range

the FCM algorithm used for its labeling but is not terribly relevant

beyond that, just a detail for implementation. The Records will be

stored in a data structure (e.g. a hash table) that can perform quick

lookups for each pixel. How points are defined as pixels within

the algorithm is shown in Figure 2. The x, and y values represent

the location on the image. This is also given as a location which

gives the x and y coordinates respectively. The RGB value is the

value given to each of the bands combined. Although using only

three bands in the image is not a requirement.

1.Procedure label(image: Array of Pixel,

 expertImage : Array of Pixel, mark: Integer)

2. Var recordList : Array of Record

3. For each Pixel p in image

 { set the id = to the label the FCM

 gave it }

4. recordList[p.RGB].fcmId = p.RGB

5. If expertImage pixel at p.location

 is not background color

 { increment the number inside the

 experts annotated object }

6. recordList[p.RGB].positivePoints ++

7. Else {

 increment the number outside the

 experts annotated object }

8. recordList[p.RGB].unknown += 1

 { increment number of pixels to that

 id }

9. recordList[p.RGB].totalPointsCluster++

10. For each Record r in recordList

11. If (r.positivePoints / r.unknown)

 > .75 then

 { this cluster contains enough

 points in the experts annotated

 object to be counted }

12. Label r, r.fcmId, mark

13 r.label = mark

14. Else

15. r.newLabel = 0

Figure 3: The pseudo code for the labeling algorithm

This procedure accepts two images and a number for input (see

line 1). One image is the segmented image and the other one is

created by the expert such that there is a background color, and

different colors to annotate where an object is in the original

 10

image, acting as a mask. The algorithm will then examine each

pixel in the segmented image. If the pixels corresponding

location on the expert image is part of an annotated region, the

recordList data structure defined on line two will increment the

count for pixels with the same id. If the percent of pixels within a

annotated objects mask is greater then a given threshold (in the

pseudo code 75% was used in line 11) then all pixels in that

centroids will be labeled as part of that object.

Table 1. Result of algorithm described in paper on mask in

Figure 4

4. METHOD
This algorithm once implemented in JESIA will be invoked as a

JESS script. In order to verify the results data will instead be in

the form of pictures of varying complexity. These are taken with

a simple digital camera with the three RGB bands. They will be

in a form such that the human expert can correctly identify the

regions of interest and therefore the algorithm can be used in

validation. All the mappings of clusters to annotated regions will

be marked in a center file along with the band information.

The images will be read in and data from each cluster contained in

the annotated regions will be used to generate a function, which

will be applied on a Cartesian plane that uses different color

bands as the ordered pair. The function will define a feature space

that can be used to identify an object based on the band

information provided in the center file.

5. RESULTS
The results vary on the image. With simple backgrounds that

don‟t share similar colors as the object, the algorithm can identify

the image with great accuracy.

Figure 4: Mask hanging on white wall

Figure 4 is an image of a mask hanging on a wall, since the mask

is of varying colors and has a degree of reflectivity the FCM

algorithm broke the mask into two different clusters. The

algorithm shown in this paper was able to identify this and group

them together. From the expert mask which was done by hand,

100% of the two clusters were contained in the annotated regions

as seen in Table 1.

Of the remaining clusters, the third cluster contains 93%. These

three centroids labeled as part of the mask can then be used for

defining the feature space.

A Cartesian plot of the green and blue components makes this

more visible as shown in Figure 5. A simple feature space for this

image would be for any centroids where each of the RGB values

is less then 150.

Mask

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200

Green

B
lu

e
Cluster

Figure 5: A mapping of the centroids that make it easier to

identify feature space.

By running through this many times the feature space can be

trained to be used on a raw segmented image to decide if a cluster

belongs to the mask or not. Different textures and lighting can

affect the results significantly. For an example an image with a

textured background and shade has a wider range of colors on the

background to confuse with the regions of interest like in the one

on Figure 4.

Figure 6: Original picture of a key lying on a carpet

 1 2 3 4 5

Total points in cluster 157715 25957 42728 8595 158019

Points in annotated

region 1676 25957 42728 8032 1323

 11

Figure 7: Annotated image of Figure 6

Figure 8: Result of the segmented image and annotated image

through the algorithm

Table 2: Results of the Algorithm on Figure 6

In these cases the clusters were fairly easy to identify. Although

with some images whose colors are very similar to the background

along with lighting infrequencies from glare the results are much

worse. Like the case of a key on a polished wooden desk as

shown in Figure 9.

The results for the algorithm shown in Table 3 are much worse

then those in the previous two. There is no cluster that is inside of

an annotated region enough to be considered accurate. This being

the case there is no way to obtain a feature space. The best

matched cluster is actually just the glare from the table and the

key as shown in Figure 10.

Figure 9: Difficult image for the FCM algorithm, region of

interest has a lot of similarity with the rest of the image

Table 3: Results of the algorithm on Figure 7

Figure 10: Visual representation of results of segmentation

and algorithm on Figure 7. Only glare is different between

annotated region and the desk.

6. CONCLUSION
The algorithm works well on specific types of images. Glare,

shadow, and other lighting effects can cause many problems for

the segmentation. If the region of interest does not contain any

significant differences in color then the unknown parts of the

image it is hard to expect the FCM algorithm to effectively

separate them out and for the algorithm to correctly label them. A

solution to this can be re-segmentation. By taking those clusters

that belong to part of the region of interest and re-segmenting

 1 2 3 4 5

Total points in

cluster 96161 101194 38536 85317 158792

Points in annotated

region 3761 663 29967 796 617

 1 2 3 4 5

Total points in cluster 44236 27195 19490 8332 26411

Points in annotated

region 1062 2612 4255 2619 2144

 12

them. Through this there is still a chance to obtain enough data to

extract a feature space. For image that use many color bands

besides the just RGB and taken at higher resolutions, the

segmentation has much more information to work with, as does

the algorithm in this paper. I believe that with the quality of

images like those from SeaWiFS and the amount of information

provided in them will be enough such that the FCM will create

accurate clusters that are part of the red tide. Providing this, the

algorithm should do an accurate job of combining all the data of

said clusters into a meaningful file that can be used in finding the

feature space, Thereby labeling clusters of a segmented image

through training provided by a human expert.

7. ACKNOWLEDGMENTS
Thanks to Dr. Zhang for his help and work on JESIA. Thanks to

ACM SIGCHI for allowing us to modify templates they had

developed.

REFERENCES
[1] A.K. Jain, M.N. Murty, P.J. Flynn, Data Clustering: A

Review, ACM Computing Surveys, Vol. 31, No. 3,

September 1999

[2] Bloch Isabelle, FUZZY SETS IN IMAGE PROCESSING,

Symposium on Applied Computing archive Proceedings of

the 1994 ACM symposium on Applied computing. 1994.

[3] Xuejian Xiong, Kap Luk Chan, Kian Lee Tan, Similarity-

Driven Cluster Merging Method for Unsupervised Fuzzy

Clustering, UAI 2004, XIONG ET AL. pgs 611-618

[4] Hamerly Greg, Elkan Charles, Alternatives to the k-means

algorithm that find better clusterings, CIKM '02, November

4-9, 2002, McLean, Virginia, USA.

[5] Rafael C. Gonzalez, Richard E. Woods, Digital Image

Processing, 2nd ed. Prentice Hall, New Jersey, 2002

[6] Zhang Mingrui, Hu Chanmin, Khanal Amit, A knowledge-

guided System for Tracking Ocean Color Anomalies.

[7] Zhang Mingrui, Hall Lawrence, Goldgof Dmitry, A Generic

Knowledge-Guided Image Segmentation and Labeling

System Using Fuzzy Clustering Algorithms, IEEE

transactions on Systems, Man, and Cybernetics-Part B, Vol

32, No 5, October 2002Zhang Mingrui, Hall Lawrence,

Goldgof Dmitry, Knowledge Extraction and Refinement

From Multi-Feature Images Through (Re-)Clustering, JIG

Vol. 5, 2000

[8] Masuda Gou, Sakarnoto Norihiro and Kazuo Ushijima,

Applying Design Patterns to Decision Tree Learning System,

6th ACM SIGSOFT, 111-120pg, 1998

[9] Duran, B. S. and Odell, P. L. 1974. Cluster Analysis: A

Survey. Springer- Verlag, New York, NY.

[10] Michalski, R., Stepp, R. E., and Diday, E. 1981. A recent

advance in data analysis: Clustering objects into classes

characterized by conjunctive concepts. In Progress in

Pattern Recognition, Vol. 1, L. Kanal and A. Rosenfeld,

Eds. North-Holland Publishing Co., Amsterdam, The

Netherlands.

[11] Schachter, B. J., Davis, L. S., and Rosenfeld, A. 1979. Some

experiments in image segmentation by clustering of local

feature values. Pattern Recogn. 11, 19-28.

 13

Functionally Testing PHP/MYSQL without Specifications
Jesse Benson

Winona State University
JPBenson4849@winona.edu

ABSTRACT

A special case functional testing tool is implemented to validate

the existence of malformed mysql queries due to user input

influence. The testing tool processes every filename linked on a

website with every combination of parameters the file accepts

using the single fault theory. Methods are used to automate the

analysis of test case results. The tool is composed of generating,

executing, and analyzing units. This tool is tested with 15 test

applications and 15 publicly available applications. The test

applications were all correctly generated, tested, and analyzed.

Nine of the 15 publicly available applications contained

malformed mysql queries recognized by the testing tool‟s

analysis.

Categories and Subject Descriptors

D.2.5 [Testing and Debugging]: Testing Tools

General Terms

Measurement, Performance, Reliability, Experimentation,

Security, Verification.

Keywords

Functional Testing, Web Applications, Test Case Generation, Test

Case Execution, Test Case Analysis.

6. INTRODUCTION
PHP Hypertext Preprocessor language was created in 1994 by

Rasmus Lerdorf for his personal use of tracking users who visited

his site [8]. It later evolved into a more mature language with the

addition of mysql and other database support. Mysql [5] is

commonly used with PHP, with many publicly available PHP

projects utilizing Mysql. Even though it may be used for non

web, or even offline projects, PHP was designed for use on the

internet, more specifically to develop dynamic webpages.

When implementing freely available PHP applications from the

internet there is an issue with the unknown level of quality

assurance being offered [10]. One does not know how well the

application has been developed and tested. There is no guarantee

that the application works correctly, or that any incorrectness will

be tested and fixed in the future. This leaves measuring the

quality of the application in the hands of those who implement it.

The traditional software testing methods focus on testers who

have full access to the specification and design of a project [6].

They match up test cases to the specifications to make sure a good

coverage of cases is used. These methods cannot be used in the

case where the tester does not have access to the specifications.

Queries to a Mysql database from a PHP application may not be

static. These queries may contain variables which change

depending on the user‟s input. This makes user input validation

important for valid queries to be executed. When user input can

influence a mysql query, and cause it to be malformed, the

software is not correct. These malformed queries may cause

incorrect data to be given to the user, or data corruption on the

server. To prove that malformed queries are an issue for software

correctness a tool has been implemented. The implemented tool

will also prove that it is possible to us functional testing to locate

and report cases where user input can cause malformed queries.

My hypothesis is that it is possible to identify the existence of

certain malformed mysql queries in a web-based PHP application

by functionally testing it without the use of software

specifications. Furthermore, that it is possible to provide a

solution in the form of an automated tool to conduct this testing.

This paper covers the background, methodology, measurements,

testing setup, results and analysis, and conclusions dealing with

an implemented testing tool to test the hypothesis.

7. BACKGROUND RESEARCH
There are only a few tools publicly available to help test PHP

applications [2,3,7,12] These tools generally do not require

specifications, although how well they test the applications and

the amount of human input can be large disadvantages. One

related tool is an unnamed project at Stanford which uses static

analysis to help find possible mysql issues [12]. This project is

not public as of yet, but a paper explaining the algorithm used is

available. The authors of this tool announced 99 possible mysql

injection flaws they found in popular public PHP applications

their tool located. The errors found by Stanford‟s tool helps to

demonstrate the need for quality testing tools for PHP

applications.

Implemented was a tool which allows for automatic testing of how

mysql queries are constructed with user input influence. In this

paper, a malformed query is a query which produces an error

message or gives away other unintended information. The

problem of having possible malformed mysql queries within a

web application is that it produces incorrect results. This often

gives information about the database or web server such as

usernames to the mysql database or tables and columns existing in

the database. More extreme cases could prohibit the injection of

mysql logic into the query resulting in otherwise restricted access

to the mysql database.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Proceedings of the 6thWinona Computer Science Undergraduate

Research Seminar, April 19, 2006, Winona, MN, US.

 14

The aim of the tool is to identify these malformed queries so that

they may be corrected. The tool may also be used to determine to

what extent the problem of incorrect formation of mysql queries

are in PHP applications. With the completion of this project vital

errors such as mysql injections, as well as error messages

generated by PHP or mysql were identified.

8. METHODOLOGY

In order to test the hypothesis we created a tool to automate

testing. Experiments were set up an executed to demonstrate the

tool‟s ability to prove the hypothesis correct.

3.1 Testing Tool

This tool has three units. First unit is the web crawler unit [4].

This unit creates a tree with URLs, parameters for each URL, and

nominal values for each parameter. The second unit is to generate

the test cases. This unit will use the tree constructed by the

spidering to generate test cases. Test cases use single fault theory

[6] with every permutation of parameters and nominal values [6].

The third unit is the execution of the test cases. Each test case

only contains one URL with at least one GET or POST parameter,

and makes a single request to this URL. In order to automate the

analysis of the test case this unit retrieves the resulting data from a

request of all nominal values for the same parameters used in the

test case. It then uses this data to check for php error messages in

the test case results. An example run of the program is provided

in Figure 1. In this run the input is the URL to the start page of

the application to be tested. The output is a list of URLs which

the tool determined contained malformed queries from the test

cases. The tool‟s complete process is further illustrated in Figure

2.

Commandline>testingtool http://127.0.0.1/app1/index.php

http://127.0.0.1/app1/f.php?firstname=a%27 gave a SQL

syntax error.

http://127.0.0.1/app1/results.php?table=a/**/or/**/1=2

with post data: sortType=2 gave an invalid sql result

resource error.

Figure 1. Example run of testing tool.

From Figure 1 the firstname parameter is used within f.php to aid

in construction of the mysql query SELECT

username,first,middle,last FROM users WHERE

first=‟$_GET[“firstname”]‟ Setting firstname GET parameter‟s

value to John may receive desired effects. Setting firstname GET

parameter‟s value to a%27 (%27 is the escaped encoding for the

character „ [9]) will result in the mysql query to be malformed.

When a mysql query is malformed it produces incorrect results.

All of the test case payloads used by the tool are listed in

appendix A. Each test case attempts to introduce mysql or PHP

logic in order to get a mysql query to be malformed.

Figure 2 shows how the input to the testing tool goes into the web

crawler and is used to follow links and forms in the resulting html

to crawl through the web application. During this crawl the tree is

made. The tree will be in the form of Figure 3.

Figure 2. Data flow between the three units which compose the

testing tool.

Figure 3. Data flow between the three units which compose the

testing tool.

 15

A tree in this form will be sent to the test case generator. Here the

tree will be used to create all the test cases. The test cases contain

a URL, GET parameters, POST parameters, and expected results.

Expected results are gathered at the test case generator unit by

getting the results of a request with all parameters set to nominal

values. The test case execution unit will get the results from each

test case and compare them with the expected output. The results

of the test cases are outputted.

8.2 Measurements
The tests focused on determining the existence of malformed

mysql queries in PHP code. The measurements taken on the test

applications were (A) time (in seconds), (B) number of requests

issued. The time (A) and request (B) measurements are of interest

in seeing the relationship they have on each other and to verify

that the tool worked correctly. The measurements taken for the

publicly available applications were (C) number of test cases

which identified a malformed query, and (D) if there was a

successfully verified malformed query. The (C) and (D)

measurements were recorded publicly available applications to

check with the hypothesis.

8.3 Testing Setup
All tests were conducted using Windows XP Tablet PC edition

with service pack 2, Apache 2.0.46, Mysql version 12.20

distribution 4.0.13, and PHP 4.3.2 (register_globals on;

magic_quotes_gpc off) with Zend Engine v1.3.0. The computer

had an Intel Pentium M processor at 1.5 GHz with 760 MB of

RAM. No other applications were running besides default

windows services and tablet services. Although tablets are not

commonly used as servers it did not interfere with the testing

results significantly.

To test the implemented tool, 15 test applications were written in

PHP, and 15 publicly available PHP applications were installed.

Of these test applications there was five without mysql use, five

with mysql use but without malformed queries, and the other five

contained different types of malformed mysql queries based on

client input. Each group of test applications had one application

with one parameter, one with two parameters, one with three

parameters, one with four parameters, and one with five

parameters.

4. RESULTS AND ANALYSIS

4.1 Results from the Test Applications
Test application results are from the 15 test applications. These

were created for the purpose of testing if the tool can identify

malformed queries. There were 40 test cases used. Each test

application has two links in the form

testX.php

testX.php?parameters

To get the results of each of these links accounts for 2 requests.

These spidering results will be known as A. Requests are made

by the tool to save the resulting data from a request using nominal

values. These results will be known as B. B is used to compare

to the data resulting from the 40 tests (Appendix A). The tests

will be known as C. This totals for 43 requests if 1 parameter is

being tested, A=2, B=1, C=40. For 2 parameters the same process

is done, but with the 40 tests being applied to both parameters.

Then the same process is done twice more to test each parameter

with the other set to a nominal value. In this case A=2, B=4,

C=160.

The following table, Table 1, holds the results from the test

applications. All three different types of test applications took the

same amount of time (A) and issued the same amount of requests

(B). Because of this all three types of test applications are

grouped together. The three applications with one parameter are

all grouped in the same row. The parameter column is the number

of parameters each group had. The time (A) is in seconds, and is

directly dependent on the number of requests made (B). The

number of requests made (B) column is to demonstrate how the

number of parameters is directly proportionate to the number of

requests required to execute all the test cases. The time increases

a few milliseconds with each additional request.

Table 1. Results of test application testing

Parameters Time (Seconds) Requests Made

1 0 43

2 1 166

3 2 494

4 6 1314

5 14 3282

Table 2. Results of publicly available PHP application testing

Application Name Errors Reported Errors Verified

BlazeBoard 0.55 508 True

Clevercopy 3.0 123 True

E107 0.7.2 0 False

Interact 2.1 8 True

MG2 0.5.1 0 False

Mybb 1.10 0 False

Papoo 3 beta 1 9555 True

Phpsurveyor 0.993 0 False

Simpog 0.9.2 42817 True

Sylphagora 1.2 0 False

Textpattern 4.0.3 0 False

Thatware 0.4.6 424 True

Tikiwiki 1.9.2 20 True

UniWakka 0.5.2 0 False

Wordpress 2.0.2 0 False

 16

4.2 Results from Publicly Available PHP

Applications

Publicly available PHP applications were chosen by popularity

(number of times downloaded) and availability (source code was

freely available to download). These applications and their source

code are available to anyone on the internet.

The Errors Reported column in Table 2 is the number of test cases

in which the expected results did not match the results and a

malformed mysql query was the cause. This indicates that there is

an issue, but does not indicate how many issues there are. For

example, with the test on Interact 2.1, in Table 2, there was 8

Errors Reported. During this test 8 of the test cases did not match

expected outputs because of a malformed query. After analyzing

the code of Interact 2.1 it was determined that there was a single

source causing all 8 of the test cases to fail. The Errors Verified

column in Table 2 is a boolean value showing if at least one

malformed query could be constructed in the web application.

This was done through static analysis [11] and functional testing.

5. CONCLUSIONS
From the results of the test applications it is clear to see that the

tool was able to make the correct amount of requests in an

adequate amount of time for URLs with less than five parameters.

It is missing the feature of suspending testing on a parameter once

a possible malformed query has been identified. This is what

caused the number of test cases whose results did not match the

expended results. The experiment also did not show any signs of

false positives. This is not proof that the tool would never have

any false positives. The tool also issues the correct number of

requests and is adequate in its amount of time to complete the

tests.

There is an issue with the amount of time it takes to complete a

test. If an application was to have a file with a high number of

parameters (greater than 10) or if there were a high number of

nominal values for any parameter (greater than 10) then this time

may reach an inadequate amount.

It is also impossible to determine if all malformed queries were

found in the publicly available applications without further

research into those specific applications. The fact that some

malformed queries were reported and verified does coincide with

the hypothesis.

The tool may be improved with more special test cases. More

research is required to gather the information to form better test

cases. The tool may also be improved if filenames, parameters,

and nominals not found during spidering could be tested. This

could be in the form of brute forcing URLs, parameters, and

nominals, or reading the applications source code. If any source

code is read then the tool would become a hybrid testing tool

(using both static and functional testing methods).

Overall the tests successfully proved the hypothesis correct. Due

to the scale of the problem the tests were very limited. This

causes the correctness of the tool to be in question. While it is

true that the tool has the ability to locate possible issues with

malformed queries, the testing does not prove the tool finds all

malformed queries. It also does not prove that all reports of

malformed queries are true.

6. ACKNOWLEDGMENTS
Thank you to RFP for the libwhisker framework. Thank you to

Stephen Esser, Pokelyzz, Waraxe, James Bercegay, and

Infamous41md for their publications dealing with PHP with

mysql issues. Thank you to Dr Narayan Debnath for leading me

in the teaching of software testing principles.

REFERENCES

[12] B. Michael, F. Juliana, and G. Patrice.

Veriweb:automatically testing dynamic web sites. In

Proceedings of 11th International WWW Conference,

Honulolu, May 2002.

[13] Jason Huggins, Paul Gross and Jie Tina Wang. 2005.

Availible at http://www.openqa.org/selenium/

[14] Marcus Baker. 2006. Availible at

http://www.lastcraft.com/simple_test.php

[15] Michael Chau , Daniel Zeng , Hinchun Chen, Personalized

spiders for web search and analysis, Proceedings of the 1st

ACM/IEEE-CS joint conference on Digital libraries, p.79-

87, January 2001, Roanoke, Virginia, United States.

[16] MYSQL AB. 2006. Availible at http://www.mysql.com/

[17] Paul Jorgensen. Software Testing: a Craftsman's Approach.

Boca Raton: CRC Press, 1995.

[18] PhpUnit. 2005. Availible at http://phpunit.sourceforge.net/

[19] Stig Sæther Bakken with Zend staff. 2000. Available at

http://www.zend.com/zend/art/intro.php

[20] T. Berners-Lee, R. Fielding, U.C. Irvine, L. Masinter. 1998.

Request for Comments: 2396.

[21] United States Food and Drug Administration. 2002.

Availible at

http://www.fda.gov/cdrh/comp/guidance/938.html

[22] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D. Lee, and S.-Y.

Kuo. Securing web application code by static analysis and

runtime protection. In Proceedings of the 13th International

World Wide Web Conference, 2004.

[23] Yichen Xie, Alex Aiken. 2005. Availible at

http://glide.stanford.edu/yichen/research/sec.pdf

http://www.lastcraft.com/simple_test.php
http://www.mysql.com/
http://phpunit.sourceforge.net/

 17

APPENDIX A
-1%2540

-1%2500

-1%27%20or%20%27a%27=%27b

-1%27%20or%20%27a%27=%27a

-1%22%20or%20%22a%22=%22b

-1%22%20or%20%22a%22=%22a

-1/**/or/**/1=2

-1/**/or/**/1=1

-1%27/**/or/**/1=2

-1%27/**/or/**/1=1

-1%22/**/or/**/1=2

-1%22/**/or/**/1=1

-1%2527%20or%201=2

-1%2527%20or%201=1

-1%2522%20or%201=2

-1%2522%20or%201=1

-1%2527/**/or/**/1=2

-1%2527/**/or/**/1=1

-1%2522/**/or/**/1=2

-1%2522/**/or/**/1=1

-1%20union%20select%201%2f%2a

-1%20union%20select%201,2%2f%2a

-1%27%20union%20select%201%2f%2a

-1%27%20union%20select%201,2%2f%2a

-1%22%20union%20select%201%2f%2a

-1%22%20union%20select%201,2%2f%2a

-1%2527%20union%20select%201%2f%2a

-1%2527%20union%20select%201,2%2f%2a

-1%2522%20union%20select%201%2f%2a

-1%2522%20union%20select%201,2%2f%2a

-1/**/union/**/select/**/1%2f%2a

-1/**/union/**/select/**/1,2%2f%2a

-1%27/**/union/**/select/**/1%2f%2a

-1%27/**/union/**/select/**/1,2%2f%2a

-1%22/**/union/**/select/**/1%2f%2a

-1%22/**/union/**/select/**/1,2%2f%2a

-1%2527/**/union/**/select/**/1%2f%2a

-1%2527/**/union/**/select/**/1,2%2f%2a

-1%2522/**/union/**/select/**/1%2f%2a

-1%2522/**/union/**/select/**/1,2%2f%2a

 18

An Automated Tool for Computing Software Metrics

Nripendra Rai

Department of Computer Science

Winona State University
Winona, MN – 55987
(507) – 313 – 8311

nripendrarai@gmail.com

ABSTRACT

This paper describes an automated tool that produces a set of

software metrics for an application program written in Java.

The tool computes software metrics such as Lines-of-code

metrics, Halstead‟s metrics, McCabe‟s cyclomatic number,

and maintainability index along with its functionalities. The

main focus of the paper is on design and implementation of

the tool. The results collected during the testing of the tool

are analyzed.

General Terms

Algorithms, Measurement, Documentation, Design,

Experimentation, and Theory.

Keywords

Java Automated Tool, Software Metrics, Measurement,

LOC, Halstead Metrics, McCabe‟s Cyclomatic Metrics,

Maintainability Index.

1. INTRODUCTION

Measurement is a major factor in software development

since developing software is a costly process. Most software

projects are large, complex, and may have many quality

problems [11]. The measured software characteristics may

help developers to make decisions. The commonly used

characteristics in measuring software complexity are called

software metrics [3, 6, 11]. They are Lines-of-codes metrics,

Halstead metrics, McCabe‟s cyclomatic number, and

maintainability index [1, 2, 8, 12, 13]. This paper is about

designing and implementing an automated tool that produces

a table of software metrics for an application program. The

whole project follows the software engineering steps of

development cycle which are specification, design,

implementation, test, and analysis [11].

The designed tool takes syntactically correct Java programs

and generate direct measures of lines of codes [1, 9, 12],

number of operators [2, 12], number of operands [2, 12],

number of occurrences of operators and operands [2, 12],

program length [9, 12], computed time [2, 9], and many

others. These measures are further used to calculate the

various advanced software metrics that includes difficulty

level, estimated number of errors in the program, program

level, program volume, effort to implement, McCabe‟s

Cyclomatic Number, Maintainability Index without

comments, Maintainability Index comment weight, and

Maintainability Index [13]. While developing software,

software developers or managers come across different kind

of approaches and they have to make a decision in such a

way that their goal can be achieved as planned. During that

time, an automated tool will help comparing different

aspects of approaches such as efficiency, error rate, cost, and

time so that decision can be made. Further-more,

programmers may use the obtained metrics to improve the

quality of the program [1]. Hence, the paper will be helpful

to those who are interested in the field of software

engineering.

The paper continues with background research on software

metrics tools followed by the definitions of software metrics

measured by the designed tool. Then experimentation and

design for the automated tool is given. Finally, the result and

analysis part shows the output of the tool and its evaluation

along with the conclusion as well as future concerns.

2. BACKGROUND RESEARCH

To my best knowledge, few automated tools [10] have been

developed for the purpose of computing software metrics.

One of the few tools is Testwell CMT Java developed by

Verify-soft Technology [13] that analyzes the static

complexity of software written in Java using software

metrics. The metrics calculated by CMT Java are industrial

standards established in research projects during several

years. The metrics computed by CMT Java are as follows:

Lines-of-codes (LOC) metrics, McCabe Metrics, Halstead‟s

Metrics, and Maintainability Index.

CMT Java is available on many platforms including

Windows and several UNIX environments. One or many

files can be run at a time to calculate metrics and CMT Java

support different types of file formats such as text, HTML,

Excel CSV, and XML. After analysis is done, CMT Java

Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and the

full citation on the first page. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

Proceedings of the 6thWinona Computer Science Undergraduate

Research Seminar, April 19, 2006, Winona, MN, US.

mailto:nripendrarai@gmail.com

 19

generates reports using one of the above mentioned file

formats. The output file will include the metric values for

each selected file and summary results where the calculated

metric values are compared with the alarm limits [13].

Similarly, there have been few other tools mentioned

theoretically that computes different software metrics such

as Lines-of-codes, cyclomatic complexity, effort measure

[4], operators, operands lists, their frequency of occurrences,

number of terminators, different types of control structures,

internal and external variables [1], and Halstead metrics [2].

Moreover, most of the tools are written for languages other

than Java.

3. METHODOLOGY

3.1 Software Metrics - Definitions

This section introduces the metrics that are to be computed

by the designed automated tool of this project. The metrics

considered in the project are Lines-of-codes metrics,

Halstead metrics, McCabe‟s cyclomatic number, and

maintainability index.

Table 1. Halstead Metrics

Metrics Equation References

num of unique

operators (n1) and

operands (n2)

 [9, 12]

total occurrences of

operators (N1) and

operands (N2)

 [9, 12]

The vocabulary of the

program (n)

n = n1 + n2 [7, 9, 12]

The length of the

program (N)

N = N1 + N2 [7, 9, 12]

The volume of the

program (V)

V = N * log2(n) [7, 9, 12]

The level of the

program (L)

L = (2/n1)*(n2/N2) [2,12]

The difficulty of the

program (D)

D = 1/L [9, 12]

The effort of the

program (E)

E = V/L

or

E = V * D

[2, 4, 9, 10,

12]

The computed time

(T)

T = E / 18 [9, 12]

The number of

delivered bugs (B)

B =

(E **(2/3))/3000

[9]

3.1.1 Lines-of-codes metrics

Lines-of-codes metrics are the most traditional and simplest

metrics that are used to measure software complexity [9, 13].

Lines-of-codes metrics which are to be computed are the

lines of executable codes and the number of commented

lines [4, 13]. The percentage of commented lines should be

between 30 percent and 75 percent of total number of lines.

If the percentage of commented lines is less than 30 percent

then the program is poorly explained. On the other hand, if

the percentage of commented lines is more than 75 percent

then the file should be considered as a document not a

program [13].

3.1.2 Halstead metrics

Halstead metrics were developed by the late Maurice

Halstead with a purpose to determine a quantitative estimate

of complexity directly from the operators and operands in

the module from its source code [13]. Halstead metrics are

the earliest software metrics and are considered as strong

indicators of code complexity [7, 13]. Halstead metrics is

totally based upon the number of operators and operands [2].

An Operator is any symbol or keyword group in a program

that specifies an algorithmic action of the computer [11]. An

Operator consists of any reserved words that specify storage

and qualify type along with logical, arithmetic, and relational

operators [13]. Similarly, an operand is any symbol that

represents data [11]. An Operand consists of identifiers,

name types, type specifiers, and constants [13]. Halstead

metrics are summarized in Table 1.

The number of unique operators (n1) and operands (n2) are

calculated by collecting the frequencies of each operator and

operand token of the source program [11, 13]. The total

occurrences of operators (N1) and operands (N2) are

calculated by counting the total number of operators and

operands [11, 13]. Vocabulary (n) is the sum of the number

of unique operators and operands [7, 11, 13]. Length of the

program is the sum of the total number of operators and

operands [7, 11, 13]. Volume (V) describes the size of the

program [7]. V is calculated based on the number of

operations performed and operands handled in the algorithm.

Volume of a program should be between 100 and 8000. If

Volume exceeds 8000 then that means the program has

functions that do too many things [13].

Similarly, Level of the program (L) is calculated using the

number of unique operators and operands along with the

total occurrence of operands. Difficulty (D) or error

proneness is inversely proportional to Level of the program

[11, 13]. Effort (E) is correlated to the software errors [2, 4,

8, 11, 13]. Computed Time (T) is the time in seconds to

implement the program and is directly proportional to Effort

[11, 13]. Number of Delivered Bugs (B) represents the

overall complexity of the program. B is an estimate for the

number of errors in the implementation and should be less

than 2 [13].

3.1.3 McCabe’s Cyclomatic Number

McCabe‟s Cyclomatic Number was introduced by Thomas

McCabe in 1976 and is considered a broad measure of

 20

soundness and confidence for a program [13]. Cyclomatic

Number is the most widely accepted metric that helps

estimate the clarity and maintainability of a software and

defined as a function of the number of predicates in the

program [4, 9, 11]:

V = Number of decision points (predicates) + 1

The decision points or predicates are reserved words such as

if, while, for, do, switch, &&, ||, etc [7]. The cyclomatic

number should be less than 15 otherwise the program is hard

to identify and test [13].

3.1.4 Maintainability Index

Maintainability Index (MI) helps to reduce or reverse a

system‟s tendency toward code entropy or degraded integrity

and also indicates when to rewrite the code instead of

changing it. Maintainability Index can be defined as a single

number value to estimate the relative maintainability of the

code. The calculation of Maintainability Index is based upon

Lines-of-codes metrics, McCabe‟s metrics, and Halstead

metrics. MI with value 85 or more means that the program

has good maintainability. MI between 65 and 85 indicates

the program with moderate maintainability. And MI with

value less than 65 means the program has really bad pieces

of code and is hard to maintain. MI has two components.

They are maintainability index without comments (MIwoc)

and maintainability index comment weight (MIcw). MIwoc

and MIcw can be represented as follows:

MIwoc = 171 – 5.2 * ln(aveV) – 0.23 * aveG – 16.2

* ln(aveLOC)

 MIcw = 50 * sin(√(2.4*perCM))

where aveV is Average Halstead‟s Volume per Module,

aveG is Average Cyclomatic Number, and aveLoc is

Average Lines of Codes.

These two components MIwoc and MIcw are summed up

together to get MI [13].

3.2 Experimentation

In order to test the automated tool, a set of G-string

programs written in Java was collected from CS 410

Software Engineering class. The G-string programs were

provided by Dr. Narayan Debnath, one of the professors of

Winona State University. Dr. Debnath states that a G-string

program takes a G-string as an input. The G-string consists

of symbols (a-z) and the special symbol +. It can be further

defined as:

a) Any symbol (a-z) is a G-string.

b) Given two elementary G-strings, say a and b,

+ab is a G-string.

c) Given any two arbitrary G-strings, say G1 and

G2, +G1G2 is a new G-string.

d) A valid G-string is only those constructed

following the rules from (a) to (c) [11].

A G-string program scans the input string from right to left,

and produces all possible substring(s) specified as follows:

Figure 1: The Basic Design

Figure 2: An Abstract Design

Given a G-string, the possible substrings are of the form

+ S1 S2, where S1 and S2 are single alphabetic characters (a

through z). If the input string is invalid, a G-string program

will produce an error message along with any partially

processed substring(s). A set of eight different G-string

programs was processed by the automated tool. The

automated tool was developed in Java using Eclipse as an

IDE (Integrated Development Environment) under Windows

platform.

An Automated

 Metrics Tool

Input

Program

(Test

Data)

A set of

Software

Metrics

Error Message (Er)

 Read

File

Find

Line of

Codes

Compute

Basic

Metrics

Print

Output

Define possible

sets of unique

operators and

unique

operands

Compute

other

important

Metrics

n1, n2, N1,

N2, n, N, V,

L, D, E, T, B,

MI

n1, n2,

N1, N2

Input

Program

Li

LOC

S1,

S2

n, N, V, L, D, E,

T, B, MI

n1, n2,

N1, N2

 21

3.3 Design

The automated tool for software metrics was designed using

Top-Down Modeling approach. The Top-Down Model is an

approach that starts at the highest level of abstraction and

goes down towards the lowest level providing details [11].

4. RESULTS AND ANALYSIS

The output from the tool was a table of software metrics

consisting of total lines of codes (executable), total lines of

commented lines, total number of predicates, cyclomatic

number, all the metrics from Table 1, maintainability index

without comments, maintainability index comment weight,

and maintainability index. Analysis was done on different

categories which are as follows:

Table 2. LOC metric and Cyclomatic Complexity

Test

Data

LOC

metric

Cyclomatic

Number

Program

Relation

1 63 9 Agree

2 42 11 Disagree

3 133 26 Agree

4 77 3 Disagree

5 49 3 Agree

6 40 2 Agree

7 60 12 Disagree

8 38 7 Disagree

Table 3. Vocabulary and Volume Metrics

Test

Data

Vocabulary Volume Program

Relation

1 294 4217.216 Agree

2 172 1585.42 Agree

3 143 1717.144 Disagree

4 88 707.4192 Agree

5 61 374.08952 Agree

6 128 980.11011 Agree

7 183 2552.64 Agree

8 125 956.0061 Agree

In Table 2, LOC metric of testData1, 3, 5, and 6 agree with

its corresponding cyclomatic number since the number of

decision points matches with the number of executable lines

of codes. In case of testData2, 4, 7, and 8, there are more

decision points where as the number of executable lines of

codes is less. This means the programs are hard to identify

and test, especially testData3 has Cyclomatic Number 26.

The program relation shows that LOC metric and

Cyclomatic Number of 4 test data agree with each other

where as other 4 did not agree.

In Table 3, Vocabulary and Volume of all the test data are

matched up. Individually, all the volumes are in the limit

range i.e. 100 to 8000. However, testData3 does not agree

when it comes to Vocabulary and Volume together. The

volume of testData3 is little bit higher as compared to other

test data where as Vocabulary looks fine. Again, the program

relation for this table clearly shows that 7 out of 8 test data

agreed when it came to Vocabulary and Volume.

Table 4. Difficulty and Effort Metrics

Test

Data

Difficulty Effort Program

Relation

1 24.82472 104691.2 Disagree

2 19.05479 30210.01 Agree

3 19.15966 32899.90 Agree

4 11.97183 8469.1032 Agree

5 6.97959 2610.992 Agree

6 12.5504 12300.83 Agree

7 28.7547 73400.67 Agree

8 16.75 16013.102 Agree

Table 5. Number of Delivered Bugs and Maintainability

Index

Test

Data

Num of

Delivered

Bugs

Maintainability

Index

Program

Relation

1 0.73474 108.39 Disagree

2 0.32111 119.59 Agree

3 0.33988 97.052 Disagree

4 0.13766 115.80 Agree

5 0.06287 126.443 Agree

6 0.17651 124.95 Agree

7 0.58000 111.106 Disagree

8 0.21040 124.763 Agree

In Table 4, Difficulty of testData1 does not agree with its

Effort. Otherwise, all other test data has agreeable Difficulty

and Effort. Although the error proneness or difficulty of

testData1 is little higher as compared to other test data, effort

seems to be higher than it should be. In total, all the 7 test

 22

data agreed with each other according to the program

relation.

Table 5 shows the overall complexity of the programs which

was defined by Number of Delivered Bugs which seemed to

be relatively low for all the programs. Also, all the input

programs had good maintainability with Maintainability

Index more than 85. When both Number of Delivered Bugs

and Maintainability Index are compared together, testData1,

3, and 7 do not seem to agree. Maintainability Index is lower

than it should be since their complexity is higher than other

programs. Over all, only 3 out of 8 test data failed to agree

with each other.

Table 6. Time Comparison

Test

Data

Computed

Time (Mins)

Actual

Time

(Mins)

Program

Relation

1 96.93 1,485 Disagree

2 27.97 1,675 Disagree

3 30.46 555 Disagree

4 7.8417 630 Disagree

5 2.4175 240 Agree

6 11.389 380 Agree

7 67.963 330 Agree

8 14.826 320 Agree

Computed Time in Table 5 is the time it took to do the

implementation and is calculated by using the other metrics.

Comparing Computed Time with Actual Time provided by

students, the difference was much higher than expected.

Some of the test data, testData1-4, took much more time

than it should have. Again, in case of testData5‟s Computed

Time, it seems confusing that it should only take 2.4175

minutes to implement. It should be obvious to have around

200 – 300 minutes difference because Computed Time is the

time taken to design and implement where as Actual Time

for writing the algorithm, designing, coding, and testing.

However, 4 out of 8 test data agreed with each other in terms

of Actual Time and Computed Time.

6. CONCLUSIONS

The designed automated tool computed different software

metrics such as Lines-of-codes metrics, McCabe‟s

Cyclomatic Number, Halstead metrics, and Maintainability

Index as expected. A set of java programs, G-String

programs, was used as inputs and a table of software metrics

was created for analysis. Analysis was done based on human

judgment and some restrictions provided along with the

definitions. Some of the test data proved to be efficient than

others. For example, testData5 had lesser Lines-of-codes,

only 3 decision points, lower Length and Volume, and

higher Maintainability Index.

The automated tool clearly distinguished the better and

efficient program among 8 different programs that had the

same functionality. Hence, the program relation on each of

the output tables showed clearly that the tool worked

correctly since the percentage of agreement was 50% (LOC

metric and Cyclomatic Number), 87.5% (Vocabulary and

Volume), 87.5% (Difficulty and Effort), 62.5% (Number of

Delivered Bugs and Maintainability Index), 50%

(Computed Time and Actual Time). This paper can further

be continued by adding more metrics to compute that

explains more about software complexity. Also, it would

have been clearer to define complexity if we could come up

with standard limits for all the above mentioned metrics.

Object Oriented metrics might be one good choice to add.

But, there are a lot of metrics emerging in the field of

software engineering which opens the door for researchers to

investigate more and find more ways to estimate software

complexity.

7. ACKNOWLEDGEMENT

Special thanks to Dr. Narayan Debnath, Department of

Computer Science, Winona State University, Winona,

Minnesota.

REFERENCES

[1] Aggarwal, K. K. A Tool for the Collection of Industrial

Software Metrics Data. Guru Jambheshwar University:

Department of Computer Science and Engineering,

Hisar Haryana, India, 1997.

[2] Bailey, C. T., & Dingee, W. L. A software study using

Halstead metrics, in Proceedings of the 1981 ACM

workshop/symposium on Measurement and evaluation

of software quality (January 1981), Volume 10, Issue 1,

189 - 197.

[3] Dandashi, F. Software engineering: theory, application

and practice: A method for assessing the reusability of

object-oriented code using a validated set of automated

measurements, in Proceedings of the 2002 ACM

symposium on Applied computing (Madrid, Spain,

March 2002), 997 - 1003.

[4] Debnath, N.C., Lee, R. Y. & Abachi, H. R. An analysis

of software engineering metrics in OO environment,

IEEE/ACS International Conference on Computer

Systems and Applications (Beirut, Lebanon, 2001), 492

- 494.

[5] Dumke, R., Neumann, K., & Stoeffler, K. The metric

based compiler: a current requirement, ACM SIGPLAN

Notices, Volume 27, Issue 12 (December 1992), 29 -

38.

[6] Fenton, N. E. & Neil, M. Software metrics: roadmap, in

Proceedings of the Conference on The Future of

 23

Software engineering (Ireland, May 2000), ACM, 357 -

370.

[7] Hilda, K. B. A study of software metrics. The State

University of New Jersey: Department of Electrical and

Computer Engineering, New Brunswick, New Jersey,

May 2003.

[8] Leach, R. J. Using metrics to evaluate student

programs, ACM SIGCSE Bulletin, Volume 27, Issue 2

(June 1995), 41 - 48.

[9] Mathias, K.S., Cross, J. H., Hendrix, T. D., &

Barowski, L. A. The role for software measures and

metrics in studies of program comprehension, ACM

Southeast Regional Conference (1999).

[10] Niwot Ridge Resources. Metrics Tools [Online] 2005;

Available from

http://www.niwotridge.com/Resources/PM-

SWEResources/MetricsTools.htm. Accessed Feb 12,

2006.

[11] Pressman, R. S. Software Engineering: A Practitioner‟s

Approach. New York: McGraw-Hill, 2001.

[12] Scotto, M., Sillitti, A., Succi, G., & Vernazza, T. A

relational approach to Software metrics, in 2004 ACM

symposium on Applied computing (Nicosia, Cyprus,

March 2004), 1536 - 1540.

[13] Verify soft Technology. CMT Java - Complexity

Measures [Online] 2005; Available from

 http://www.verifysoft.com/en_cmtjava.html.

Accessed Feb 15, 2006.

http://www.niwotridge.com/Resources/PM-SWEResources/MetricsTools.htm
http://www.niwotridge.com/Resources/PM-SWEResources/MetricsTools.htm
http://www.verifysoft.com/en_cmtjava.html

 24

The Correlation of Immersion and User

Satisfaction in Video Games
Matthew Knutson

Saint Mary’s University Computer Science Student
700 Terrace Heights #724

Winona, MN 55987
(507) 457-7085

mjknut02@smumn.edu

ABSTRACT

This paper describes the correlation between

immersion in video games and player enjoyment. A

commonly accepted definition of immersion in the

context of video game playing is established and used.

Surveys given before and after game-play were used

as a primary method of gathering data. Two surveys

were given to participants prior to game-play,

participants played a game for an hour, and a final

survey was given. The data from the surveys was used

to show relationships between immersion factors and

player enjoyment. Such correlations could provide

new and more effective methods of video game

development and testing.

Categories and Subject Descriptors

D.2.8 [Metrics]: Performance measures

K.8.m [Personal Computing]: Miscellaneous

General Terms

Measurement, Documentation, Performance, Design,

Experimentation, Human Factors

Keywords

Immersion, Absorption, Video, Game, Engagement,

Sense, Presence

1. INTRODUCTION

In this project we define immersion simply as a sense

of presence, the sense of one being in a fictional world

outside of the real one. The definition follows Emily

Brown and Paul Cairn‟s [3] recently published work

in determining a grounded structure to immersion

from the myriad of different ideas. A common

example would be a horror movie patron who

becomes immersed in the movie and jumps off of the

seat during unexpectedly frightful moments. This is

not to say, however, that every person experiences

immersion the same way, or even the same amount.

Immersion is known as a very subjective experience

[2-11].

Video games are a billion dollar industry in which

producers like Atari Inc. are making millions of

dollars every year by making products with little real-

world value other than user satisfaction [1]. Just as

for any programmers, video game programmers

depend on strong designs and heuristics to produce

profitable games. There are dozens of different

heuristics and tests currently in use for game

evaluation; however, all heuristics that I have seen

undervalue the idea of player absorption (immersion)

[4, 9]. I believe that this is a critical oversight, as

immersion could be major factor in user satisfaction

and good game design.

One example of common game evaluation comes from

an anonymous game developer in a study by Penelope

Sweetser and Peta Wyeth [9]. The evaluation

consisted of three main areas: game mechanics

including environment physics and realistic reactions,

game interface including ease of use and overall

transparency of controls, and game play including

winnability, art and sound effects, and rewards.

Several evaluations like this list elements of

immersion (ex. „user feels a part of the game‟ or „user

loses sense of time‟) as small relevant factors, but

none are giving the matter enough weight.

I have found a relationship in video game play

between satisfaction and immersion in that the more a

part of the game the user feels the more positive that

user will feel about the entire game experience. This

means that a user feeling as though he/she is inside the

game „world‟ will have a more enjoyable experience

than a user who does not. To gather evidence, a user

test was conducted involving 17 participants playing a

game and filling out surveys to establish game

preference, satisfaction, and immersion.

Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and the

full citation on the first page. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

Proceedings of the 6thWinona Computer Science

Undergraduate Research Seminar, April 19, 2006, Winona,

MN, US.

 25

The data showed some strong relationships between

player satisfaction, immersion, and the amount of time

a user would wish to play that game at one sitting

(without other time constraints). Other relationships

were also noted. In the conclusions, I detail the likely

use of my findings to increase the play-time, replay

value, and likelihood of purchase for video games

through better video game design heuristics and

testing.

This paper continues with a small discussion of the

current status of immersion research. Following this

discussion the methods I used are detailed, including

specific questions from the surveys, and some of the

noted limitations of the study. Once the

methodologies are described I conclude by talking

about some of the noticed relationships and possible

uses of this information.

2. BACKGROUND RESEARCH

Researchers [2, 3, 6-8, 10] in both the science and

psychological fields have begun to link the

phenomena of game absorption/immersion with a sort

of subconscious openness. Psychologists [6] study the

emotional responses and effects of violent video

games with children. In their research, children

showing higher levels of immersion (only one of the

factors studied) seemed to have more of a reaction –

they were affected more by the games. Ravaja and

Salminen, et al. [8] studied emotional response to

video gaming. They concluded that immersion might

result in a user losing some sense of self, caring less

about normal morals/norms, and being generally more

open to connect what that user is doing directly with

how they are feeling. For example, an absorbed user

who is playing a video game with violence may

connect the happiness of playing it directly with that

game even if that user normally disapproves of

violence.

Studies show immersion occurs in increasing levels

[3]. A person can experience small, moderate, or high

levels of immersion. The first level of immersion is

called engagement, and is characterized by a player

becoming transfixed by a game. The player begins to

put more importance on the game and starts to spend

larger amounts of time playing or thinking about

playing. From engagement, a player can move on to

the next level called engrossment. At this point a

player is spending a great deal of time playing the

game, and considers the game very important. Finally,

a player may reach the highest level called immersion.

When a player reaches a state of immersion, the game

experience becomes intrinsically rewarding, and the

player may lose track of time or may even lose a sense

of what‟s going on around him or her.

Right now there is no established method to

measuring immersion. To help score some of the

important factors of immersion, I decided to use a

survey and scoring tool from the United Kingdom‟s

Independent Television Commission [5]. This survey

is called the Sense of Presence Inventory (SOPI), and

was developed to help measure immersion and sense

of presence through various media (television, radio,

video games, etc…). The SOPI uses Likert scale

questions with 1 to 5 scales that are scored into four

main categories: spatial presence, engagement,

ecological validity/naturalness, and negative effects.

(More details in the methods section)

To my best knowledge, there has been no study on the

direct effect of user immersion or the response from a

user who „gets immersed‟ in a game. Most studies

that have an element of immersion aren‟t designed to

study it alone [2, 6-8, 10]. Therefore, we are lacking

evidence to describe the potential of focusing the

design of games to promote it. Through the use of my

user test and surveys, I‟m able to describe the

usefulness of immersion as a heuristic.

3. METHODS

As mentioned in the introduction, the primary method

of experimentation was a user test with a few surveys.

Two surveys were given prior to playing the game, the

user test consisted of a single group game-play

experience with a first-person shooter game - Half

Life: Deathmatch, and one survey was given directly

following game-play. The surveys were conducted in

a group setting to allow for questions and

explanations. A more detailed explanation follows.

3.1 Pre-Game

To gather participants, I collected a list of previous

Saint Mary‟s University LAN party attendants and

emailed them. A group of 17 participants was

established. I met with them all as a group, and

explained the experiment process in more detail.

Noteworthy is the fact that a majority of the

participants had experience playing the game, and had

a moderate to extensive level of video game

experience in general. The participants were told that

I was conducting an experiment involving video

games, and were offered both pizza and the possibility

of cash prizes once the experiment was over. The top

three places and two other random players would

receive cash prizes.

The participants were also told to avoid caffeine,

mood altering chemicals, and high physical exertion

for at least 24 hours prior to the game date;

participants were asked to limit their non-game

 26

interactions with other players as much as possible

when playing that day. Then I administered the first

survey about game preference and experience (see

Figure 1 for sample questions).

Due to the highly individualized nature of immersion,

it was important to quantify some personal

characteristics about the participants. These

characteristics included genre preferences (role-

playing games vs. sports or first-person shooters);

individual worth of graphics, sound, storyline, etc…;

and the participant‟s level of video gaming experience

in general.

These factors are highly relevant to the person‟s

willingness/ability to become immersed in a video

game. Of course, some of these factors will inhibit

some participants as well: for example, a person who

doesn‟t normally like playing a first-person shooter

and doesn‟t have experience doing so will have more

of a barrier to immersion than an experienced player

that regularly plays them.

On the experiment date participants were given a

survey to determine their current physical condition

and overall mood to ensure that results weren‟t

skewed by players who were impaired by sickness,

drugs, depression, etc… This second survey included

mostly Likert scale questions (see Figure 2 for sample

questions).

After all of the participants had completed the survey,

I told them again to try to limit their non-game

interactions with others, that the first 2 out of 5 rounds

of 10 minutes would be practice before scores were

kept, pizza would be served after the game was over,

and that there were cash prizes for the top three

players and two other random players.

Figure 1.

Sample

questions

from the

first pre-

game

survey to

determine

gaming

preferences and overall gaming experience

Figure

2.

Sample

questio

ns from

the second pre-game survey for determining overall player condition

3.2 Conducting Play

For the experiment one computer lab was equipped

with 20 Dell PCs that were wired into two switches.

These two switches were wired into a final switch that

was connected to the game server PC. The server was

equipped with a Steam administrative package, and

was set to change maps and reset player scores every

ten minutes. By resetting the maps so often, I hoped

to limit the advantage the experienced players would

have in finding the best places on the map.

Unfortunately, this setup does force breaks in a

player‟s experience (even if only for 15-30 seconds)

that weaken an immersive experience.

Before play started, the participants with no

experience with the game were given basic

instructions on how to move and use weapons. Once

these players asserted that they understood the

instructions, I asked everyone if there were any

questions. No questions or objections were brought

up, and all participants were instructed to begin game-

play. Six separate maps were played for a total game

time of one hour. Once the seventh map began to

load, participants were asked to stop playing and take

the final survey.

3.3 Post Game

Please order your preference of game genre 1 - 5 (5 being highest):

RPG‟s First-Person Shooters Strategy games

Sports games Other (name)

Overall, I generally play video games

< 1 hour per week 1 to 4 hours per week

 5-10 hours per week > 10 hours per week

 Strongly Agree Strongly Disagree

I am feeling good today 1 2 3 4 5

I want to play this game right now 1 2 3 4 5

Today has been a good day so far 1 2 3 4 5

 27

The final survey consisted of mostly Likert scale

questions dealing with the game experience and

satisfaction and questions from the SOPI presence

assessment tool. Figures 3 and 4 show sample

questions from the post-game survey dealing with

satisfaction and immersion respectfully.

Questions from the satisfaction survey determined

how much fun the player had, and if the player had

more fun, less fun, or a normal amount of fun during

the experience as compared to usual experiences with

similar games he or she has played (if any). The SOPI

scored a series of questions related to experiencing

some media (television, radio, video games, etc…)

into four areas: spatial presence, engagement,

ecological validity -naturalness, and negative effects.

Each question has a scale from 1 (strongly disagree) to

5 (strongly agree). The mean score of each factor is

generated and used to determine the level each factor

was experienced.

Spatial presence is defined as the amount a player

feels a part of the game or „in the game‟ instead of

sitting at a computer. Similar to the level of

immersion defined in the introduction, engagement is

the amount a player feels transfixed by the game and

wants to continue playing. Naturalness measures how

much a player finds the game environment and

characters realistic. It has to do with graphical quality,

game physics, and a range of other details that make

the game believable. Negative effects are the adverse

feelings the player experiences while playing

(headache, eye-strain, dizziness, etc…).

Once the users completed the final survey, all of the

surveys were collected, the participants were given

pizza, and the top 3 and bottom 2 players were given

cash prizes of $5, $2, $2, $5 and $5 respectively.

Later, with help from Dr. Luttmers of the Saint Mary‟s

University‟s Psychology department, all survey data

was reviewed and input into SPSS software for ease of

review and computing relations. SPSS is a powerful

statistical program that allows for simple execution

and processing of most normal functions (means,

correlations, one way ANOVAs, etc…). Dr. Luttmers

also assisted in quantifying this scoring information to

make correlations between satisfaction and immersion.

Figure 3. Sample questions from the post-game survey dealing with player satisfaction.

Figur

e 4.

Samp

le

quest

ions

from the post-game survey copied from the SOPI to rate levels of engagement, presence, naturalness, and negative effects.

 3.4 Limitations

There were several limiting factors involved in this

study. First and foremost, this was a semester-long

research project done for a class. This means that

there were strong financial and time constraints. I was

thus limited to using a gaming system and game that

was already set up for use, and further limited by the

number of participants I could accommodate.

The game itself was not the best choice for measuring

immersion. Half-Life: Deathmatch is a FPS that puts

all players in a free-for-all killing zone. Once killed, a

player is immediately brought back to life in a new,

random location. This feature leads to frantic,

reaction-based play that weakens the ability to become

immersed in the game.

4. RESULTS

As I explained before, there is no established method

for determining a level of immersion. By using the

SOPI I hoped to show a link between satisfaction and

the three positive factors measured in the SOPI:

presence, engagement, and naturalness.

Unfortunately, I was only able to find a strong

relationship between satisfaction and one factor-

engagement. This does not mean that immersion is

unrelated to satisfaction. The results found were

 Strongly Agree Strongly Disagree

There‟s something else I would rather

have been doing 1 2 3 4 5

I enjoyed playing this game 1 2 3 4 5

I enjoyed the graphics 1 2 3 4 5

I had trouble using the keyboard 1 2 3 4 5

 Strongly Agree Strongly Disagree

I felt I was a part of the game 1 2 3 4 5

I lost track of time 1 2 3 4 5

The displayed environment

seemed real 1 2 3 4 5

 28

positive, and there is evidence that outside factors

(small sample group, lack of resources, player bias,

etc…) may have caused interference in the study.

Overall, the strongest relationships found were those

dealing with engagement and others dealing with

spatial presence. A strong, positive relationship was

observed between engagement and player satisfaction

whereby as the scores for engagement increased so did

those for satisfaction. The SPSS software calculated

an r = 0.725 where r ranges from 1.0 (directly positive

relationship) to -1.0 (directly negative-inverse

relationship); calculated significance (percent

probability results were generated by chance) p was

recorded as p = 0.001 where p ranges from 1.0 (100%)

to 0.0 (0%).

Further, these two variables also associated with the

time a user would wish to play the game at one sitting

(given no other timely constraints): the greater the

enjoyment or engagement the longer they would play.

This was the expected outcome from the definitions.

Also, negative effects show a negative relationship

with these variables: the more the players enjoy the

experience the fewer noticed negative effects.

Two strong relationships were found with spatial

presence. In the first, as the amount the user felt

challenged by the game increased, that user‟s spatial

presence rating increased. Here the relationship was

recorded as r = 0.636 and the significance as p =

0.006. In the second, the scores for user‟s spatial

presence rating rose when the scores for the user‟s

opinion about the quality of graphics rose. Also

important to note is the breakdown of the levels of

spatial presence. According to the data, the

participants who reported playing video games an

average of less than six hours per week (light to

moderate players) experienced nearly significantly

greater spatial presence than those who play six or

more hours per week (heavy players).

Noticed points of importance related to the participant

group follow. I found that heavy players reported

significantly less negative effects than the moderate to

light players. Light player‟s mean score was 2.576

compared to heavy player‟s mean of 1.472 on a 1-5

scale. A relationship between these players and

realism also approached significance, whereby the

moderate to light players found the game experience

to be more realistic than the heavy players.

A relation with engagement was also found with the

participant‟s game genre of choice. The participants

who said that they favored first-person-shooter (FPS)

games over all others reported significantly more

engagement than those who favor some other genre

over FPS. This outcome was also expected, and may

have led to player bias towards the game.

Correlations

1 .725** .710** -.187

.001 .001 .472

17 17 17 17

.725** 1 .712** -.416

.001 .001 .097

17 17 17 17

.710** .712** 1 -.337

.001 .001 .186

17 17 17 17

-.187 -.416 -.337 1

.472 .097 .186

17 17 17 17

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Engagement

Enjoyed play ing

Time would play at once

Negotive Ef fects

Engagement

Enjoyed

play ing

Time would

play at once

Negotive

Ef fects

Correlation is signif icant at the 0.01 level (2-tailed).**.

Figure 5. SPSS table showing correlation data between each variable: level of engagement from the SOPI, amount player

enjoyed experience, the amount a player would like to continuously play, and negative effects. Strong relationships noted

between engagement, enjoyment, and time variables.

 29

Correlations

1 .879** .436 .636**

.000 .081 .006

17 17 17 17

.879** 1 .359 .543*

.000 .157 .024

17 17 17 17

.436 .359 1 .599*

.081 .157 .011

17 17 17 17

.636** .543* .599* 1

.006 .024 .011

17 17 17 17

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Spatial Presence

Ecological

Validity /Naturalness

Enjoy graphics

Was challenging

Spatial

Presence

Ecological

Validity /

Naturalness

Enjoy

graphics

Was

challenging

Correlation is signif icant at the 0.01 level (2-tailed).**.

Correlation is signif icant at the 0.05 level (2-tailed).*.

Figure 6. SPSS table showing correlation data between each variable: presence, naturalness, graphics enjoyment, and

challenge. Fairly strong relationships noted between all variables.

5. CONCLUSIONS

While I am not able to say directly that immersion

leads to player satisfaction, I have seen evidence that

some factors of immersion (especially engagement)

were strongly related to satisfaction for this game.

This particular FPS generated a large amount of

engagement and a related amount of enjoyment.

There were some setbacks that negatively affected

results, but I believe it can still be hypothesized that

immersion will make a strong video game design

heuristic for player satisfaction.

Users purchase video games and systems, spend their

own time and efforts to learn to use them, and

continue to purchase such items in the future with

little to no interaction with the people who produce

them. In order to fully capitalize on this occurrence,

video game producers need to design games that users

feel satisfied in purchasing. Satisfaction leads to

replay, reputation building, and future purchase;

ultimately, satisfaction leads to profit for the video

game industry. And when you‟re talking about games

in which users are already willing to pay real money to

other users for money or items only usable in a game

world, better game design means a lot more revenue

for game producers. The results of my study will

potentially help the game developers increase the

amount of time a user wishes to play, the user‟s

overall enjoyment in the product, and the likelihood

that the users will purchase similar products from

them in the future.

Acknowledgment. Dr. Larry Luttmers provided

essential reviews and insights throughout this project

and this author would like to thank him for all of his

assistance.

REFERENCES

[1]. Atari Inc. Third Quarter Revenue (October to

December 2005). Feb 9. 2006.

<http://corporate.infogrames.com/uk/download/p

r/corporate/atari_uk_653_CA3TR05.06FINALU

K.doc>.

[2]. Cheng, Kevin; Cairns, Paul A. Behaviour,

Realism and Immersion in Games. ACM Press.

April 2005.

[3]. Emily Brown, Paul Cairns. A Grounded

Investigation of Game Immersion. ACM Press.

April 2004.

[4]. Federoff, Melissa A. Heuristics and Usability

Guidelines for the Creation and Evaluation of

Fun in Video Games. ACM Press. December

2002.

[5]. Jane Lessiter, Jonathan Freeman, Edmund

Keogh, Jules Davidoff. A Cross-Media Presence

Questionnaire: The ITC-Sense of Presence

Inventory. Presence, Vol. 10, No. 3, 282–297.

June 2001.

[6]. Jeanne B. Funk, Ph. D.; Pasold, Tracie;

Baumgardner, Jennifer. How Children

Experience Playing Video Games. Carnegie

Mellon University. May 2003.

[7]. Pekala, R. J., Wenger, C. F., & Levine, R. L.

(1985). Individual differences in

phenomenological experience: States of

 30

consciousness as a function of absorption.

Journal of Personality and Social Psychology,

48, 125-132

[8]. Ravaja, Niklas; Salminen, Mikko; Holopainen,

Jussi; Saari, Timo; Laarni, Jari; Järvinen, Aki.

Emotional Response Patterns and Sense of

Presence during Video Games: Potential

Criterion Variables for Game Design. ACM

Press. October 2004.

[9]. Sweetser, Penelope; Wyeth, Peta. GameFlow: A

Model for Evaluating Player Enjoyment in

Games. ACM Press. July 2005.

[10]. Tavinor, Grant. Video Games, Fiction, and

Emotion. Creativity & Cognition Studios Press.

November 2005.

[11]. Thomas Schubert, Frank Friedmann, Holger

Regenbrecht. Decomposing the Sense of

Presence: Factor Analytic Insights. Second

International Workshop on Presence. January

1999.

 31

	2006conference
	Table of Contents
	Proceeding6th

