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The run-time behavior of a parallel program is defined by many
parameters, for example, the program’s communication struc-
ture, the processor utilization profile, and the dynamic size of
message queues. To understand the execution of a program, it is
frequently necessary for a programmer to consider the run-time
behavior from a number of different angles. Also, it is sometimes
useful to consider one aspect of the behavior in isolation, whereas
other times it is necessary to consider different types of behavior
together. Sound offers an alternative form of investigation to sim-
ply using muitiple graphical and textual views for studying the
behavior of a program. In this paper, we discuss the properties of
paralle! programs that are well suited to being mapped to sound
and present a number of example mappings. As evidence of the
effectiveness of the sound mappings, we present case studies based
on a prototype sound tool. In general, sound was found to be
effective in depicting certain patterns and timing information re-
lated to the programs’ behaviors. Also, by listening to sound rep-
resentations that were sychronized with graphical displays, the
speed of recognition and distinction of programs, and parts of
programs, was increased. © 1993 Academic Press, Inc.

1. INTRODUCTION

From the early years of computing, there are examples
of sound being used to depict the behavior of a program.
Fernando Jose Corbatd, winner of the 1991 ACM Turing
Award, described a feature of the Whirlwind computer
(circa mid-1950s) as follows:

You even had audio output in the sense that you could hear the

program because there was an audio amplifier on one of the bits of

one of the registers—so each program had a signature. You could
hear the tempo of how your program was running. You could
sense when it was not running well. or when it was doing some-

thing surprising [6].

Later on, people discovered that tuning an AM radio to
certain frequencies and placing it close to the computer
allowed them to hear how their programs were doing.
They were able to detect such things as when a fre-
quently used program was being run and when a specific
program was in an infinite loop or was performing poorly
in general. (And, of course, programmers spent hours

* This work supported by the National Science Foundation under
Grant No. CCR-9196108.

writing programs to play particular songs.) Another ad-
vantage of this kind of audio output was that it could be
set up to be monitored from outside of the relatively cold
and noisy machine room.

Programmers in those days made effective use of two
basic capabilities of human hearing: (1) detecting aural
patterns and anomalies within those patterns; and (2) pro-
cessing sounds on a passive level, at the same time as
doing something else. In addition, the sound was being
used to wunderstand certain aspects about the run-time
behavior of sequential programs. Is it possible, then, that
sound can be used effectively to represent the run-time
behavior of parallel programs?

It is well known that understanding the behavior of
parallel programs is much harder than understanding the
behavior of sequential programs. One cannot just study
the source code of a parallel program to determine the
order in which statements will be executed, as can be
done with sequential programs. During debugging and
performance tuning of a parallel program. a programmer
tries to gain insight into, and develop an intuition about,
the concurrent events of the program and their relation to
each other. Usually the programmer must consider the
run-time events from different perspectives in order to
obtain a full appreciation of the program’s behavior.

Traditional techniques for representing run-time be-
havior include tables of statistics, profile information,
call-graphs, and graphics of run-time events over time.
The latter technique includes both static displays, where
time is represented as part of the graph. and dynamic
displays, where the actual display changes over time
(i.e., an animation). All of these techniques have onc
thing in common: they are processed via our visual
sense. It is possible, however, that other senses can also
be used to interpret program behavior data. In this paper,
we explore the effectiveness of using sound to represent
different aspects of the run-time behavior of parallel pro-
grams in order to assist a programmer in understanding
how a program is actually working. We define this repre-
sentation of program data as the auralization of a parallel
program.

A major reason for considering auralization of parallcl
programs is to employ the natural ability of sound to
depict parallel events in a manner that reveals their tem-
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poral ordering and duration. In Section 3, we show how a
number of program behavioral characteristics can be
mapped to properties of sound. In order to study the
effectiveness of such mappings related to actual parallel
programs, we have developed a prototype auralization
system. The system is described in Section 4, and evi-
dence of the effectiveness of auralizations, in general, is
presented in Section 5.

2. RELATED WORK

Previous work related to using sound effects and music
in order to aid in the comprehension of complex applica-
tions has been done in a variety of ways. In the early
1980s, a number of studies were performed which deter-
mined that sound could be used effectively in represent-
ing multivariate data. The data were being used for such
tasks as classifying mineral samples [21], recognizing or-
ganic compounds [10], and determining positive correla-
tions among sets of statistical variables |1, 12]. In each of
these cases, aural representation of the data was found to
significantly aid in the recognition of the desired phenom-
enon.

Smith et al. [17] have also investigated representing
multidimensional data via sound. In particular, their ap-
proach is designed to aid in the perception of structure in
data by associating auditory attributes to visual icons.
Each icon’s attributes, such as size, position of its parts,
pitch, and loudness, are data-driven. The visual attrib-
utes are displayed on the screen; the aural attributes are
sounded as a mouse-driven cursor is moved over the
graphic display. The result is intended to give the user an
impression of the overall texture of the iconographic dis-
play and thus some insight into the structure of the data.

The use of data-driven sound as an enhancement to
scientific animations has recently been investigated by
Scaletti and Craig (16]. In their study, four scientific ani-
mation videos were ‘‘sonified’” based on the initial data
used to generate the graphics. Although this work deals
with aural and visual depictions of the output of programs
versus the behavior of the program itself, a number of
their conclusions directly support the claims of this pa-
per. For example, based on an informal survey of people
who saw both the original and the sound-enhanced vid-
eos, they observed that

» users felt it was harder to pick out and remember
patterns in the silent animations,

* the most effective mappings were achieved when the
sound was coherent with the picture,

» complex timbres were easier to locate in space and
were less tiring to the listener than were simple sine
waves; i.e., the aesthetics of the sounds used were signifi-
cant, and
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« after hearing the data-driven sound track, users still
imagined it when the video was played silently.

As a slightly different example, Fiorella Terenzi, an
astrophysics professor at Liceo Scientifico in Milan, It-
aly, is using the computer to transform radio emissions
from outer space into audible form to help her study the
nature and composition of galaxy UGC 6697, All of these
studies taken together are strong evidence that represent-
ing multi-dimensional data with sound can provide in-
sight into the behavior of a system. In addition, it has
been demonstrated that presenting multi-dimensional
data using sound and graphics together increases the
probability that more is understood about the data in a
shorter amount of time than if either type of presentation
is used alone [1, 12].

Based on a completely different type of human-com-
puter interface, Wenzel et al. [19] describe the real-time
acoustic display capabilities for the virtual environment
project at NASA-Ames. Their system is designed to pro-
vide auditory cues related to what the user is seeing in
order to help guide movement through the virtual reality.
Obviously sound is necessary for any realistic virtual en-
vironment.

There have been few studies demonstrating the feasi-
bility of mapping parallel program performance data to
sound. One approach was studied by Sonnenwald et al.
in their design of InfoSound [18). The system allowed
developers to create and store musical sequences and
special sound effects, and then 1o associate those sounds
to an application program’s events. The system was
tested on two programs—a telephone network service
simulation and a parallel computation simulation—and in
both cases was found to help users detect rapid, multiple
event sequences that were difficult to visually detect us-
ing text and graphical interfaces. InfoSound was not de-
veloped as a general purpose tool and thus the sound
mappings had to be customized for each program. In ad-
dition, the project was discontinued after only these two
tests. Nonetheless, it did provide a mapping of parallel
computation events to sound, and it did demonstrate that
comprehension of the run-time behavior of the program
was increased.

The feasibility of mapping actual parallel program per-
formance data to sound was first demonstrated by two
separate reports at the same conference: Francioni et al.
[4] and Reed et al. [15]). Reference [4] demonstrated the
potential of sound to portray performance data via three
separate  sound-mappings depicting communication
events, processor utilization, and flow-of-control. Refer-
ence {15] presented an auditory display that was synchro-
nized with a corresponding graphics display. In both
cases, the sounds were directly mapped to run-time
events of parallel programs, and the mappings were de-
signed as general purpose tools.
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3. MAPPING PARALLEL PROGRAM BEHAVIOR
TO SOUND

There are a number of general characteristics and
properties related to the run-time behavior of a parallel
program that can be defined. Some of these characteris-
tics lend themselves well to visual displays, some to tex-
tual representations, and some to auralizations. Our in-
tention is to identify which ones can be effectively
represented in the aural domain.

3.1. Characteristics of Parallel Program Behavior

A set of characteristics that can be used to describe
much, if not all, of the run-time behavior of parallel pro-
grams is defined as follows:

(1) Relative timing of events, i.e., when one event oc-
curs in relation to another. Examples of events where
timing information is useful include message sends and
receives, beginnings and ends of processor busy/idle
times, attainment of peak values for some measure, and
execution of a marked section of code.

{(2) Duration of events. As opposed to the timing
among events, this characteristic deals with how long an
event, or an interval between two events, lasts.

(3) Patterns of events. Patterns are found in event oc-
currences across processors as well as within individual
processors. They are recognized based on some prede-
fined structure of the computational model, or because of
some repeated or periodic behavior.

(4) Phases of behavior over time. Although a particu-
lar part of a program may not generate a recognizable
pattern of events, it is still possible that phases of a pro-
gram can be discerned within distinct periods of time.

(5) Frequency over time of some behavior. This type
of measure is useful in capturing information such as pro-
cessor utilization, size of message queues, and number of
cache hits.

(6) Balance of behavior over entire system. This char-
acteristic would be used to describe the distribution of
some behavioral aspect among different parts of the sys-
tem. Examples would include the load balance of the
processors’ utilizations, and the balance of homogeneous
versus heterogeneous communication activity among dif-
ferent processes.

{7) Specifics of an event. This includes the detailed
information typically stored in the trace-file of a particu-
lar run. For instance, the specifics of a message commun-
ication would include the sender, receiver, a message id,
the length of the message, and the time of the send or
receipt.

The reasons for presenting performance information to
a programmer are to help the programmer understand
what the program is doing and to relate the run-time be-
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havior back to program source code. Given that the
above characteristics define the run-time behavior of a
parallel program, the relevant question becomes ‘‘How
can sound effectively represent these characteristics?"

Studies on human perception of sound have shown that
the human ear is capable of differentiating among many
different sounds [2, 14]. By mapping execution events to
sounds, we are afforded the flexibility of using many di-
mensions of sound and having a wide range of possible
values within each dimension. The dimensions of sound
that can be used include the timbre of the sound, which
can be thought of as the voice of the instrument that
generates the sound; the pitch of the sound; the duration
of the sound; the intensity of the sound; and the spatial
location of the sound source in the stereo field. In addi-
tion to these specifics, sound compositions are character-
ized by patterns of rhythm and meter, melody, harmony,
and texture. All of these properties can be used, in vary-
ing combinations, to depict characteristic information re-
lated to a program’s execution behavior.

In answer to the question posed above, then, it is nec-
essary to map specific properties of sound to the charac-
teristics that were enumerated. We present arguments for
a number of such mappings in this section and we de-
scribe specific examples in Section 5.

3.2. Relation of Program Characteristics to Sound

It is an inherent property of sound that both relative
timings and absolute durations of sounds are implicit in
any song or playback. (The word song implies a melody,
thus we use the term playback to refer to a generic se-
quence of sounds.) When sounds are associated with
each of a certain kind of parallel program event, the tem-
poral order of the program’s events is implicit in the
rhythm and meter of the corresponding auralization. In
the same way, the duration of events would be defined
implicitly by the duration of their corresponding sounds
in an auralization. It has been demonstrated that our ears
are sensitive enough to detect time differences of a few
milliseconds [14]. This implies that temporal information
can be processed by our ears. In addition to the temporal
ordering of sounds, more than one sound can be detected
by humans at a time. Thus, we have a natural ability to
hear paraliel events.

As evidenced by our recognition of familiar songs and
choruses within a new song, we know that humans have
the ability to detect patterns in sound. How quickly a
pattern is detected is a function of the scale of the piece,
the tempo of the piece, the length of the patterns. and the
frequency of repetition, among other things. The parame-
ters of a pattern related to parallel program events are
based on the actual program’s run-time behavior as well
as the specific way in which sounds are mapped to each
event. For example, the choice of scale used in a map-
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ping of notes to processor-sends may atfect the likelihood
of recognizing a pattern. In general, however, patterns in
the program behavior that can be reflected by the rhythm
and/or melody of an auralization are more likely to be
aurally detected. Phases of a program are not always as
well defined in the aural playback of a program. In order
to detect a phase aurally, there must be an aural cue such
as an obvious break in the sound, a change in the tempo,
or even a change in the volume. A phase may also be
detected by the return of some recognizable pattern.

In order to map the frequency characteristic described
above to sound, it is necessary to use a property of sound
that naturally depicts quantity. One such property that
can be used is the pitch of a sound, i.e.. the note. Other
properties include the intensity of the sound and the den-
sity of notes being heard at a time. Each of these aspects
of sound naturally depict increases and decreases of an
associated quantity and, thus, they can represent fre-
quency on a relative scale. They do not, however, reflect
values on an absolute scale very well. For example, one
can hear if the pitch of a sound is getting higher or lower
even if the change is very small, but not many people
have ‘‘perfect pitch’ to be able to exactly identify a par-
ticular note being heard.

Balance within a parallel program can be mapped to
sound in a number of ways. Among simultaneously
sounding voices, humans can detect balance in the vol-
ume as well as in the rhythmic or melodic activity of the
sounds. Humans can also detect the spatial source of a
sound from any direction with high acuity [2]. Moreover,
it is possible to simulate 3D sound using sterco head-
phones [19, 20]. Thus, the arrangement in space of sound
sources is another way of aurally depicting balance.

The ability of sound to represent specific event infor-
mation depends on the kind of specifics intended. Basi-
cally any event can be mapped to sound where an event
is either defined in, or computed from, information in a
trace file. (It is irrelevant to this discussion whether the
trace file is processed postmortem or in real-time.) This
includes control events, state transitions. resource and
data accesses, and communication events. When there
are many events being represented simultancously, the
overall sound of the auralization will tend to dominate the
sounds of individual events. For instance, if an auraliza-
tion is depicting the flow-of-control behavior of a 1000
processors, the behavior of one specific processor will
probably not be aurally evident. Conversely, if the
sounds relevant to a small number of processors are
played at a slow tempo, detailed information can be de-
duced from a playback.

3.3. Complementing Visual Representation

Visual displays can be grouped into one of two catego-
ries: static or dynamic. In a static display, previous his-
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tory is available but temporal information must be ab-
stracted from the graph. Conversely, in a dynamic
display, the temporal information is intrinsic in the ani-
mation, whereas the history of past events is available
only as that which can be remembered. An aural depic-
tion of program events has similar properties to an anima-
tion, although different kinds of patterns can be remem-
bered and recognized in one compared to the other. The
best situation for the programmer is to be able to perceive
accurate temporal information that is associated with a
historical depiction. In that way, the historical depiction
can provide cues to help the programmer remember the
temporal relationships between events more accurately.
This will only work, however, if the programmer can
exactly correlate the temporal depiction with the histori-
cal depiction. Since people cannot watch two different
areas of a screen at the same time, this is very hard to do
with only static and animation visual displays. However,
people can ook and listen at the same time. Correlating
an auralization with a visual static display provides a
mechanism for accomplishing the above-stated goal.

3.4. Scalability of Sound Mappings

When considering the properties of sound that will map
to the characteristics of parallel program behavior, it is
important to consider the mappings from the extended
point of view of large-scale parallel systems. With re-
spect to scalability, sound has definite limitations in
terms of how much sound can be generated and/or assim-
ilated at once. If program events are mapped to the notes
of a major scale, for instance, there is a limit of 128
unique notes that can be played within the range of hu-
man hearing. Using different scales, this limit can be in-
creased somewhat but certainly not to 10,000. On the
other hand, sound does offer different possibilities than
graphics for dealing with large numbers of parallel
events. Examples in nature of auralizations of large num-
bers of parallel events include rain drops falling in a
storm, leaves blowing in the wind, and bees buzzing at a
hive. In each of these cases. we can aurally detect infor-
mation about a large system based on the overall sound.

Consider the method of dividing a large number of pro-
cessors up into a smaller number of logical groupings or
equivalence classes of the processors, and then consider-
ing the interactions of the groups as a whole. There are a
number of situations in which our aural processing abili-
ties are exceptional at detecting equivalence classes. For
example, our ears can detect that the same note is played
by two distinct instruments even when the wave forms of
their sounds are entirely different. In this case our ear
recognizes that the two notes have the same fundamental
frequencies. Another property of sound that lends itself
to large-scale processing is that rhythmic patterns are
invariant of tempo. Hence, it is possible to aurally em-
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phasize the sound corresponding to a few processors and
then play the auralization related to the entire program at
a relatively fast tempo. Any rhythmic pattern involving
the few processors would remain intact in the rapid play-
back. In this way, sound can be used to draw the listeners
attention to specific behavior at the same time that the
overall behavior is being considered.

3.5. Limitations of Sound Mappings

Sound is not always an effective medium for represent-
ing certain kinds of detailed information that are useful to
a programmer. For example. there is no naturally occur-
ring aural relation between specific notes or instruments
and specific processors. Without any formal ear training,
it would be difficult to remember which processor went
with which note or which instrument for more than two
or three processors. It is much easier to look at a graph or
table to determine the processor that sent a specific mes-
sage. On the other hand, one can listen for a certain note
or instrument to be played and then recognize when that
particular processor has generated an event.

Depicting certain maximum and minimum values of a
quantity is difficult to do with sound. For example, what
is the maximum loudness or the lowest note or the fastest
tempo? Including a reference sound that can be heard in
the background is one way of handling this, but a continu-
ously sustained note tends to be annoying. The point is
that this is not a natural property of sound that can be put
to good use.

There is no guarantee that an auralization will always
be acceptable sounding. In some cases an auralization
may result in bothersome noise; in the worst case the
resulting sound may actually offend the listener (e.g.. if
the sound is very loud or if it has an extremely high
pitch). In general, the character of an auralization will be
determined by (1) the definition and timing of the pro-
gram events being depicted, and (2) the voice and scale
assignments of the events to sounds. Unless one is writ-
ing programs solely to generate pleasing sounds. the first
property cannot be varied to change the sound of an aura-
lization. But the second property should be varied. Ex-
perimentation with scale choices and voice assignments
(such as a choice of instrument or sound sample, short vs
sustained sound, sharp vs gradual attack, etc.) is typi-
cally necessary to find meaningful auralizations. There-
fore, the potential for creating disturbing auralizations
also exists. As more research into this topic is carried
out, however, it should be possible to determine a set of
low-risk default choices and assignment guidelines that
would reduce the possibility of bad auralizations.

4. PROTOTYPE OF AN AURALIZATION TOOL

In order to test the validity of the claims made in the
previous sections, an auralization tool prototype has
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been developed. The tool was designed to present audi-
tory representations of performance monitoring informa-
tion that are synchronized with matching visual displays.
The sounds of the auralizations are based on one of sev-
eral predefined event-to-sound mappings, where pro-
gram-related events are derived from a trace file gener-
ated during program execution.

4.1. System Organization

The organization of our system for generating an audio
display of a program’s execution behavior consists of
three basic tasks: (1) collection of event trace data, (2)
mapping of events to MIDI (musical instrument digital
interface) format, and (3) presentation of the synchro-
nized aural/visual display. The collection of the event
trace data is facilitated by using the PICL subroutine li-
brary [7], which has been implemented for a number of
distributed-memory machines. PICL provides execution
tracing information on events such as basic sends and
receives, high-level communication operations, idle/busy
time, and user-defined events.

After the trace data has been collected during a pro-
gram’s execution, the data is then mapped 10 specific
sounds according to the MIDI protocol {13]. This proto-
col defines a standard format for representing the compo-
nents of sound, such as duration, pitch, instrument. vol-
ume, and panning. The mappings are done by a set of C
programs that are run postmortem on the trace data. In
some cases individual PICL-defined events are mapped
directly to sound; in other cases the sound mapping is
derived from multiple PICL events. An example of a di-
rect event-to-sound mapping would be as follows:

PICL event:

send clock 0 523 node 0 to 1 type 4 Ith 4

MIDI event(s):

playnote, time=523, note=C, channel=1, volume=90
playnote, time=533, note=C, channel=1, volume=0
(The second MIDI event turns the previous note off
after 10 time units.)

The file of MIDI data conforms to Format 0 for MIDI
sequencers. This makes it possible for the file to be ac-
cepted by any commercial MIDI device which is capable
of reading the standard format. Therefore, converting the
data to sound is done simply by sending the data to a
MIDI device such as a synthesizer or tone generator.
During presentation, the aural data is synchronized
with one of two ParaGraph visual displays [9]: the space-
time graph (e.g., Fig. 1) or the Gantt chart (e.g., Fig. 3).
Both of these displays are static displays in the sense that
time is depicted along the horizontal axis. (ParaGraph
provides many other displays than are represented here,
some of which are dynamic.) After the display has been
drawn, the user defines a region of the display for aural
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presentation. During playback, a vertical bar, the height
of the display, moves across the window from left to
right, and the sounds associated with the current position
of the bar are generated. Thus, the user always knows
what parts of the graph currently are being played.

The timing of aural events in a playback is exactly
proportional to the timing of the actual trace events.
Hence, all temporal relationships of the program’s run-
time behavior are preserved in the auralization. The
tempo of the playback, however, is at the user’s control.
Thus the user can listen to a fast version of a playback to
obtain an overall impression of the program’s behavior as
well as slow the tempo down to hear details. similar to
zooming in on part of a visual display. The user also
controls the channel-to-voice and channel-to-stereo field
assignments. When the MIDI file is generated, each
sound to be played is assigned to a specific channei.
These channels can then be assigned to specific instru-
ments and stereo fields based on the capabilities of the
sound-generating device. So, for example. if all send
events are assigned to channel 0, and all receive events
are assigned to channel I, then on playback, channel 0
can be assigned to the left stereo field and channel 1 to
the right. In addition, the send events can be played by
one instrument, while the receive events are played by
another. Both channels can also be assigned to the same
stereo field and/or instrument. This flexibility in channel
assignment is important when experimenting to deter-
mine the most effective auralization for a program. Other
controls at the user interface include changing the sound
mapping, changing the volume, muting out specific chan-
nels, and setting the region of display for playback.

4.2. Sample Sound Mappings

In this section, we describe a sampling of sound map-
pings that have been implemented for experimentation.

Send-receive. The relative ordering and timing of all
messages is one of the defining characteristics of a dis-
tributed-memory parallel program. Figures 1, 2, 4, and 6
show examples of space-time diagrams which depict the
timing and processor information of messages in a dis-
tributed-memory parallel program. In each diagram, time
is on the horizontal axis and processors are along the
vertical axis. The left endpoint of a diagonal line in the
graph represents a send by that processor; the right end-
point represents the receiving processor. A basic sound-
mapping that captures this type of behavior is to assign a
particular timbre (or instrument) to each kind of event—
sends and receives in this case—and play a note for each
send and receive event that occurs. The particular note
that is chosen can be a function of event attributes such
as sending or receiving processor number, message
length, and message type. Depending on the specific pa-
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rameters used in the mapping and depending on the speed
chosen for the playback, different kinds of behavior can
be depicted.

Simple variations of the above mapping resuit in aurali-
zations that convey different kinds of information. When
the note played on a send corresponds to the sending
processor’s number and the note played when a message
is received corresponds to the receiving processor’s
number, it can be heard how long it takes a processor to
send off a message after having received one by listening
for the repeat of a given note. When the note played on a
send is set up to correspond to the receiving processor's
number rather than the sender’s number, the duration of
time between a send and its matching receive can be
heard. Sustaining the sender’s note until the receive oc-
curs is another way of depicting this information that is
also useful for detecting unreceived or delayed messages.

The basic send-receive mapping assigns a separate
note to each processor. A potential problem of this map-
ping for large numbers of processors is that, for a given
instrument, it is unpleasant to hear certain notes played
at the same (or similar) time. One solution to this is to use
voices whose sounds are not associated with definite mu-
sical scales. For instance, drum-like voices can depict
relative pitch information without creating a lot of disso-
nance.

Group-send—-receive. A variation of the basic send-—
receive mapping applicable to large number of processors
is 10 use a grouping strategy for note assignment. (This is
similar to a color-binning strategy for visual displays {3].)
The processors are separated into a relatively small num-
ber of groups and individual notes are assigned to each
group rather than each processor. In such a mapping, it s
desirable to distinguish between intra- and inter-
communication. One strategy is to direct the sound to
one channel when a processor sends a message to an-
other processor in its same group, and when a message
transcends group boundaries, the sounds for both the
send and receive are directed to a different channel. By
using two distinct channels, it is possible to listen to the
inter-group communication traffic in conjunction with,
and separately from, the intra-group traffic. The capacity
for scaling this group-send-receive mapping is basically
unlimited as any number of processors can be assigned to
one group. Also, a user can experiment with different
processor-to-group assignments to study the behavior of
a program in varying ways. Possibilities would include
dividing the processors simply into two groups to find out
which group is doing the most communication, or group-
ing the processors working on boundary data separately
from those processors working on the internal regions.

ldle—busy. Another characterization of the perfor-
mance of a parallel program is the amount of time each
processor spends computing as opposed to idle. The
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Gantt chart of Fig. 3 depicts this with a dark bar repre-
senting when a processor is busy, and a white bar repre-
senting idle time. As in the previous figure, time is along
the horizontal axis and processors are along the vertical
axis. The ratio of idle-to-busy time can be depicted au-
rally by playing a certain sound for each processor when-
ever it is idle and playing no sound when the processor is
busy (or vice versa). In either case, the sound should be
sustained for the duration of the burst. This property
dictates the kinds of voices that are suitable. An enhance-
ment to this mapping is to also use the intensity dimen-
sion of sound to reflect the length of an idle burst. In the
resulting auralization, the beginnings and endings of the
idle periods should be evident, as well as the relative
number of processors idle at a time. With the enhance-
ment, attention will also be drawn to the longer idle
bursts due to their higher volume.

Flow-of-control. This sound mapping is intended to de-
pict the flow of control within each processor. The map-
ping is straightforward: each processor is assigned a par-
ticular timbre which may or may not be unique, and a
note is played on each event being monitored. If the
events being monitored are ‘‘mark’” events of different
locations in the code, the note played would be a function
of which mark has occurred. If the events being moni-
tored are communication events, the note played could
be a function of the processor sending or receiving the
message and/or the type of message. The difference in
this case from the general send-receive mapping is that,
presumably, only special communication events would
be mapped to sound. Thus, a programmer could follow,
for example, the progression of one processor’'s com-
munication events or the flow of one message sequence.

Meters. It is often useful in performance monitoring to
keep track of certain cumulative statistics over time, ex-
pressed as percentages. Visually, this can be depicted
with meter types of displays where the height of a bar
fluctuates dynamically corresponding to the current sta-
tistical value. (ParaGraph contains such displays for
communication and utilization statistics.) In auraliza-
tions, percentages can easily be represented by selecting
notes in a range of pitches to represent corresponding
values from 0 to 100%—Ilow notes corresponding to low
percentages; high notes to high percentages. This map-
ping can be designed to depict, for example, the relative
amount of system utilization or communication that is
occurring over time. Since the range of values to be
sounded is restricted to be from 0 to 100%. this mapping
is independent of the actual number of processors or
events in the system. Hence, it is completely scalable. In
addition, sound meters correspond well with visual dis-
plays, where the sound represents the aggregate statistic
and the graphics represent specific values in detail. Such
an aural-visual combination serves to save screen space
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and also relieves the user of simultaneously following
two or more graphical displays.

5. EVIDENCE OF AURALIZATION EFFECTIVENESS

The evidence presented in this section is based on re-
actions of the authors and others who have listened to
various examples of program auralizations and on a small
survey taken as part of a research demonstration at the
“*Supercomputing ‘91" conference. In general, the more
one listens to a particular auralization, the more informa-
tion one can detect and the quicker one can understand a
corresponding graphic display. But even based on a sin-
gle playback, people typically say they hear more than
they expected they would, especially those who lack mu-
sical training.

5.1. Test Cases

Each test case in this section is discussed in terms of a
specific ParaGraph display generated from actual pro-
gram trace files. The programs were run on either an Intel
iPSC/2 or an nCUBE machine, of up to 64 nodes.

Figure 1 represents the communications in a Fast
Fourier Transform program. As one test case, an aurali-
zation of the program was generated using the send-re-
ceive mapping. All send events were mapped to one in-
strument, namely vibes, and all receives were mapped to
another, namely marimba. Also, sends and receives were
each directed to a separate stereo field. On each event,
the note played was based on the processor that initiated
the send or receive. As can be seen in the figure, this
program has four distinct phases in which every proces-
sor sends a message and then every processor receives a
message. In addition, the butterfly communication pat-
tern is evident. The aural playback, on the other hand,
provided for some different insights. When the auraliza-
tion is played at a relatively fast tempo, it sounds like all
processors do a send at the same time, and that they all
do their corresponding receives together as well. When
the auralization is slowed down, however, it is heard that
the sends become more and more spread out at each
subsequent phase and that the order of the receives is an
exact match. In other words, a processor that is later
than some others to send off its message will be later in
receiving its message of the same phase. This is not im-
mediately obvious from looking at even a scaled down
version of the graph.

Figure 2 indicates the communication behavior of a
matrix system solver run on 16 nodes. The auralization
used in this test was a variation of the send-receive map-
ping such that only send events were played. Based on a
fast-tempo playback, the communication activity in re-
gion 1 of the graph seemed to involve all the processors.
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FIG. 1. FFT Program.

A slower playback of the region further indicated a repe-
tition of seven sequences of sends, seemingly involving
all 16 processors. Muting out the channels associated
with the lower numbered processors (0-7), the seven
groups of sends could still be heard. But when the upper
processors were muted out, it was heard that the lower
numbered processors were, in fact, sending much fewer
messages in a very different pattern than that of the upper

group. Now, this same investigation could just as well
have been carried out using a visual display that had the
capability of selectively displaying processors. Unfortu-
nately, the version of ParaGraph we were using did not
have such a capability. And although very close scrutiny
of a scaled down version of the space-time graph con-
firmed that the above was indeed true, the behavior was
not at all evident when the graph was first studied. In this
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Matrix computation.
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case, the aural information served as the clue to the be-
havior.

The program of Figure 3 computed a matrix factoriza-
tion. The auralization generated for this case was based
on the idle—busy mapping. Specifically, the beginning of
each idle burst 1s signified with a short, bell-like sound
played at a note corresponding to a particular processor.
This is followed immediately by a sustained string sound,
played at the same note and starting at a low volume. The
loudness of the string sound then increases as the length
of the corresponding idle burst increases. In looking at
the graph, one’s eyes have a tendency to follow the diag-
onal bands of either white or dark. This makes it difficult
to perceive the relative number of processors that are
either idle or busy at different points in time. The aurali-
zation forces the programmer to process the graph basi-
cally one vertical strip at a time. For example, there are
only a few short intervals where all processors are busy.
These intervals are aurally recognized as the only com-
pletely quiet times, even though the duration of these
quiet times is very short.

The flow-of-control auralization generated for another
test was intended to follow a particular cause-and-effect
sequence of messages: given a starting send, where does
that message go and which is the next message sent by
the receiving processor, and then where does this next
message go. and so on. We term such a sequence of
messages to be a grapevine. A visual display of a grape-

~ Utilization
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vine can be generated by highlighting the appropriate
edges of a space-time diagram. Figure 4 shows an exam-
ple of a grapevine for a Cholesky factorization program
using a ring communication topology. For the sound
mapping, a note was played for each message in the
grapevine corresponding to the sending processor. The
note was started when the message was first sent, was
sustained until the message was received, and then was
ended with the note changing to that of the receiver.
Sounds related to the other sending and receiving events
of the program were played on different voices at a lower
volume according to the basic send-receive mapping.
This auralization gives a clear representation of the flow-
of-control of a specific message sequence. Since the pitch
of the note being sustained is changed from the sender to
the receiver, the direction of each message is heard, mak-
ing the ring communication pattern evident. Also, the
relative duration of time between the receipt of a message
and the corresponding send of the next message in the
sequence is accurately perceived.

Figure § shows two views of the storer phase of the
SLALOM benchmark program [8]. The Gantt chart
shows the utilization of each processor individually,
while the Count chart shows the aggregate processor uti-
lization. A meter type of dynamic display for overall utili-
zation basically follows the top of the curve of the Count
chart. Coordinating a sound meter of the overall utiliza-
tion with the visual Gantt chart allows one to process the
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two types of information together. This is much harder to
do visually as you try to look at two different displays at
the same time. It is evident from the resulting auraliza-
tion that the overall utilization is higher in the second
active region, but also that the pattern of utilization is
very similar in both active regions.

Figure 6 was generated from the backsolve phase of
SLALOM. The decomposition topology for SLALOM is
a two-dimensional mesh, so for 64 processors it is an 8 by
8 mesh. Each row of processors in the mesh is mapped to
a row of the matrix. In the backsolve phase, activity
“‘moves’’ row by row up the mesh and matrix. For this
test case, processors were assigned to eight groups, each
group included an entire row of processors, and the
group-send-receive sound mapping was used [5]. During
playback it was aurally detected that inter-group com-
munication was always between the same neighbors (ex-
cept at the end of the run). It could also be heard that
most communication took place within a group and that
inter-group communication took place at the end of a
phase of intra-group communications. Finally, it was au-
rally evident that the same basic communication pattern
is repeated over and over, and it is also repeated one last
time in conjunction with the other ‘‘wrap-up’’ communi-
cation. By playing the auralization at a slow tempo, it is
possible to hear that the basic communication of each
group is the same.

One last example of the effectiveness of program aura-
lizations is of a data recording error found in a trace file
that multiple years of visualization had not revealed. The
error was detected by Tara Madhyastha while experi-

menting with auralizations in conjunction with the Pablo
performance analysis system [15]. A variation of the ba-
sic send-receive sound mapping was being used,
whereby the sending note was sustained until the corre-
sponding message was received. Upon playback of this
particular trace file, it was evident that one of the mes-
sages was not being received, as a constant hum of one
note was heard. Since it was not evident which processor
was mapped to that particular note, the mapping was
modified so that each processor was assigned to a differ-
ent instrument. On the next playback, it was easy to
identify the stuck note as that of the “‘tuba’ processor
and consequently the bug was easily traced [11].

5.2. Survey

The **Supercomputing 91" conference in Albuquer-
que provided an opportunity to test the effectiveness of
sound-enhanced graphics on a random sampling of pro-
grammers. As one of the conference’s research demon-
strations, we ran a prototype version of our auralization
system. Since this was a live demonstration, it was possi-
ble to vary parameters of the sound playbacks, such as
instrument and tempo, and also to select which proces-
sors and which kinds of events to listen to. In general,
almost everyone agreed that they were able to hear infor-
mation that was different from what they could tell by
Jjust looking at the graphical displays. In some cases, the
aural information simply confirmed something that ap-
peared to be true based on the graph. In other cases, the
aural playback portrayed information that was obscured
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in the graph. In addition to informally observing the reac-
tions of users, a small survey was administered to a ran-
dom sample of the users. The survey consisted of three
questions, where people were asked to answer each
question, first based on the graph alone and then based on
watching and listening to a synchronized auralization of
the graph.

The first question was related to the timing of phases in
the FFT program of Fig. 1. Phases were defined to be
regions of communication exchange and regions of strict
computation involving no communication, either pending
or active. The specific question asked was as follows:

(1) In the region indicated, do the lengths of the com-
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putation phases seem to be less than, equal to, or greater
than the lengths of the communication phases?

Based on a send-receive mapping played at a moderately
fast tempo, many people found it was easier to hear that
the phases are virtually equal in duration than it was to
see this. In part, this may be due to the visual differences
in the diagonal lines versus the horizontal lines.

The second question was related to the density of
‘‘communication activity,” defined to be the number of
sends occurring during any interval. Participants were
asked the following question regarding Fig. 2:

{2) Which region represents the period of highest com-
munication activity?

The auralization used in this case generated one sound
for each send event. In particular, a synthesizer sound of
indefinite pitch, with a very short duration, was used.
When played at a relatively fast tempo, this mapping
sounded much like static or a Geiger counter. For this
program, there are more send events during region ! than
in the other regions. But there are more pending events in
region 3 and thus more “*black’ in the graph. Without the
auralization, most people thought region 3 had the high-
est level of sending events.

The third question dealt with the relative timing of a
particular event: the beginning of an idle burst. The graph
shown was that of Fig. 3 and the question was as follows:

(3) In the region indicated, do the lengths of time be-
tween the starts of each idle period seem to be the same
or different?

In this program, the time between the start of each of the
first six idle bursts is highly uniform; each one begins
within 5% of the average interval. However, the lengths
of the idle bursts vary much more—for processor 1 the
burst lasts until processor 2’s burst begins; for processor
S the burst is basically half as long. Because of this, it is
hard to visually judge when each burst begins even
though it is easy to hear the consistent rhythm of the
notes. For the auralization, the idle-busy sound mapping
was used.

The results of the survey are given in Table 1. In each
case, a significant number of people changed their answer
after hearing the auralization. The most striking point
about these results, however, is that people were able to
perceive the correct answer 100% of the time based on
the sound-enhanced graphics. In addition, many people

TABLE 1
Results (in Percentages) of SC’91 Survey”
Changed
Question Graph only Sound and graph answer
(nH Less than: 40 Less than: 0 40
Equal to: 60 Equal to: 100
Greater than: 0 Greater than: 0
(2) Region 1: 39 Region 1: 100 61
Region 3: S0 Region 3: 0
Region 4: 0 Region 4: 0
Unsure: 11
(3) Same: 30 Same: 100 70
Different: 70 Different: 0

* Total number of participants = 21.
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said that the sound-enhanced version confirmed what
they “‘thought” was the case based on the graph alone.

6. CONCLUDING REMARKS

It is infeasible to directly observe the execution of a
program. Thus, one studies the run-time behavior of pro-
grams by first mapping some set of execution events onto
a set of observable events and then studying the observ-
able events. The observable events will always be differ-
ent than the actual execution events since they represent
a projection of the actual events onto a different space.
Yet, it is known that important information regarding
run-time behavior can be deduced by studying both vi-
sual and textual representations of program execution.

In this paper, we have defined a mapping of parallel
program behavior characteristics to sound properties.
But just because program characteristics can be repre-
sented with sound does not automatically imply that a
programmer will be able to relate the aural information
back to the behavior of the program in an effective way.
Therefore, we have also presented evidence of how pro-
gram auralizations can, in fact, effectively portray signifi-
cant behavior information to the listener.

6.1. Observed Benefits of Program Auralization

Based on our experimentations with sound mappings
related to a number of different distributed-memory par-
allel programs, we believe the auralization of parallel pro-
grams offers a number of distinct benefits to the program-
mer. These benefits include the following:

(1) Because one’s ears and eyes detect different pat-
terns and different temporal cues, auralization of pro-
gram events provides for different insights than visualiza-
tion into the run-time behavior of a program.

(2) Synchronizing an auralization to a static graphical
display results in a form of animation of the graphic dis-
play. Thus, the temporal relationships in the graphic dis-
play become more obvious.

(3) Designing an auralization for a particular program
is useful, in and of itself, because of the analysis re-
quired. Making initial choices about voice, scale, and
even group, assignments, will be based on what is ex-
pected to happen. Hearing the auralization, then, either
confirms or dispels those expectations.

(4) Auralization of program events provides a means
to filter through a large trace file to determine which parts
of the trace warrant further investigation.

In general, offering multiple perspectives of performance
data means the user has, in effect, more than one tool to
use for gaining insight into a program’s behavior. This is
why visual tools such as ParaGraph offer more than one
type of display. The argument being made here is not that
information gathered through auralizations cannot be
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gathered through visual or textual representations, but
rather that auralizations can offer the user another per-
spective that enhances the graphical display and thus al-
lows the user to gain more insight into the program faster
than by studying the graph alone. As long as the auraliza-
tion does not detract from the other views, it is better to
offer both than just one.

A more intangible benefit to auralization is that of cap-
turing the signature of a program. The overall impression
or signature of a program is a composite of all of the
program behavior characteristics, to some degree, that
potentially captures the inherent qualities of the program.
We look to recognize the signature of a program in order
to compare it to other programs—possibly one with a
different communication topology—or to the same pro-
gram run with different data sets, or even to compare
program executions across multiple architectures. Aural
signatures of parallel program behavior provide a mecha-
nism for this type of comparison. Recognizing similarities
or differences in a comparison can potentially stimulate
intuition about the reasons behind them, resulting in fruit-
ful discoveries. Our recognition of the spoken word, even
when spoken in many different voices with various
accents, is evidence of our aural abilities to handle this.

6.2. Practicality of Program Auralization

The practicality of using auralizations for understand-
ing parallel program behavior depends on a number of
factors. For one, users will have to learn how to listen to
these program representations. This does not mean ali
users will need professional musical training. Rather, it
means users will have to become used to interpreting
what they hear in the same way that most are now used to
interpreting graphical representations.

The current sound capabilities of the average scientific
workstation are not adequate to produce the kinds of
auralizations used in this study. Instead, we used exter-
nal sound equipment and a software device driver. The
sound equipment necessary, however, is relatively inex-
pensive, assuming that the auralizations are defined as
MIDI files. An adequate system, consisting of a serial-to-
midi interface, a Yamaha TG77 Tone Generator, and a
set of stereo headphones, costs less than $1500. Although
this type of equipment is unfamiliar to most computa-
tional scientists, it is affordable and standardized.

We have found the MIDI protocol to be adequate for
our purposes to date. As workstations emerge, possess-
ing more sophisticated sound-generation hardware that is
capable of producing high fidelity stereo sound (suitable
for use in multi-media applications). alternatives to
MIDI-based sound generation will be feasible. This, of
course, will also broaden the user base for auralization
tools.

Last, but not least, performance tools will need to be
designed to include an auralization interface. Trying to
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add this interface into an existing tool, such that the aura-
lization is synchronized and coordinated with the graphi-
cal views, is not a trivial task. The Pablo Performance
Analysis System being developed at the University of
Llinois [15] is an example of a tool designed to include
auditory information that is synchronized with visual
graphics. An early prototype of a sonic widget for con-
trolling the auralizations allows the user to specify such
parameters as scale, instrument, and volume. This is the
type of coordinated environment that will be necessary
for an adequate study into the effectiveness of using
sound for debugging and tuning parallel programs.

6.3. Future Work

This study has focused on investigating the appropri-
ateness of using sound to depict the kind of information
necessary to understand how a parallel program is work-
ing. Although the initial research has given promising
results, the study is by no means complete. Further in-
vestigation into effective sound mappings of parallel pro-
gram behavior information is necessary. Determining
what parameters should be at the user’s control for ex-
perimenting with auralizations versus which ones should
be, and even can be, automatically generated based on
trace data should also be studied.

The most effective auralizations will be a function of
not only the sound mapping used but also the sound voic-
ing used. Basically, sound voices can be categorized into
one of three groups: musical instruments, natural sounds,
and synthesized sounds. When trying to create aural
analogies for certain program behavioral aspects, differ-
ent kinds of sounds will be more appropriate than others.
Research based both on the theory of sound, as well as
experience with auralizations, is needed to identify fami-
lies of sounds that are most effective for representing
particular kinds of program behavior. Work by others
investigating the auditory representation of scientific data
should be applicable to this problem.
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