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CS 440 More on Reduction, NP and NP-Complete 
 
� Polynomial Reductions 
 
- Definition: Polynomial Turing Reduction 

� Let A and B be two problems.  We say that A is polynomially Turing 
reducible to B, denoted A �T

P B, if there exists an algorithm for solving A 
in a time that would be polynomial if we could solve arbitrary instances of 
problem B at unit cost. 

� In other words, the algorithm for solving problem A may make whatever 
use it chooses of an imaginary algorithm that can solve problem B at unit 
cost. 

 
- Definition: Polynomial Turing Equivalence 

� A and B are polynomially Turing equivalent, denoted A �T
P B, if A �T

P B and 
B �T

P A. 
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� Example: Hamiltonian cycle problem (HAM) and the Hamiltonian cycle decision 
problem (HAMD). 
 
- It turns out that it is not significantly harder to find a Hamiltonian cycle 

than to decide if a graph is Hamiltonian. 
 
- Theorem: HAM �T

P HAMD 
� Proof: (must show two things: 1. HAMD �T

P HAM and 2. HAM �T
P HAMD) 

 
1. HAMD �T

P HAM 
 function HamD(G: graph) 
  � � Ham(G) 
  if � defines a Hamiltonian cycle in G then 

return true 
  else

return false 
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2. HAM �T

P HAMD  
function Ham(<N,A>: graph) 

  if HamD(<N,A>) = false then  
return “no solution” 

  for each e � A do 
   if HamD(<N,A - {e}>) then  

A � A - {e}  
� � sequence of nodes obtained by following the unique cycle remaining 
return � 

  
From 1 and 2, HAM �T

P HAMD. 
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� Theorem: Consider two problems A and B.  If A �T
P B and if B can be solved in 

polynomial time then A can also be solved in polynomial time. 
 
- It follows that a polynomial time algorithm exists to find a Hamiltonian 

cycle if and only if a polynomial time algorithm exists to decide if a graph is 
Hamiltonian. 

 
- This is typical of many interesting problems which are polynomially 

equivalent to a similar decision problem  
� Decision reducible: If a problem interests you is not a decision problem, 
you probably can find a similar decision problem that is polynomail 
equivanent. 
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� Polynomial Many-to-One Reductions 
- Definition: Polynomial many-to-one reduction 

� Let X and Y be two decision problems defined on sets of instances I and 
J, respectively.  Problem X is polynomially many-to-one reducible to 
problem Y, denoted X �m

P Y, if there exists a reduction function f: I � J 
computable in polynomial time such that x � X if and only if f(x) � Y for 
any instance x � I of problem X. 

- Definition: Polynomial many-to-one equivalence 
� When X �m

P Y and Y �m
P X, X and Y are polynomially many-one equivalent, 

denoted X �m
P Y 

- In other words, the reduction function maps all yes-instances of problem X 
onto yes-instances of problem Y and all no-instances of problem X onto no-
instances of problem Y. 

 
 
 
 
 
 

I
X

J
Y

f
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� Theorem: If X and Y are two decision problems such that X �m
P Y then X �T

P Y. 
- Proof:  Imagine solutions to Y can be obtained at unit cost by a call on 

DecideY and let f be the reduction function between X and Y computable in 
polynomial time.  Consider the following algorithm: 

 
 function DecideX(x) 
  y � f(x) 
  if DecideY(y) then  

return true 
  else

return false 
 
By definition of the reduction function, this algorithm solves problem X.  
Because the reduction function is computable in polynomial time, it solves 
problem X in polynomial time since calls to DecideY can be counted at unit 
cost. 
 

� Sometimes if we want to prove that X �T
P Y, proving X �m

P Y is sufficient. 
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� Theorem: HAMD �T
P TSPD (Traveling Salesperson Decision problem) 

- Proof:  
� Let G = <N, A> be a graph with n nodes.  We would like to decide if it is 

Hamiltonian.   
� Define f(G) as the instance of TSPD consisting of the complete graph H = 

<N,N×N>,  
� Define the cost function for an edge in H: c(u, v) = �1, if (u, v) � A 

          �2, otherwise 
      and the bound L = n.   

� Any Hamiltonian cycle in G translates into a tour in H that has cost 
exactly n.  On the other hand, if there is no Hamiltonian cycle in G, any 
tour in H must use at least one edge of cost 2, and thus be of total cost 
at least n+1.   

� Therefore, G is a yes-instance of HAMD if and only if f(G) = <H, c, L> is a 
yes-instance of TSPD.   

� This proves that HAMD �m
P TSPD � HAMD �T

P TSPD 
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� NP-Complete Problems 
- Definition: A decision problem X is NP-complete if: 

  X � NP; and 
  Y �T

P X for every problem Y � NP (i.e., X is NP-Hard) 
 
� Theorem: Let X be an NP-complete problem.  Consider a decision problem  

 Z � NP such that X �T
P Z.  Then Z is also NP-complete. 

 
- Proof: Z must meet the two conditions of the definition of NP-

completeness.   
� Z � NP.  It is in the statement of the theorem.    
� Z is NP-Hard (i.e., Y �T

P Z for every problem Y � NP) 
Consider an arbitrary Y � NP.  Since X is NP-complete and Y � NP, it 
follows that Y �T

P X.   
We know by the statement of the theorem that X �T

P Z. 
By transitivity of polynomial reductions it follows Y �T

P Z. 
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� To prove that Z is NP-complete, 
- We prove that Z � NP by verifying a given solution to Z in polynomial time if 

it is not in the statement of the theorem. 
- We choose an appropriate problem from the pool of several thousand 

problems already known to be NP-complete and show that it is polynomially 
reducible to Z. 

 
� The previous statement works nicely once the process is underway (i.e., once 

at least one NP-complete problem has been identified) 
- Q: How do we find the FIRST NP-complete problem?  (What is it?) 
- Good news: We don’t have to find it.  But we have to know what it is. 

 
� Satisfiability problem (SAT) 
- Definition: A Boolean formula is satisfiable if there exists at least one way 

of assigning values to its variables so as to make it true. 
- Example: (	(p 
 q)) 
 (p � q) YES  	p � (p 
 q) � 	q    NO 
- SAT � NP 
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� SAT-CNF 
- A literal is either a Boolean variable or its negation.   
- A clause is a literal or a disjunction of literals.   
- A Boolean formula is in conjunctive normal form (CNF) if it is a clause or a 

conjunction of clauses.   
- It is in k-CNF for some positive integer k if it is composed of clauses, each 

of which contains at most k literals. 
� Examples: 

(p 
 	q 
 r) � (	p 
 q 
 r) � q  � 	r  CNF? k = ? 
(p 
 q � r) � (	p 
 q � (q 
 r))   CNF?   k = ? 

- SAT-CNF is a restriction of SAT to Boolean formulas in CNF.   
- For any positive k, SAT-k-CNF is the restriction of SAT-CNF to Boolean 

formulas in k-CNF. 
 
� Theorem (due to Stephen Cook, 1971): 
- SAT-CNF is NP-complete. 
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� NP-Completeness Proofs 
 
- Theorem: SAT is NP-complete 

� Proof: 
1. SAT � NP.   

Given an assignment of variables, we can verify the Boolean formula is 
true or false in polynomial time. 

2. (must show SAT-CNF �T
P SAT)  

Boolean formulas in CNF are special cases of general Boolean formulas 
� SAT-CNF �T

P SAT 
 
- Theorem: SAT-3-CNF is NP-complete 

� Proof: 
1. SAT-3-CNF � NP.   

Given an assignment of variables, we can verify the Boolean formula is 
true or false in polynomial time. 

2. (must show SAT-CNF �T
P SAT-3-CNF) 

Proof will be given in the class if time allows. 
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� More basic known NP-complete problems for NP-completeness proofs 
 
- Basic known NP-complete problems that can be used to show some other 

problem is NP-complete 
    SAT-CNF  
 �    �:  �T

P 
   SAT-3-CNF 
   �   � 
3DM    VC 
  �     �  � 

PARTITION     HAM  CLIQUE 
 
- VC (Vertex Cover): Given a graph and an integer K, is there a set of less 

than K vertices that touches all the edges? 
Instance: A graph G = (V, E) and a positive integer K � |V| 
Question: Is there a vertex cover of size K or less for G? 

(i.e., Is there a subset V’ � V such that |V’| � K and, for every edge 
{u, v} � E, at least one of u and v belongs to V’?) 
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- CLIQUE 
Instance: A graph G = (V, E) and a positive integer J � |V| 
Question: Does G contain a clique of size of J or more?  

(i.e., Is there a complete subgraph of G that has at least J 
vertices?) 

 
- 3DM: 3-Dimensional Matching 

Instance: A set M � W  X  Y, where W, X, and Y are disjoint sets  
  and |W| = |X| = |Y| = q 

Question: Does M contain a matching?  
(i.e., Is there a subset M’ � M such that |M’| = q and no two 
elements of M’ agree in any coordinate.) 

Note that 2DM is not NP-complete. 
 
- PARTITION: Given a set of integers, can they be divided into two sets 

whose sum is equal? 
Instance: A finite set A and a size s(a) � Z+, for all a � A  
Question: Is there a subset A’ � A such that �a�A’ s(a) = �a�A-A’ s(a)? 
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� Example 
 
- Knapsack problem 

Instance: A finite set U,  
   a weight w(u) � Z+ and a value v(u) � Z+, for all u � U,  
   a capacity W � Z+, and a value goal K � Z+. 

Question: Is there a subset U’ � U such that  
�u�U’ w(v) � W and �u�U’ v(u) � K? 

 
- Theorem: Knapsack problem is NP-complete 

� Proof: 
1. Show Knapsack problem � NP. 
2.Reduce a well-known NP-complete problem to Knapsack problem.  (But, 

which one?)  
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� NP-Hard Problems 
- A problem X is NP-hard if there is an NP-complete problem Y that can be 

polynomially Turing reduced to it (i.e., Y �T
P X) 

- Note that any polynomial-time algorithm for X would translate into one for 
Y.  Since Y is NP-complete, this would imply that P = NP. 
� Under the assumption of P � NP, no NP-hard problem can be solved in 

polynomial time.  
- Note that NP-hard contains non-decision problems. 

� Example:  
o TSP 
o 0-1 knapsack problem, time � �(nW), is it polynomial?  What if W � 
�(2n)? 

- Further note that there are decision problems that are NP-hard but are 
believed to not be in NP and thus not in NP-complete. 
� Example:  
o COLE: exact coloring, given a graph G and an integer k, can G be painted 

with k colors but no less? 
 
 


