
1

CS 440 More on Reduction, NP and NP-Complete

� Polynomial Reductions

- Definition: Polynomial Turing Reduction

� Let A and B be two problems. We say that A is polynomially Turing
reducible to B, denoted A �T

P B, if there exists an algorithm for solving A
in a time that would be polynomial if we could solve arbitrary instances of
problem B at unit cost.

� In other words, the algorithm for solving problem A may make whatever
use it chooses of an imaginary algorithm that can solve problem B at unit
cost.

- Definition: Polynomial Turing Equivalence

� A and B are polynomially Turing equivalent, denoted A �T
P B, if A �T

P B and
B �T

P A.

2

� Example: Hamiltonian cycle problem (HAM) and the Hamiltonian cycle decision
problem (HAMD).

- It turns out that it is not significantly harder to find a Hamiltonian cycle

than to decide if a graph is Hamiltonian.

- Theorem: HAM �T

P HAMD
� Proof: (must show two things: 1. HAMD �T

P HAM and 2. HAM �T
P HAMD)

1. HAMD �T

P HAM
 function HamD(G: graph)
 � � Ham(G)
 if � defines a Hamiltonian cycle in G then

return true
 else

return false

3

2. HAM �T

P HAMD
function Ham(<N,A>: graph)

 if HamD(<N,A>) = false then
return “no solution”

 for each e � A do
 if HamD(<N,A - {e}>) then

A � A - {e}
� � sequence of nodes obtained by following the unique cycle remaining
return �

From 1 and 2, HAM �T

P HAMD.

4

� Theorem: Consider two problems A and B. If A �T
P B and if B can be solved in

polynomial time then A can also be solved in polynomial time.

- It follows that a polynomial time algorithm exists to find a Hamiltonian

cycle if and only if a polynomial time algorithm exists to decide if a graph is
Hamiltonian.

- This is typical of many interesting problems which are polynomially

equivalent to a similar decision problem
� Decision reducible: If a problem interests you is not a decision problem,
you probably can find a similar decision problem that is polynomail
equivanent.

5

� Polynomial Many-to-One Reductions
- Definition: Polynomial many-to-one reduction

� Let X and Y be two decision problems defined on sets of instances I and
J, respectively. Problem X is polynomially many-to-one reducible to
problem Y, denoted X �m

P Y, if there exists a reduction function f: I � J
computable in polynomial time such that x � X if and only if f(x) � Y for
any instance x � I of problem X.

- Definition: Polynomial many-to-one equivalence
� When X �m

P Y and Y �m
P X, X and Y are polynomially many-one equivalent,

denoted X �m
P Y

- In other words, the reduction function maps all yes-instances of problem X
onto yes-instances of problem Y and all no-instances of problem X onto no-
instances of problem Y.

I
X

J
Y

f

6

� Theorem: If X and Y are two decision problems such that X �m
P Y then X �T

P Y.
- Proof: Imagine solutions to Y can be obtained at unit cost by a call on

DecideY and let f be the reduction function between X and Y computable in
polynomial time. Consider the following algorithm:

 function DecideX(x)
 y � f(x)
 if DecideY(y) then

return true
 else

return false

By definition of the reduction function, this algorithm solves problem X.
Because the reduction function is computable in polynomial time, it solves
problem X in polynomial time since calls to DecideY can be counted at unit
cost.

� Sometimes if we want to prove that X �T
P Y, proving X �m

P Y is sufficient.

7

� Theorem: HAMD �T
P TSPD (Traveling Salesperson Decision problem)

- Proof:
� Let G = <N, A> be a graph with n nodes. We would like to decide if it is

Hamiltonian.
� Define f(G) as the instance of TSPD consisting of the complete graph H =

<N,N×N>,
� Define the cost function for an edge in H: c(u, v) = �1, if (u, v) � A

 �2, otherwise
 and the bound L = n.

� Any Hamiltonian cycle in G translates into a tour in H that has cost
exactly n. On the other hand, if there is no Hamiltonian cycle in G, any
tour in H must use at least one edge of cost 2, and thus be of total cost
at least n+1.

� Therefore, G is a yes-instance of HAMD if and only if f(G) = <H, c, L> is a
yes-instance of TSPD.

� This proves that HAMD �m
P TSPD � HAMD �T

P TSPD

8

� NP-Complete Problems
- Definition: A decision problem X is NP-complete if:

 X � NP; and
 Y �T

P X for every problem Y � NP (i.e., X is NP-Hard)

� Theorem: Let X be an NP-complete problem. Consider a decision problem

 Z � NP such that X �T
P Z. Then Z is also NP-complete.

- Proof: Z must meet the two conditions of the definition of NP-

completeness.
� Z � NP. It is in the statement of the theorem.
� Z is NP-Hard (i.e., Y �T

P Z for every problem Y � NP)
Consider an arbitrary Y � NP. Since X is NP-complete and Y � NP, it
follows that Y �T

P X.
We know by the statement of the theorem that X �T

P Z.
By transitivity of polynomial reductions it follows Y �T

P Z.

9

� To prove that Z is NP-complete,
- We prove that Z � NP by verifying a given solution to Z in polynomial time if

it is not in the statement of the theorem.
- We choose an appropriate problem from the pool of several thousand

problems already known to be NP-complete and show that it is polynomially
reducible to Z.

� The previous statement works nicely once the process is underway (i.e., once

at least one NP-complete problem has been identified)
- Q: How do we find the FIRST NP-complete problem? (What is it?)
- Good news: We don’t have to find it. But we have to know what it is.

� Satisfiability problem (SAT)
- Definition: A Boolean formula is satisfiable if there exists at least one way

of assigning values to its variables so as to make it true.
- Example: ((p
 q))
 (p � q) YES 	p � (p
 q) � 	q NO
- SAT � NP

10

� SAT-CNF
- A literal is either a Boolean variable or its negation.
- A clause is a literal or a disjunction of literals.
- A Boolean formula is in conjunctive normal form (CNF) if it is a clause or a

conjunction of clauses.
- It is in k-CNF for some positive integer k if it is composed of clauses, each

of which contains at most k literals.
� Examples:

(p
 	q
 r) � (p
 q
 r) � q � 	r CNF? k = ?
(p
 q � r) � (p
 q � (q
 r)) CNF? k = ?

- SAT-CNF is a restriction of SAT to Boolean formulas in CNF.
- For any positive k, SAT-k-CNF is the restriction of SAT-CNF to Boolean

formulas in k-CNF.

� Theorem (due to Stephen Cook, 1971):
- SAT-CNF is NP-complete.

11

� NP-Completeness Proofs

- Theorem: SAT is NP-complete

� Proof:
1. SAT � NP.

Given an assignment of variables, we can verify the Boolean formula is
true or false in polynomial time.

2. (must show SAT-CNF �T
P SAT)

Boolean formulas in CNF are special cases of general Boolean formulas
� SAT-CNF �T

P SAT

- Theorem: SAT-3-CNF is NP-complete

� Proof:
1. SAT-3-CNF � NP.

Given an assignment of variables, we can verify the Boolean formula is
true or false in polynomial time.

2. (must show SAT-CNF �T
P SAT-3-CNF)

Proof will be given in the class if time allows.

12

� More basic known NP-complete problems for NP-completeness proofs

- Basic known NP-complete problems that can be used to show some other

problem is NP-complete
 SAT-CNF
 � �: �T

P
 SAT-3-CNF
 � �
3DM VC
 � � �

PARTITION HAM CLIQUE

- VC (Vertex Cover): Given a graph and an integer K, is there a set of less

than K vertices that touches all the edges?
Instance: A graph G = (V, E) and a positive integer K � |V|
Question: Is there a vertex cover of size K or less for G?

(i.e., Is there a subset V’ � V such that |V’| � K and, for every edge
{u, v} � E, at least one of u and v belongs to V’?)

13

- CLIQUE
Instance: A graph G = (V, E) and a positive integer J � |V|
Question: Does G contain a clique of size of J or more?

(i.e., Is there a complete subgraph of G that has at least J
vertices?)

- 3DM: 3-Dimensional Matching

Instance: A set M � W X Y, where W, X, and Y are disjoint sets
 and |W| = |X| = |Y| = q

Question: Does M contain a matching?
(i.e., Is there a subset M’ � M such that |M’| = q and no two
elements of M’ agree in any coordinate.)

Note that 2DM is not NP-complete.

- PARTITION: Given a set of integers, can they be divided into two sets

whose sum is equal?
Instance: A finite set A and a size s(a) � Z+, for all a � A
Question: Is there a subset A’ � A such that �a�A’ s(a) = �a�A-A’ s(a)?

14

� Example

- Knapsack problem

Instance: A finite set U,
 a weight w(u) � Z+ and a value v(u) � Z+, for all u � U,
 a capacity W � Z+, and a value goal K � Z+.

Question: Is there a subset U’ � U such that
�u�U’ w(v) � W and �u�U’ v(u) � K?

- Theorem: Knapsack problem is NP-complete

� Proof:
1. Show Knapsack problem � NP.
2.Reduce a well-known NP-complete problem to Knapsack problem. (But,

which one?)

15

� NP-Hard Problems
- A problem X is NP-hard if there is an NP-complete problem Y that can be

polynomially Turing reduced to it (i.e., Y �T
P X)

- Note that any polynomial-time algorithm for X would translate into one for
Y. Since Y is NP-complete, this would imply that P = NP.
� Under the assumption of P � NP, no NP-hard problem can be solved in

polynomial time.
- Note that NP-hard contains non-decision problems.

� Example:
o TSP
o 0-1 knapsack problem, time � �(nW), is it polynomial? What if W �
�(2n)?

- Further note that there are decision problems that are NP-hard but are
believed to not be in NP and thus not in NP-complete.
� Example:
o COLE: exact coloring, given a graph G and an integer k, can G be painted

with k colors but no less?

