CS 440 More on Reduction, NP and NP-Complete

- Polynomial Reductions
 - Definition: Polynomial Turing Reduction
 - Let A and B be two problems. We say that A is *polynomially Turing reducible* to B, denoted $A \leq_T^P B$, if there exists an algorithm for solving A in a time that would be polynomial if we could solve arbitrary instances of problem B at unit cost.
 - In other words, the algorithm for solving problem A may make whatever use it chooses of an imaginary algorithm that can solve problem B at unit cost.
 - Definition: Polynomial Turing Equivalence
 - A and B are *polynomially Turing equivalent*, denoted $A \equiv_T^P B$, if $A \leq_T^P B$ and $B \leq_T^P A$.

• Example: Hamiltonian cycle problem (HAM) and the Hamiltonian cycle decision problem (HAMD).

1

- It turns out that it is not significantly harder to find a Hamiltonian cycle than to decide if a graph is Hamiltonian.

- Theorem: HAM \equiv_T^P HAMD

• Proof: (must show two things: 1. HAMD \leq_T^P HAM and 2. HAM \leq_T^P HAMD)

```
2. HAM ≤<sub>T</sub><sup>P</sup> HAMD
function Ham(<N,A>: graph)
if HamD(<N,A>) = false then
return "no solution"
for each e ∈ A do
    if HamD(<N,A - {e}>) then
        A ← A - {e}
        σ ← sequence of nodes obtained by following the unique cycle remaining
return σ
```

From 1 and 2, HAM \equiv_T^P HAMD.

• Theorem: Consider two problems A and B. If $A \leq_T^P B$ and if B can be solved in polynomial time then A can also be solved in polynomial time.

- It follows that a polynomial time algorithm exists to find a Hamiltonian cycle if and only if a polynomial time algorithm exists to decide if a graph is Hamiltonian.
- This is typical of many interesting problems which are polynomially equivalent to a similar decision problem
 Decision reducible: If a problem interests you is not a decision problem, you probably can find a similar decision problem that is polynomail equivanent.

- Polynomial Many-to-One Reductions
 - Definition: Polynomial many-to-one reduction
 - Let X and Y be two decision problems defined on sets of instances I and J, respectively. Problem X is *polynomially many-to-one reducible* to problem Y, denoted $X \leq_m^P Y$, if there exists a reduction function $f: I \rightarrow J$ computable in polynomial time such that $x \in X$ if and only if $f(x) \in Y$ for any instance $x \in I$ of problem X.
 - Definition: Polynomial many-to-one equivalence
 - When $X \leq_m^P Y$ and $Y \leq_m^P X$, X and Y are *polynomially many-one equivalent*, denoted $X \equiv_m^P Y$
 - In other words, the reduction function maps all yes-instances of problem X onto yes-instances of problem Y and all no-instances of problem X onto no-instances of problem Y.

• Theorem: If X and Y are two decision problems such that $X \leq_m^p Y$ then $X \leq_T^p Y$.

5

 Proof: Imagine solutions to Y can be obtained at unit cost by a call on DecideY and let f be the reduction function between X and Y computable in polynomial time. Consider the following algorithm:

```
function DecideX(x)
y ← f(x)
if DecideY(y) then
return true
else
return false
```

By definition of the reduction function, this algorithm solves problem X. Because the reduction function is computable in polynomial time, it solves problem X in polynomial time since calls to DecideY can be counted at unit cost.

• Sometimes if we want to prove that $X \leq_T^P Y$, proving $X \leq_m^P Y$ is sufficient.

- Theorem: HAMD \leq_{T}^{P} TSPD (Traveling Salesperson Decision problem)
 - Proof:
 - Let $G = \langle N, A \rangle$ be a graph with n nodes. We would like to decide if it is Hamiltonian.
 - Define f(G) as the instance of TSPD consisting of the complete graph H = <N,N×N>,
 - Define the cost function for an edge in H: $c(u, v) = \begin{cases} 1, & \text{if } (u, v) \in A \\ 1, & \text{otherwise} \end{cases}$

and the bound L = n.

- Any Hamiltonian cycle in G translates into a tour in H that has cost exactly n. On the other hand, if there is no Hamiltonian cycle in G, any tour in H must use at least one edge of cost 2, and thus be of total cost at least n+1.
- Therefore, G is a yes-instance of HAMD if and only if f(G) = <H, c, L> is a yes-instance of TSPD.
- This proves that HAMD \leq_m^P TSPD \rightarrow HAMD \leq_T^P TSPD

- NP-Complete Problems
 - Definition: A decision problem X is NP-complete if:

 $X \in NP$; and

 $Y \leq_T^P X$ for every problem $Y \in NP$ (i.e., X is NP-Hard)

• Theorem: Let X be an NP-complete problem. Consider a decision problem $Z \in NP$ such that $X \leq_T^P Z$. Then Z is also NP-complete.

7

- Proof: Z must meet the two conditions of the definition of NPcompleteness.
 - $Z \in NP$. It is in the statement of the theorem.
 - Z is NP-Hard (i.e., $Y \leq_T^P Z$ for every problem $Y \in NP$) Consider an arbitrary $Y \in NP$. Since X is NP-complete and $Y \in NP$, it follows that $Y \leq_T^P X$.

We know by the statement of the theorem that $X \leq_T^{P} Z$.

By *transitivity* of polynomial reductions it follows $Y \leq_T^P Z$.

- To prove that Z is NP-complete,
 - We prove that $Z \in NP$ by verifying a given solution to Z in polynomial time if it is not in the statement of the theorem.
 - We choose an *appropriate* problem from the pool of several thousand problems already known to be NP-complete and show that it is polynomially reducible to Z.
- The previous statement works nicely once the process is underway (i.e., once at least one NP-complete problem has been identified)
 - Q: How do we find the FIRSTNP-complete problem? (What is it?)
 - Good news: We don't have to find it. But we have to know what it is.
- Satisfiability problem (SAT)
 - Definition: A Boolean formula is *satisfiable* if there exists at least one way of assigning values to its variables so as to make it true.

- Example: $(\neg(p \lor q)) \lor (p \land q)$ YES $\neg p \land (p \lor q) \land \neg q$ NO
- SAT $\in NP$

- SAT-CNF
 - A literal is either a Boolean variable or its negation.
 - A clause is a literal or a disjunction of literals.
 - A Boolean formula is in *conjunctive normal form* (CNF) if it is a clause or a conjunction of clauses.
 - It is in k-CNF for some positive integer k if it is composed of clauses, each of which contains at most k literals.
 - Examples:
 - $(p \lor \neg q \lor r) \land (\neg p \lor q \lor r) \land q \land \neg r$ CNF? k = ?
 - $(p \lor q \land r) \land (\neg p \lor q \land (q \lor r)) \qquad CNF? \quad k = ?$
 - SAT-CNF is a restriction of SAT to Boolean formulas in CNF.
 - For any positive k, SAT-k-CNF is the restriction of SAT-CNF to Boolean formulas in k-CNF.
- Theorem (due to Stephen Cook, 1971):
 - SAT-CNF is NP-complete.

- NP-Completeness Proofs
 - Theorem: SAT is NP-complete
 - Proof:
 - $1. \text{ SAT} \in \text{NP}.$

Given an assignment of variables, we can verify the Boolean formula is true or false in polynomial time.

- 2. (must show SAT-CNF ≤_T^P SAT)
 Boolean formulas in CNF are special cases of general Boolean formulas
 → SAT-CNF ≤_T^P SAT
- Theorem: SAT-3-CNF is NP-complete
 - Proof:
 - 1. SAT-3-CNF \in NP.

Given an assignment of variables, we can verify the Boolean formula is true or false in polynomial time.

2. (must show SAT-CNF \leq_T^P SAT-3-CNF) Proof will be given in the class if time allows.

• More basic known NP-complete problems for NP-completeness proofs

11

- Basic known NP-complete problems that can be used to show some other problem is NP-complete

SAT-CNF ↓ ↓: ≤_T^P SAT-3-CNF ∠ 」 3DM VC ↓ ∠ 」 PARTITION HAM CLIQUE

- VC (Vertex Cover): Given a graph and an integer K, is there a set of less than K vertices that touches all the edges? Instance: A graph G = (V, E) and a positive integer $K \le |V|$

Question: Is there a vertex cover of size K or less for G?

(i.e., Is there a subset $V' \subseteq V$ such that $|V'| \le K$ and, for every edge $\{u, v\} \in E$, at least one of u and v belongs to V'?)

- CLIQUE Instance: A graph G = (V, E) and a positive integer $J \leq |V|$ Question: Does G contain a clique of size of J or more? (i.e., Is there a complete subgraph of G that has at least J vertices?) - 3DM: 3-Dimensional Matching Instance: A set $M \subseteq W \times X \times Y$, where W, X, and Y are disjoint sets and |W| = |X| = |Y| = qQuestion: Does M contain a matching? (i.e., Is there a subset $M' \subseteq M$ such that |M'| = q and no two elements of M' agree in any coordinate.) Note that 2DM is not NP-complete. - PARTITION: Given a set of integers, can they be divided into two sets whose sum is equal? Instance: A finite set A and a size $s(a) \in Z^+$, for all $a \in A$ Question: Is there a subset $A' \subseteq A$ such that $\sum_{a \in A'} s(a) = \sum_{a \in A-A'} s(a)$? 13

• Example

Knapsack problem
Instance: A finite set U,

a weight w(u) ∈ Z⁺ and a value v(u) ∈ Z⁺, for all u ∈ U,

a capacity W ∈ Z⁺, and a value goal K ∈ Z⁺.

Question: Is there a subset U' ⊆ U such that

Σ_{u∈U'} w(v) ≤ W and Σ_{u∈U'} v(u) ≥ K?

- Theorem: Knapsack problem is NP-complete
 - Proof:
 - 1. Show Knapsack problem \in NP.
 - 2. Reduce a well-known NP-complete problem to Knapsack problem. (But, which one?)

- NP-Hard Problems
 - A problem X is *NP-hard* if there is an NP-complete problem Y that can be polynomially Turing reduced to it (i.e., $Y \leq_T^P X$)
 - Note that any polynomial-time algorithm for X would translate into one for
 Y. Since Y is NP-complete, this would imply that P = NP.
 - Under the assumption of P ≠ NP, no NP-hard problem can be solved in polynomial time.
 - Note that NP-hard contains non-decision problems.
 - Example:
 - \circ TSP
 - \circ 0-1 knapsack problem, time \in $\Theta(nW),$ is it polynomial? What if $W\in$ $\Theta(2^n)?$
 - Further note that there are decision problems that are NP-hard but are believed to not be in NP and thus not in NP-complete.

- Example:
 - \circ COLE: exact coloring, given a graph G and an integer k, can G be painted with k colors but no less?