CS 440 More on Reduction, NP and NP-Complete

- Polynomial Reductions
- Definition: Polynomial Turing Reduction
- Let A and B be two problems. We say that A is polynomially Turing reducible to B, denoted $A \leq{ }_{T}{ }^{P} B$, if there exists an algorithm for solving A in a time that would be polynomial if we could solve arbitrary instances of problem B at unit cost.
- In other words, the algorithm for solving problem A may make whatever use it chooses of an imaginary algorithm that can solve problem B at unit cost.
- Definition: Polynomial Turing Equivalence
- A and B are polynomially Turing equivalent, denoted $A \equiv{ }_{T}^{p} B$, if $A \leq T_{T}^{p} B$ and $B \leq{ }_{T}{ }^{p} A$.
- Example: Hamiltonian cycle problem (HAM) and the Hamiltonian cycle decision problem (HAMD).
- It turns out that it is not significantly harder to find a Hamiltonian cycle than to decide if a graph is Hamiltonian.
- Theorem: HAM \equiv_{T}^{p} HAMD
- Proof: (must show two things: 1. HAMD $\leq_{T}^{p} H A M$ and 2. HAM $\left.\leq_{T}^{p} H A M D\right)$

1. HAMD $\leq_{T}^{p} H A M$
function $\operatorname{HamD}(G$: graph)
$\sigma \leftarrow \operatorname{Ham}(G)$
if σ defines a Hamiltonian cycle in G then
return true else return false
2. $H A M \leq_{T}^{p}$ HAMD
function $\operatorname{Ham}(\langle N, A\rangle$: graph)
if $\operatorname{HamD}(\langle N, A\rangle)=$ false then
return "no solution"
for each $\boldsymbol{e} \in \boldsymbol{A}$ do
if $\operatorname{HamD}(\langle N, A-\{e\}\rangle)$ then
$A \leftarrow A-\{e\}$
$\sigma \leftarrow$ sequence of nodes obtained by following the unique cycle remaining return σ

From 1 and 2, HAM $\equiv_{T}{ }^{p}$ HAMD.

- Theorem: Consider two problems A and B. If $A \leq_{T}{ }^{p} B$ and if B can be solved in polynomial time then A can also be solved in polynomial time.
- It follows that a polynomial time algorithm exists to find a Hamiltonian cycle if and only if a polynomial time algorithm exists to decide if a graph is Hamiltonian.
- This is typical of many interesting problems which are polynomially equivalent to a similar decision problem
\rightarrow Decision reducible: If a problem interests you is not a decision problem, you probably can find a similar decision problem that is polynomail equivanent.
- Polynomial Many-to-One Reductions
- Definition: Polynomial many-to-one reduction
- Let X and Y be two decision problems defined on sets of instances I and J, respectively. Problem X is polynomially many-to-one reducible to problem Y, denoted $X \leq_{m}{ }^{p} Y$, if there exists a reduction function $f: I \rightarrow J$ computable in polynomial time such that $x \in X$ if and only if $f(x) \in Y$ for any instance $x \in I$ of problem X.
- Definition: Polynomial many-to-one equivalence
- When $\mathrm{X} \leq_{m}{ }^{p} \mathrm{Y}$ and $\mathrm{Y} \leq_{m}{ }^{p} \mathrm{X}, \mathrm{X}$ and Y are polynomially many-one equivalent, denoted $X \equiv_{m}{ }^{p} Y$
- In other words, the reduction function maps all yes-instances of problem X onto yes-instances of problem Y and all no-instances of problem X onto noinstances of problem Y.
f

- Theorem: If X and Y are two decision problems such that $X \leq_{m}{ }^{p} Y$ then $X \leq{ }_{T}^{p} Y$.
- Proof: Imagine solutions to Y can be obtained at unit cost by a call on Decide Y and let f be the reduction function between X and Y computable in polynomial time. Consider the following algorithm:

```
function DecideX(x)
    y<f(x)
    if DecideY(y) then
        return true
    else
        return false
```

By definition of the reduction function, this algorithm solves problem X. Because the reduction function is computable in polynomial time, it solves problem X in polynomial time since calls to DecideY can be counted at unit cost.

- Sometimes if we want to prove that $X \leq_{T}{ }^{p} Y$, proving $X \leq_{m}^{p} Y$ is sufficient.
- Theorem: HAMD \leq_{T}^{p} TSPD (Traveling Salesperson Decision problem)
- Proof:
- Let $G=\langle N, A\rangle$ be a graph with n nodes. We would like to decide if it is Hamiltonian.
- Define $f(G)$ as the instance of TSPD consisting of the complete graph $H=$ $\langle N, N \times N\rangle$,
- Define the cost function for an edge in $H: c(u, v)=\int 1$, if $(u, v) \in A$
(2, otherwise and the bound $L=n$.
- Any Hamiltonian cycle in G translates into a tour in H that has cost exactly n. On the other hand, if there is no Hamiltonian cycle in G, any tour in H must use at least one edge of cost 2 , and thus be of total cost \dagger at least $n+1$.
- Therefore, G is a yes-instance of HAMD if and only if $f(G)=\langle H, c, L\rangle$ is a yes-instance of TSPD.
- This proves that HAMD $\leq_{m}{ }^{p}$ TSPD \rightarrow HAMD $\leq_{T}{ }^{p}$ TSPD
- NP-Complete Problems
- Definition: A decision problem X is NP-complete if:
$X \in N P$; and
$Y \leq{ }_{T}^{p} X$ for every problem $Y \in N P$ (i.e., X is NP-Hard)
- Theorem: Let X be an NP-complete problem. Consider a decision problem $Z \in N P$ such that $X \leq_{T}^{P} Z$. Then Z is also NP-complete.
- Proof: Z must meet the two conditions of the definition of NPcompleteness.
- $Z \in N P$. It is in the statement of the theorem.
- Z is NP-Hard (i.e., $Y \leq_{T}^{p} Z$ for every problem $V \in N P$) Consider an arbitrary $Y \in N P$. Since X is $N P$-complete and $Y \in N P$, it follows that $Y \leq_{T}^{p} X$.
We know by the statement of the theorem that $X \leq_{T}^{p} Z$.
By transitivity of polynomial reductions it follows $Y \leq_{T}^{p} Z$.
- To prove that Z is NP-complete,
- We prove that $Z \in N P$ by verifying a given solution to Z in polynomial time if it is not in the statement of the theorem.
- We choose an appropriate problem from the pool of several thousand problems already known to be NP-complete and show that it is polynomially reducible to Z.
- The previous statement works nicely once the process is underway (i.e., once at least one NP-complete problem has been identified)
- Q: How do we find the FIRSTNP-complete problem? (What is it?)
- Good news: We don't have to find it. But we have to know what it is.
- Satisfiability problem (SAT)
- Definition: A Boolean formula is satisfiable if there exists at least one way of assigning values to its variables so as to make it true.
- Example: $(\neg(p \vee q)) \vee(p \wedge q)$ YES $\neg p \wedge(p \vee q) \wedge \neg q$ NO
- SAT \in NP
- SAT-CNF
- A literal is either a Boolean variable or its negation.
- A clause is a literal or a disjunction of literals.
- A Boolean formula is in conjunctive normal form (CNF) if it is a clause or a conjunction of clauses.
- It is in $k-C N F$ for some positive integer k if it is composed of clauses, each of which contains at most k literals.
- Examples:

$$
\begin{array}{lll}
(p \vee \neg q \vee r) \wedge(\neg p \vee q \vee r) \wedge q \wedge \neg r & C N F ? & k=? \\
(p \vee q \wedge r) \wedge(\neg p \vee q \wedge(q \vee r)) & C N F ? & k=?
\end{array}
$$

- SAT-CNF is a restriction of SAT to Boolean formulas in CNF.
- For any positive k, SAT-k-CNF is the restriction of SAT-CNF to Boolean formulas in k-CNF.
- Theorem (due to Stephen Cook, 1971):
- SAT-CNF is NP-complete.
- NP-Completeness Proofs
- Theorem: SAT is NP-complete
- Proof:

1. $S A T \in N P$.

Given an assignment of variables, we can verify the Boolean formula is true or false in polynomial time.
2. (must show SAT-CNF $\leq_{T}{ }^{p} S A T$)

Boolean formulas in CNF are special cases of general Boolean formulas
\rightarrow SAT-CNF $\leq_{T}{ }^{P}$ SAT

- Theorem: SAT-3-CNF is NP-complete
- Proof:

1. SAT-3-CNF $\in N P$.

Given an assignment of variables, we can verify the Boolean formula is true or false in polynomial time.
2. (must show SAT-CNF \leq_{T}^{P} SAT-3-CNF)

Proof will be given in the class if time allows.

- More basic known NP-complete problems for NP-completeness proofs
- Basic known NP-complete problems that can be used to show some other problem is NP-complete

SAT-CNF		
\downarrow	$\downarrow: \leq_{T}^{p}$	
SAT-3-CNF		
k	\searrow	
3DM	$V C$	
\downarrow	k	
PARTITION	HAM	
CLIQUE		

- VC (Vertex Cover): Given a graph and an integer K, is there a set of less than K vertices that touches all the edges?
Instance: A graph $G=(V, E)$ and a positive integer $K \leq|V|$
Question: Is there a vertex cover of size K or less for G ?
(i.e., Is there a subset $\mathrm{V}^{\prime} \subseteq \mathrm{V}$ such that $\left|\mathrm{V}^{\prime}\right| \leq \mathrm{K}$ and, for every edge $\{u, v\} \in E$, at least one of u and v belongs to V^{\prime} ?)
- CLIQUE

Instance: A graph $G=(V, E)$ and a positive integer $J \leq|V|$
Question: Does G contain a clique of size of J or more?
(i.e., Is there a complete subgraph of G that has at least J vertices?)

- 3DM: 3-Dimensional Matching

Instance: A set $M \subseteq W \times X \times Y$, where W, X, and Y are disjoint sets and $|W|=|X|=|Y|=q$
Question: Does M contain a matching?
(i.e., Is there a subset $M^{\prime} \subseteq M$ such that $\left|M^{\prime}\right|=q$ and no two elements of M^{\prime} agree in any coordinate.)
Note that 2DM is not NP-complete.

- PARTITION: Given a set of integers, can they be divided into two sets whose sum is equal?
Instance: A finite set A and a size $s(a) \in Z^{+}$, for all $a \in A$
Question: Is there a subset $A^{\prime} \subseteq A$ such that $\Sigma_{a \in A^{\prime}} s(a)=\Sigma_{a \in A-A^{\prime}} s(a)$?
- Example
- Knapsack problem

Instance: A finite set U, a weight $w(u) \in Z^{+}$and a value $v(u) \in Z^{+}$, for all $u \in U$, a capacity $W \in Z^{+}$, and a value goal $K \in Z^{+}$.
Question: Is there a subset $U^{\prime} \subseteq U$ such that

$$
\Sigma_{u \in U^{\prime}} w(v) \leq W \text { and } \Sigma_{u \in U^{\prime}} v(u) \geq K ?
$$

- Theorem: Knapsack problem is NP-complete
- Proof:

1. Show Knapsack problem \in NP.
2. Reduce a well-known NP-complete problem to Knapsack problem. (But, which one?)

- NP-Hard Problems
- A problem X is $N P$-hard if there is an NP-complete problem Y that can be polynomially Turing reduced to it (i.e., $\mathrm{V} \leq_{T}^{p} \mathrm{X}$)
- Note that any polynomial-time algorithm for X would translate into one for Y. Since Y is NP-complete, this would imply that $P=N P$.
- Under the assumption of $P \neq N P$, no NP-hard problem can be solved in polynomial time.
- Note that NP-hard contains non-decision problems.
- Example:
- TSP
- 0-1 knapsack problem, time $\in \Theta(n W)$, is it polynomial? What if $W \in$ $\Theta\left(2^{n}\right)$?
- Further note that there are decision problems that are NP-hard but are believed to not be in NP and thus not in NP-complete.
- Example:
- COLE: exact coloring, given a graph G and an integer k, can G be painted with k colors but no less?

