Warshall’s Algorithm: Transitive Closure

• Computes the transitive closure of a relation
• (Alternatively: all paths in a directed graph)
• Example of transitive closure:
Warshall’s Algorithm

- Main idea: a path exists between two vertices i, j, iff
 - there is an edge from i to j; or
 - there is a path from i to j going through vertex 1; or
 - there is a path from i to j going through vertex 1 and/or 2; or
 - there is a path from i to j going through vertex 1, 2, and/or 3; or
 ...
 - there is a path from i to j going through any of the other vertices

Warshall’s Algorithm

- On the k^{th} iteration, the algorithm determine if a path exists between two vertices i, j using just vertices among 1,...,k allowed as intermediate

\[
R^{(k)}[i,j] = \begin{cases}
R^{(k-1)}[i,j] & \text{(path using just 1 ,...,k-1)} \\
\text{or} & \\
(R^{(k-1)}[i,k] \text{ and } R^{(k-1)}[k,j]) & \text{(path from i to k and from k to i using just 1 ,...,k-1)}
\end{cases}
\]

k^{th} iteration
Warshall’s Algorithm: Transitive Closure

Warshall’s Algorithm (matrix generation)

Recurrence relating elements $R^{(k)}$ to elements of $R^{(k-1)}$ is:

$$R^{(k)}[i,j] = R^{(k-1)}[i,j] \text{ or } (R^{(k-1)}[i,k] \text{ and } R^{(k-1)}[k,j])$$

It implies the following rules for generating $R^{(k)}$ from $R^{(k-1)}$:

Rule 1 If an element in row i and column j is 1 in $R^{(k-1)}$, it remains 1 in $R^{(k)}$.

Rule 2 If an element in row i and column j is 0 in $R^{(k-1)}$, it has to be changed to 1 in $R^{(k)}$ if and only if the element in its row i and column k and the element in its column j and row k are both 1’s in $R^{(k-1)}$.

FIGURE 8.2 (a) Digraph. (b) Its adjacency matrix. (c) Its transitive closure.
Warshall’s Algorithm: Transitive Closure

\[
R^{(k-1)} = \begin{bmatrix}
& j & k \\
i & 1 & 0 \\
& & 1
\end{bmatrix} \quad \rightarrow \quad R^{(k)} = \begin{bmatrix}
& j & k \\
i & 1 & 1 \\
& & 1
\end{bmatrix}
\]

FIGURE 8.3 Rule for changing zeros in Warshall’s algorithm

\[
\begin{align*}
R^{(0)} &= \begin{bmatrix}
a & b & c & d \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0
\end{bmatrix} \\
R^{(1)} &= \begin{bmatrix}
a & b & c & d \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0
\end{bmatrix} \\
R^{(2)} &= \begin{bmatrix}
a & b & c & d \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1
\end{bmatrix} \\
R^{(3)} &= \begin{bmatrix}
a & b & c & d \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1
\end{bmatrix} \\
R^{(4)} &= \begin{bmatrix}
a & b & c & d \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1
\end{bmatrix}
\]

Ones reflect the existence of paths with no intermediate vertices \((R^{(0)}\) is just the adjacency matrix); boxed row and column are used for getting \(R^{(1)}\).

Ones reflect the existence of paths with intermediate vertices numbered not higher than 1, i.e., just vertex \(a\) (note a new path from \(d\) to \(b\)); boxed row and column are used for getting \(R^{(2)}\).

Ones reflect the existence of paths with intermediate vertices numbered not higher than 2, i.e., \(a\) and \(b\) (note two new paths); boxed row and column are used for getting \(R^{(3)}\).

Ones reflect the existence of paths with intermediate vertices numbered not higher than 3, i.e., \(a, b,\) and \(c\) (no new paths); boxed row and column are used for getting \(R^{(4)}\).

FIGURE 8.4 Application of Warshall’s algorithm to the digraph shown. New ones are in bold.
Warshall’s Algorithm (pseudocode and analysis)

ALGORITHM \(Warshall(A[1..n, 1..n]) \)

//Implements Warshall’s algorithm for computing the transitive closure
//Input: The adjacency matrix \(A \) of a digraph with \(n \) vertices
//Output: The transitive closure of the digraph

\[
R^{(0)} \leftarrow A \\
\text{for } k \leftarrow 1 \text{ to } n \text{ do} \\
\quad \text{for } i \leftarrow 1 \text{ to } n \text{ do} \\
\quad \quad \text{for } j \leftarrow 1 \text{ to } n \text{ do} \\
\quad \quad \quad R^{(k)}[i, j] \leftarrow R^{(k-1)}[i, j] \text{ or } (R^{(k-1)}[i, k] \text{ and } R^{(k-1)}[k, j]) \\
\text{return } R^{(n)}
\]

Time efficiency: \(\Theta(n^3) \)

Space efficiency: Matrices can be written over their predecessors

Floyd’s Algorithm: All pairs shortest paths

Problem: In a weighted (di)graph, find shortest paths between every pair of vertices

Same idea: construct solution through series of matrices \(D^{(0)}, \ldots, D^{(n)} \) using increasing subsets of the vertices allowed as intermediate

Example:

![Graph Example](image)
Floyd’s Algorithm (matrix generation)

On the k-th iteration, the algorithm determines shortest paths between every pair of vertices i, j that use only vertices among $1, \ldots, k$ as intermediate.

\[D^{(k)}[i, j] = \min \{ D^{(k-1)}[i, j], \ D^{(k-1)}[i, k] + D^{(k-1)}[k, j] \} \]

Floyd’s Algorithm: All pairs shortest paths

![Diagram](image)

FIGURE 8.5 (a) Digraph. (b) Its weight matrix. (c) Its distance matrix.
FIGURE 8.7 Application of Floyd’s algorithm to the graph shown. Updated elements are shown in bold.

Floyd’s Algorithm (pseudocode and analysis)

ALGORITHM Floyd(W[1..n, 1..n])

//Implements Floyd’s algorithm for the all-pairs shortest-paths problem
//Input: The weight matrix W of a graph with no negative-length cycle
//Output: The distance matrix of the shortest paths’ lengths
D ← W //is not necessary if W can be overwritten
for k ← 1 to n do
 for i ← 1 to n do
 for j ← 1 to n do
 \[D[i, j] ← \min\{D[i, j], D[i, k] + D[k, j]\} \]
return D

Time efficiency: \(\Theta(n^3) \)

Space efficiency: Matrices can be written over their predecessors
Knapsack Problem by DP

Given n items of integer weights: w_1, w_2, \ldots, w_n
values: v_1, v_2, \ldots, v_n
a knapsack of integer capacity W
find most valuable subset of the items that fit into the knapsack

Consider instance defined by first i items and capacity j ($j \leq W$).
Let $V[i,j]$ be optimal value of such instance. Then

$$V[i,j] = \begin{cases}
V[i-1,j], & j - w_i \geq 0 \\
\max \{V[i-1,j], v_i + V[i-1,j-w_i]\} & j - w_i < 0
\end{cases}$$

Initial conditions: $V[0,j] = 0$ and $V[i,0] = 0$

Knapsack Problem by DP (example)

Example: Knapsack of capacity $W = 5$

<table>
<thead>
<tr>
<th>item</th>
<th>weight</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>$12</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>$10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>$20</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>$15</td>
</tr>
</tbody>
</table>

capacity j

0 1 2 3 4 5

$w_1 = 2, v_1 = 12$ 1
$w_2 = 1, v_2 = 10$ 2
$w_3 = 3, v_3 = 20$ 3
$w_4 = 2, v_4 = 15$ 4

Copyright © 2007 Pearson Addison-Wesley. All rights reserved
Knapsack Problem

\[V[i, j] = \max (V[i - 1, j], V[i - 1, j - w_i] + v_i) \]

- object \(i \) not used
- object \(i \) used

\[\begin{array}{cccccc} & 0 & j - w_i & j & W \\ 0 & 0 & 0 & 0 & 0 \\ i - 1 & 0 & V[i - 1, j - w_i] & V[i - 1, j] & \\ w_i & v_i & i & 0 & V[i, j] \\ n & 0 & \text{goal} \end{array} \]

FIGURE 8.12 Table for solving the knapsack problem by dynamic programming

FIGURE 8.13 Example of solving an instance of the knapsack problem by the dynamic programming algorithm
Knapsack Problem – Memory Function

- Implement the recurrence recursively
- Do not calculate a value if it is not needed
- Do not recalculate a value
- Row 0 and column 0 of V are initialized to 0, other entries are -1

MFKnapsack(i, j)
if V[i, j] < 0
 if j < w[i]
 value ← MFKnapsack(i – 1, j)
 else
 value ← max (MFKnapsack(i – 1, j),
 MFKnapsack(i – 1, j – w[i]) + v[i])

V[i, j] ← value
return V[i, j]

Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Knapsack Problem – Memory Function

<table>
<thead>
<tr>
<th></th>
<th>capacity j</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>0</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

FIGURE 8.14 Example of solving an instance of the knapsack problem by the memory function algorithm