
Studying Program Correctness by Constructing Contracts

Timothy S. Gegg-Harrison1, Gary R. Bunce2
Rebecca D. Ganetzky1, Christina M. Olson2, Joshua D. Wilson2

1Department of Computer Science

Oberlin College
Oberlin, OH 44074 USA

tsg@cs.oberlin.edu

2Department of Computer Science

Winona State University
Winona, MN 55987 USA

gbunce@winona.edu

Abstract

Because the concept of program correctness is generally taught as
an activity independent of the programming process, most
introductory computer science (CS) students perceive it as
unnecessary and even irrelevant. The concept of contracts, on the
other hand, is generally taught as an integral part of the
programming process. As such, most introductory CS students
have little difficulty understanding the need to establish contracts
via preconditions and postconditions. In order to improve
teaching program correctness concepts, we implemented
ProVIDE, an enhanced integrated development environment
(IDE) for Java [7]. ProVIDE supports a modified version of the
“design by contract” methodology [13] that assists its student
programmers in contract construction. Rather than asking for
both a precondition and postcondition for each of his/her methods,
ProVIDE asks the student to simply supply a postcondition.
ProVIDE then helps the student construct the appropriate
precondition by leading him/her through an axiomatic proof of the
correctness of the method. Thus, the proof of correctness of the
method is a side-effect of the student’s need to construct an
appropriate precondition.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/program verification –
programming by contract, correctness proofs, formal methods.
F.3.1 [Logics and Meanings of Programs]: Specifying,
verifying, and reasoning about programs – assertions, invariants,
pre- and post-conditions.

General Terms
Documentation, Verification.

Keywords
Design by contract, axiomatic semantics, Java.

1 Introduction

Due to the dependency of computing on discrete mathematics, the
Computing Curricula 2001 (CC2001) Task Force proposed that
discrete structures be added as a separate knowledge area [10].
Although computer scientists understand the importance of
discrete mathematics to the foundations of their field, computer
science (CS) students do not always see the relevance. Our
experience in teaching computer science over the past several
years has shown that incoming CS students are deficient in
mathematics in general and they do not see the relevance of
mathematics to computer science. Although our CS students were
taking discrete mathematics during their first year, they were
apparently not retaining it.

In order to address this problem, we recently restructured our CS
curriculum. In this restructured curriculum, CS students take two
semesters of discrete mathematics, a Discrete Mathematics course
that is taught by the Mathematics Department followed by what
CC2001 refers to as CS110 (Discrete Structures) that is taught by
the Computer Science Department, while they are taking CS101O
and CS102O, CC2001’s objects-first model for the introductory
computer science curriculum. The additional semester of discrete
mathematics has helped, however, we believe that the current
success of CS students in CS101O and CS102O has significantly
benefited from a very active attempt to make discrete
mathematics more relevant. We have attempted to show our
students this relevance by integrating discrete mathematics via
CS-Complete examples, unifying examples that are applicable in
CS101O, CS102O, and Discrete Mathematics [6].

In order to better integrate discrete mathematics into the
introductory CS curriculum, we implemented ProVIDE, an
enhanced integrated development environment (IDE) for Java that
enables students to analyze their computer programs (in terms of
their correctness) while they are creating them [7]. The primary
goal of the construction of ProVIDE is the seamless integration of
analysis with the creation of computer programs. Because the
concept of program correctness is generally taught as an activity
independent of the programming process, most introductory CS
students perceive it as unnecessary and even irrelevant. The
concept of contracts, on the other hand, is generally taught as an
integral part of the programming process. As such, most
introductory CS students have little difficulty understanding the
need to establish contracts via preconditions and postconditions.
The approach we have taken with ProVIDE is a modified version
of the “design by contract” methodology [13]. Rather than asking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITiCSE ’03, June 30−July 2, 2003, Thessaloniki, Greece.
Copyright 2003 ACM 1-58113-672-2/03/0006…$5.00.

the student for both a precondition and postcondition for each of
his/her methods, ProVIDE asks the student to simply supply a
postcondition. ProVIDE then helps the student construct the
appropriate precondition by leading him/her through an axiomatic
proof of the correctness of the method. Thus, the proof of
correctness of the method is a side-effect of the student’s need to
construct an appropriate precondition.

In the next section, we consider the process of contract
construction. We begin by defining the semantics of the Java
programming language using axioms and rules, with the
assumption that the Java code is free of side-effects. After
defining an axiomatic semantics for Java, we consider a sample
session with ProVIDE. We highlight how ProVIDE helps the
student construct preconditions for methods containing a
combination of simple assignment statements, a conditional
statement, and a loop. We also show how ProVIDE assists the
student in the construction of loop invariants. Conclusions and
directions for future research are given in the last section.

2 Constructing Contracts in ProVIDE
ProVIDE was developed by extending Netbeans, a modular
standards-based open source integrated development environment
written in Java. ProVIDE uses iContract’s Javadoc tags @pre,
@post, and @invariant [11] that correspond to Eiffel’s
assertion constructs require, ensure, and invariant [12]
for preconditions, postconditions, and invariants, respectively.
After students have constructed and debugged their methods,
ProVIDE helps them construct assertions for the @pre tags by
guiding them through proofs of correctness using axiomatic
semantics [4,5,8,9] to find weakest preconditions, starting with
the assertions given in the @post tags and ultimately generating
@pre tags that contain the constructed precondition assertions.

2.1 Contract Axioms and Rules
Traditionally, axiomatic semantics have been used to prove that a
program segment is correct with respect to its precondition and
postcondition. The semantics of an imperative programming
language are defined by the Assignment Axiom and a set of
inference rules for each of the language’s control structures.
Although the Assignment Axiom and Sequence Rule are
constructive (i.e., they define how to construct the precondition
from the postcondition), the inference rules that are generally
given for conditional statements and loops are non-constructive
(i.e., they assume both a precondition and postcondition have
been provided).

ProVIDE’s goal is help its student programmers construct
appropriate preconditions given postconditions that they provide.
As such, we want to define a constructive axiomatic semantics for
Java using contract-enriched Hoare triples of form { } { }P C Q
that states that P is the (constructed) weakest precondition of the
block of Java code C given the postcondition Q. We use rules of

inference of the form 1 2, , , nH H H
H
… that states that the

precondition of the contract-enriched statement H is appropriate if

we construct appropriate weakest preconditions for
1 2, , , nH H H… .

The Assignment Axiom is the fundamental axiom for imperative
programming languages, infusing the notion of program state
change into our logic.

 []{ } { };P V E V E P→ = [Assignment Axiom]

The Assignment Axiom defines the weakest precondition of an
assignment statement as the postcondition with all the occurrences
of the variable on the left hand side of the assignment statement
replaced with the expression on the right hand side of the
assignment statement. The Assignment Axiom also applies to
return statements where the pseudo-variable @return (which is
used in postconditions to denote the value of the method) replaces
V and the expression that is returned replaces E.

The weakest precondition of a block of statements can be
constructed by successively backing over each of the statements
in the block (starting with the last statement) and using the
constructed weakest precondition of each statement as the
postcondition to its preceding statement. The following
Sequence Rule defines the precondition construction process for
a pair of statements. Repeated applications of the Sequence Rule
can be used for blocks containing more than two statements.

{ } { } { } { }
{ } { }

1 2

1 2

,
; ;

P C R R C Q
P C C Q

 [Sequence Rule]

The weakest precondition of a conditional statement can be
constructed by considering both possible paths through the if-
else statement. The constructed precondition is the disjunction
of a pair of conjuncts that are formed from the guard conjoined
with the weakest precondition constructed by backing over the
then-clause of the conditional disjoined with the negation of the
guard conjoined with the weakest precondition constructed by
backing over the else-clause of the conditional.

{ } { } { } { }
() (){ } () { }

1 1 2 2

1 2 1 2

,
;

P C Q P C Q
P B P B B C C Q∧ ∨ ∧¬ if else [Conditional Rule]

The Conditional Rule is used to construct the precondition
() ()1 2P B P B∧ ∨ ∧¬ where 1P is constructed from { } { }1 1P C Q

and 2P is constructed from { } { }2 2P C Q . Note that since the

weakest precondition to the “null” 2C statement is simply the
postcondition Q when the else-clause is omitted then the
Conditional Rule is used to construct the precondition
() ()1P B Q B∧ ∨ ∧¬ where 1P is constructed from { } { }1 1P C Q .

Logical pretest loops are captured by the Loop Invariant
Theorem. The Loop Invariant Theorem uses induction to show
that a programmer-supplied loop invariant (i.e., a relationship
between program variables that remains the same regardless of
how many times the loop is executed) holds.

{ } { }

{ } () { };
P C P

P B C Qwhile [Loop Rule]

The selection of an appropriate loop invariant is a difficult task.
In section 2.3, we discuss how ProVIDE helps the student
construct an appropriate loop invariant by starting with the loop’s
postcondition and terminating condition and backing over the
loop body until a pattern P can be id entified. Given an
appropriate loop invariant P, the Loop Rule tells us that it also
serves as the precondition to the loop.

2.2 Constructing Preconditions in ProVIDE
In this section, we illustrate the methodology used by ProVIDE to
construct method preconditions. The student begins by entering
the program in ProVIDE either from scratch or via the “new class
wizard” that prompts the student (via a series of panels) for the
class name, the data areas of the class, and the signatures and
postconditions for all of the methods of the class. Let’s consider
the task of squaring an integer N using only addition and
subtraction. One possible solution is given below.

Although this method is relatively simple (i.e., it only involves
assignment statements, a straightforward conditional statement,
and a single bounded loop), it is not at all obvious that it actually
computes 2N . For such a method, not only is it important to
construct its precondition, it is equally important to provide a
convincing argument that it actually works.

Once the student has finished defining the class, he/she presses
the “validate” button to obtain ProVIDE’s assistance with the
construction of preconditions for all of the methods of the class
from their student-provided postconditions. Consider the
square method presented above. To construct an appropriate
precondition (and prove the correctness of this method), the
student begins with the method’s postcondition:

 @ return N N= ×

which we will denote as 2@ return N= . ProVIDE helps the
student by guiding him/her through a series of dialog windows,

the first of which asks the student to find the weakest precondition
to the last statement of the method body given this postcondition.

Since return x; is the last statement of the method, the
student is asked to apply the Assignment Axiom (i.e., replace the
pseudo-variable @return with x) to construct its weakest
precondition from the method’s postcondition producing:

 2x N=

The next-to-last statement of the method is a while loop so
ProVIDE helps the student identify an appropriate loop invariant
that is both strong enough to imply the postcondition while being
weak enough to enable the student to complete the proof of
correctness of the method. Given the method’s postcondition and
the loop’s guard, our method will construct the following loop
invariant:

 () ()()() ()2 1x N N m y N m N m N m= − − − − − − ∧ ≥

For now, let’s assume that this is an appropriate loop invariant.
We illustrate how ProVIDE helps the student construct this loop
invariant in the next subsection. The Loop Rule tells us that a
loop invariant is an appropriate precondition to while loop.
Thus, the loop invariant becomes the postcondition to the
statement immediately preceding the while loop. Applying the
Assignment Axiom to the int y = 1; statement produces:

 () ()()() ()2 1x N N m N m N m N m= − − − − − − ∧ ≥

Backing over the int x = 0; statement produces:

 () ()()() ()20 1N N m N m N m N m= − − − − − − ∧ ≥

Backing over the int m = 0; statement produces:

 () ()()() ()20 0 0 0 1 0N N N N N= − − − − − − ∧ ≥

which can be simplified to 0N ≥ . Note that if the square
method did not contain the conditional statement then the @pre
tag would become 0N ≥ . Since it does contain the conditional

statement, however, we must apply the Conditional Rule
producing:

 () ()() () ()()0 0 0 0N N N N< ∧ − ≥ ∨ ¬ < ∧ ≥

which can be simplified to () ()0 0N N< ∨ ≥ or simply true.
This states that the square method is defined for all integers
which is appropriate since the purpose of the conditional is to set
N to its absolute value. Once the student has completed
constructing the precondition, ProVIDE adds the @pre true
Javadoc tag preceding the method definition.

2.3 Constructing Loop Invariants in ProVIDE
ProVIDE guides the student through the construction of an
appropriate loop invariant to a while loop by starting with the
loop’s postcondition and terminating condition as the initial
postcondition to the loop and backing over each of the statements
of the loop body. The loop body is a sequence of statements so
ProVIDE recursively opens up a dialog window to guide the
student through the construction of an appropriate weakest
precondition beginning with the loop’s last statement.

After the first backward pass through the loop body, the student
has constructed the weakest precondition to the loop body given
the loop’s postcondition and terminating condition as the initial
postcondition to the loop body. This constructed precondition
and the loop guard become the postcondition to the second
backward pass through the loop body. The weakest precondition
that is constructed on the third backward pass through the loop
and the loop guard become the postcondition to the fourth
backward pass through the loop, etc. After viewing the
constructed preconditions for each backward pass through the
loop, the student is asked to identify a pattern that is the loop
invariant. To ensure that the student’s choice of a loop invariant
is valid, ProVIDE forces the student through one more backward
pass through the loop beginning with the student’s proposed loop
invariant and asks the student to simplify the constructed
precondition to the proposed loop invariant.

For the square method, x == N*N is the postcondition of the
loop and m == N is the loop’s terminating condition. Thus, we
start backing over the loop with the assertion created by their
conjunction:

 () ()2x N m N= ∧ =

Backing over m = m + 1; we get:

 () ()2 1x N m N= ∧ + =

Since this assertion does not contain the variable y, backing over
y = y + 2; leaves us with the previous assertion:

 () ()2 1x N m N= ∧ + =

Backing over x = x + y; we get:

 () ()2 1x y N m N+ = ∧ + =

In order to prepare for the second reverse pass, we back over the
loop guard. Backing over the guard of a while loop is like
backing over the guard of an if-else statement resulting in the
conjunct formed from the guard and the assertion to this point:

 () () ()2 1x y N m N m N+ = ∧ + = ∧ <

But this simplifies back to the previous assertion:

 () ()2 1x y N m N+ = ∧ + =

Backing over m = m + 1; we get:

 () ()2 2x y N m N+ = ∧ + =

Backing over y = y + 2; we get:

 () ()22 2x y N m N+ + = ∧ + =

Backing over x = x + y; we get:

 () ()22 2x y y N m N+ + + = ∧ + =

This can be simplified to:

 () ()22 2 2x y N m N+ + = ∧ + =

In order to prepare for the third reverse pass, we add the loop
guard to this assertion when we back over it:

 () () ()22 2 2x y N m N m N+ + = ∧ + = ∧ <

But this simplifies back to the previous assertion:

 () ()22 2 2x y N m N+ + = ∧ + =

On the third reverse pass, backing over m = m + 1; we get:

 () ()22 2 3x y N m N+ + = ∧ + =

Backing over y = y + 2; we get:

 ()() ()22 2 2 3x y N m N+ + + = ∧ + =

Backing over x = x + y; we get:

 ()() ()22 2 2 3x y y N m N+ + + + = ∧ + =

This can be simplified to:

 () ()23 6 3x y N m N+ + = ∧ + =

It is easy to show that a generalized loop invariant for the kth
backward pass is:

 ()() ()21x ky k k N m k N+ + − = ∧ + =

Since m k N+ = , we know that k m N= − , so we can rewrite
this generalized assertion as:

 () ()()() ()21x m N y m N m N N k m N+ − + − − − = ∧ = −

The terms including k no longer contribute to this assertion so we
remove them, giving us the loop invariant:

 () ()()() ()21x m N y m N m N N N m+ − + − − − = ∧ ≥

3 Conclusion

Mathematics is an integral part of science, mathematics,
engineering, and technological (SMET) education. In particular,
mathematics is fundamental to computer science. Our experience
has shown an improvement in student learning as a result of an
active attempt to make mathematics more relevant. Preliminary
results indicate that ProVIDE will further enhance student
learning by providing the seamless integration of analysis with the
creation of computer programs. By incorporating mathematical
analysis tools within ProVIDE, students are able to practice
“learning by doing”, applying an apprenticeship learning [3], and
learning in a “situated cognition” environment [1,2]. Although
we will not be conducting a formal assessment until this fall, our
preliminary assessment of the impact of ProVIDE in the
classroom is promising.

Acknowledgments

This research was supported in part by NSF DUE-0127483.

References

[1] Brown, J.S., Collins, A., and Duguid, P. Situated Cognition
and the Culture of Learning. Educational Researcher, 18(1):
32-42, 1989.

[2] Cognition and Technology Group at Vanderbilt. Anchored
Instruction and its Relationship to Situated Cognition.
Educational Researcher, 19(6): 2-10, 1990.

[3] Collins, A., Brown, J.S., and Newman, S.E. Cognitive
Apprenticeship: Teaching the Craft of Reading, Writing, and
Mathematics. In L.B. Resnick, editor, Knowing, Learning,
and Instruction: Essays in Honor of Robert Glaser, pages
453-494, Hillsdale, NJ: Lawrence Erlbaum, 1989.

[4] Dijkstra, E.W. A Discipline of Programming. Upper Saddle
River, NJ: Prentice Hall, 1976.

[5] Floyd, R.W. Assigning Meaning to Programs. In J.T.
Schwartz, editor, Proceedings of the Symposium on Applied
Mathematics (Mathematical Aspects of Computer Science),
American Mathematical Society, Providence, Rhode Island,
1967.

[6] Gegg-Harrison, T.S. Ancient Egyptian Numbers: A CS-
Complete Example. In J. Gersting and R. McCauley, editors,
Proceedings of the 32nd Technical Symposium on Computer
Science Education, pages 268-272, Charlotte, North
Carolina, February 2001 (ACM SIGCSE Bulletin, 33(1): 268-
272, 2001).

[7] Gegg-Harrison, T.S., Bunce, G.R., Ganetzky, R.D., Olson,
C.M., and Wilson, J.D. Studying Program Correctness in
ProVIDE. Software demonstration at the 8th Annual
Conference on Innovation and Technology in Computer
Science Education, Thessaloniki, Greece, June–July 2003.

[8] Gries, D. The Science of Programming. New York, NY:
Springer−Verlag, 1981.

[9] Hoare, C.A.R. An Axiomatic Basis for Computer
Programming. Communications of the ACM, 12(10): 576-
580, 1969.

[10] Joint Task Force on Computing Curricula. Computing
Curricula 2001: Computer Science, Final Report, December
2001.

[11] Kramer, R. iContract – The Java Design by Contract Tool.
In M. Singh, B. Meyer, J. Gil, and R. Mitchell, editors,
Proceedings of the 26th Conference on Technology of Object-
Oriented Languages and Systems, pages 295-307, Santa
Barbara, California, August 1998.

[12] Meyer, B. Eiffel: The Language. Englewood Cliffs, NJ:
Prentice Hall, 1992.

[13] Meyer, B. Applying “Design by Contract”. IEEE
Computer, 25(10): 40-51, 1992.

