
Studying Program Correctness by Constructing Contracts
 

Timothy S. Gegg-Harrison1, Gary R. Bunce2 
Rebecca D. Ganetzky1, Christina M. Olson2, Joshua D. Wilson2

 
1Department of Computer Science 

Oberlin College 
Oberlin, OH  44074  USA 

tsg@cs.oberlin.edu  

 
2Department of Computer Science 

Winona State University 
Winona, MN  55987  USA 

gbunce@winona.edu 

Abstract 

Because the concept of program correctness is generally taught as 
an activity independent of the programming process, most 
introductory computer science (CS) students perceive it as 
unnecessary and even irrelevant.  The concept of contracts, on the 
other hand, is generally taught as an integral part of the 
programming process.  As such, most introductory CS students 
have little difficulty understanding the need to establish contracts 
via preconditions and postconditions.  In order to improve 
teaching program correctness concepts, we implemented 
ProVIDE, an enhanced integrated development environment 
(IDE) for Java [7].  ProVIDE supports a modified version of the 
“design by contract” methodology [13] that assists its student 
programmers in contract construction.  Rather than asking for 
both a precondition and postcondition for each of his/her methods, 
ProVIDE asks the student to simply supply a postcondition.  
ProVIDE then helps the student construct the appropriate 
precondition by leading him/her through an axiomatic proof of the 
correctness of the method.  Thus, the proof of correctness of the 
method is a side-effect of the student’s need to construct an 
appropriate precondition. 

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/program verification – 
programming by contract, correctness proofs, formal methods.  
F.3.1 [Logics and Meanings of Programs]: Specifying, 
verifying, and reasoning about programs – assertions, invariants, 
pre- and post-conditions. 

General Terms 
Documentation, Verification. 

Keywords 
Design by contract, axiomatic semantics, Java. 

1 Introduction 

Due to the dependency of computing on discrete mathematics, the 
Computing Curricula 2001 (CC2001) Task Force proposed that 
discrete structures be added as a separate knowledge area [10].  
Although computer scientists understand the importance of 
discrete mathematics to the foundations of their field, computer 
science (CS) students do not always see the relevance.  Our 
experience in teaching computer science over the past several 
years has shown that incoming CS students are deficient in 
mathematics in general and they do not see the relevance of 
mathematics to computer science.  Although our CS students were 
taking discrete mathematics during their first year, they were 
apparently not retaining it. 

In order to address this problem, we recently restructured our CS 
curriculum.  In this restructured curriculum, CS students take two 
semesters of discrete mathematics, a Discrete Mathematics course 
that is taught by the Mathematics Department followed by what 
CC2001 refers to as CS110 (Discrete Structures) that is taught by 
the Computer Science Department, while they are taking CS101O 
and CS102O, CC2001’s objects-first model for the introductory 
computer science curriculum.  The additional semester of discrete 
mathematics has helped, however, we believe that the current 
success of CS students in CS101O and CS102O has significantly 
benefited from a very active attempt to make discrete 
mathematics more relevant.  We have attempted to show our 
students this relevance by integrating discrete mathematics via 
CS-Complete examples, unifying examples that are applicable in 
CS101O, CS102O, and Discrete Mathematics [6].   

In order to better integrate discrete mathematics into the 
introductory CS curriculum, we implemented ProVIDE, an 
enhanced integrated development environment (IDE) for Java that 
enables students to analyze their computer programs (in terms of 
their correctness) while they are creating them [7].  The primary 
goal of the construction of ProVIDE is the seamless integration of 
analysis with the creation of computer programs.  Because the 
concept of program correctness is generally taught as an activity 
independent of the programming process, most introductory CS 
students perceive it as unnecessary and even irrelevant.  The 
concept of contracts, on the other hand, is generally taught as an 
integral part of the programming process.  As such, most 
introductory CS students have little difficulty understanding the 
need to establish contracts via preconditions and postconditions.  
The approach we have taken with ProVIDE is a modified version 
of the “design by contract” methodology [13].  Rather than asking 
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the student for both a precondition and postcondition for each of 
his/her methods, ProVIDE asks the student to simply supply a 
postcondition.  ProVIDE then helps the student construct the 
appropriate precondition by leading him/her through an axiomatic 
proof of the correctness of the method.  Thus, the proof of 
correctness of the method is a side-effect of the student’s need to 
construct an appropriate precondition. 

In the next section, we consider the process of contract 
construction.  We begin by defining the semantics of the Java 
programming language using axioms and rules, with the 
assumption that the Java code is free of side-effects.  After 
defining an axiomatic semantics for Java, we consider a sample 
session with ProVIDE.  We highlight how ProVIDE helps the 
student construct preconditions for methods containing a 
combination of simple assignment statements, a conditional 
statement, and a loop.  We also show how ProVIDE assists the 
student in the construction of loop invariants.  Conclusions and 
directions for future research are given in the last section. 

2 Constructing Contracts in ProVIDE 
ProVIDE was developed by extending Netbeans, a modular 
standards-based open source integrated development environment 
written in Java.  ProVIDE uses iContract’s Javadoc tags @pre, 
@post, and @invariant [11] that correspond to Eiffel’s 
assertion constructs require, ensure, and invariant [12] 
for preconditions, postconditions, and invariants, respectively.  
After students have constructed and debugged their methods, 
ProVIDE helps them construct assertions for the @pre tags by 
guiding them through proofs of correctness using axiomatic 
semantics [4,5,8,9] to find weakest preconditions, starting with 
the assertions given in the @post tags and ultimately generating 
@pre tags that contain the constructed precondition assertions.   

2.1 Contract Axioms and Rules 
Traditionally, axiomatic semantics have been used to prove that a 
program segment is correct with respect to its precondition and 
postcondition.  The semantics of an imperative programming 
language are defined by the Assignment Axiom and a set of 
inference rules for each of the language’s control structures.  
Although the Assignment Axiom and Sequence Rule are 
constructive (i.e., they define how to construct the precondition 
from the postcondition), the inference rules that are generally 
given for conditional statements and loops are non-constructive 
(i.e., they assume both a precondition and postcondition have 
been provided).   

ProVIDE’s goal is help its student programmers construct 
appropriate preconditions given postconditions that they provide.   
As such, we want to define a constructive axiomatic semantics for 
Java using contract-enriched Hoare triples of form { } { }P C Q  
that states that P is the (constructed) weakest precondition of the 
block of Java code C given the postcondition Q.  We use rules of 

inference of the form 1 2, , , nH H H
H
…  that states that the 

precondition of the contract-enriched statement H is appropriate if 

we construct appropriate weakest preconditions for 
1 2, , , nH H H… . 

The Assignment Axiom is the fundamental axiom for imperative 
programming languages, infusing the notion of program state 
change into our logic. 

 [ ]{ } { };P V E V E P→ =                                    [Assignment Axiom] 

The Assignment Axiom defines the weakest precondition of an 
assignment statement as the postcondition with all the occurrences 
of the variable on the left hand side of the assignment statement 
replaced with the expression on the right hand side of the 
assignment statement.  The Assignment Axiom also applies to 
return statements where the pseudo-variable @return (which is 
used in postconditions to denote the value of the method) replaces 
V and the expression that is returned replaces E. 

The weakest precondition of a block of statements can be 
constructed by successively backing over each of the statements 
in the block (starting with the last statement) and using the 
constructed weakest precondition of each statement as the 
postcondition to its preceding statement.  The following 
Sequence Rule defines the precondition construction process for 
a pair of statements.  Repeated applications of the Sequence Rule 
can be used for blocks containing more than two statements. 

{ } { } { } { }
{ } { }

1 2

1 2

,
; ;

P C R R C Q
P C C Q

                                          [Sequence Rule] 

The weakest precondition of a conditional statement can be 
constructed by considering both possible paths through the if-
else statement.  The constructed precondition is the disjunction 
of a pair of conjuncts that are formed from the guard conjoined 
with the weakest precondition constructed by backing over the 
then-clause of the conditional disjoined with the negation of the 
guard conjoined with the weakest precondition constructed by 
backing over the else-clause of the conditional. 

{ } { } { } { }
( ) ( ){ } ( ) { }

1 1 2 2

1 2 1 2

,
;

P C Q P C Q
P B P B B C C Q∧ ∨ ∧¬ if else  [Conditional Rule] 

The Conditional Rule is used to construct the precondition 
( ) ( )1 2P B P B∧ ∨ ∧¬  where 1P  is constructed from { } { }1 1P C Q  

and 2P  is constructed from { } { }2 2P C Q .  Note that since the 

weakest precondition to the “null” 2C  statement is simply the 
postcondition Q  when the else-clause is omitted then the 
Conditional Rule is used to construct the precondition 
( ) ( )1P B Q B∧ ∨ ∧¬  where 1P  is constructed from { } { }1 1P C Q . 

Logical pretest loops are captured by the Loop Invariant 
Theorem.  The Loop Invariant Theorem uses induction to show 
that a programmer-supplied loop invariant (i.e., a relationship 
between program variables that remains the same regardless of 
how many times the loop is executed) holds.  

 
{ } { }

{ } ( ) { };
P C P

P B C Qwhile                                                [Loop Rule] 



The selection of an appropriate loop invariant is a difficult task.  
In section 2.3, we discuss how ProVIDE helps the student 
construct an appropriate loop invariant by starting with the loop’s 
postcondition and terminating condition and backing over the 
loop body until a pattern P can be id  entified.  Given an 
appropriate loop invariant P, the Loop Rule tells us that it also 
serves as the precondition to the loop. 

2.2 Constructing Preconditions in ProVIDE 
In this section, we illustrate the methodology used by ProVIDE to 
construct method preconditions.  The student begins by entering 
the program in ProVIDE either from scratch or via the “new class 
wizard” that prompts the student (via a series of panels) for the 
class name, the data areas of the class, and the signatures and 
postconditions for all of the methods of the class.  Let’s consider 
the task of squaring an integer N using only addition and 
subtraction.  One possible solution is given below. 

 

Although this method is relatively simple (i.e., it only involves 
assignment statements, a straightforward conditional statement, 
and a single bounded loop), it is not at all obvious that it actually 
computes 2N .  For such a method, not only is it important to 
construct its precondition, it is equally important to provide a 
convincing argument that it actually works. 

Once the student has finished defining the class, he/she presses 
the “validate” button to obtain ProVIDE’s assistance with the 
construction of preconditions for all of the methods of the class 
from their student-provided postconditions.  Consider the 
square method presented above.  To construct an appropriate 
precondition (and prove the correctness of this method), the 
student begins with the method’s postcondition: 

       @ return N N= ×   

which we will denote as 2@ return N= .  ProVIDE helps the 
student by guiding him/her through a series of dialog windows, 

the first of which asks the student to find the weakest precondition 
to the last statement of the method body given this postcondition.   

 

Since return x; is the last statement of the method, the 
student is asked to apply the Assignment Axiom (i.e., replace the 
pseudo-variable @return with x) to construct its weakest 
precondition from the method’s postcondition producing: 

       2x N=  

The next-to-last statement of the method is a while loop so 
ProVIDE helps the student identify an appropriate loop invariant 
that is both strong enough to imply the postcondition while being 
weak enough to enable the student to complete the proof of 
correctness of the method.  Given the method’s postcondition and 
the loop’s guard, our method will construct the following loop 
invariant: 

       ( ) ( )( )( ) ( )2 1x N N m y N m N m N m= − − − − − − ∧ ≥  

For now, let’s assume that this is an appropriate loop invariant. 
We illustrate how ProVIDE helps the student construct this loop 
invariant in the next subsection.  The Loop Rule tells us that a 
loop invariant is an appropriate precondition to while loop. 
Thus, the loop invariant becomes the postcondition to the 
statement immediately preceding the while loop.  Applying the 
Assignment Axiom to the int y = 1; statement produces: 

       ( ) ( )( )( ) ( )2 1x N N m N m N m N m= − − − − − − ∧ ≥  

Backing over the int x = 0; statement produces: 

       ( ) ( )( )( ) ( )20 1N N m N m N m N m= − − − − − − ∧ ≥  

Backing over the int m = 0; statement produces: 

       ( ) ( )( )( ) ( )20 0 0 0 1 0N N N N N= − − − − − − ∧ ≥  

which can be simplified to 0N ≥ .  Note that if the square 
method did not contain the conditional statement then the @pre 
tag would become 0N ≥ .  Since it does contain the conditional 



statement, however, we must apply the Conditional Rule 
producing: 

       ( ) ( )( ) ( ) ( )( )0 0 0 0N N N N< ∧ − ≥ ∨ ¬ < ∧ ≥  

which can be simplified to ( ) ( )0 0N N< ∨ ≥  or simply true.  
This states that the square method is defined for all integers 
which is appropriate since the purpose of the conditional is to set 
N  to its absolute value.  Once the student has completed 
constructing the precondition, ProVIDE adds the @pre true 
Javadoc tag preceding the method definition. 

 

2.3 Constructing Loop Invariants in ProVIDE 
ProVIDE guides the student through the construction of an 
appropriate loop invariant to a while loop by starting with the 
loop’s postcondition and terminating condition as the initial 
postcondition to the loop and backing over each of the statements 
of the loop body.  The loop body is a sequence of statements so 
ProVIDE recursively opens up a dialog window to guide the 
student through the construction of an appropriate weakest 
precondition beginning with the loop’s last statement.   

After the first backward pass through the loop body, the student 
has constructed the weakest precondition to the loop body given 
the loop’s postcondition and terminating condition as the initial 
postcondition to the loop body.  This constructed precondition 
and the loop guard become the postcondition to the second 
backward pass through the loop body.  The weakest precondition 
that is constructed on the third backward pass through the loop 
and the loop guard become the postcondition to the fourth 
backward pass through the loop, etc.  After viewing the 
constructed preconditions for each backward pass through the 
loop, the student is asked to identify a pattern that is the loop 
invariant.  To ensure that the student’s choice of a loop invariant 
is valid, ProVIDE forces the student through one more backward 
pass through the loop beginning with the student’s proposed loop 
invariant and asks the student to simplify the constructed 
precondition to the proposed loop invariant. 

For the square method, x == N*N is the postcondition of the 
loop and m == N is the loop’s terminating condition.   Thus, we 
start backing over the loop with the assertion created by their 
conjunction: 

       ( ) ( )2x N m N= ∧ =  

Backing over m = m + 1; we get: 

       ( ) ( )2 1x N m N= ∧ + =  

Since this assertion does not contain the variable y, backing over 
y = y + 2; leaves us with the previous assertion: 

       ( ) ( )2 1x N m N= ∧ + =  

Backing over x = x + y; we get: 

       ( ) ( )2 1x y N m N+ = ∧ + =  

In order to prepare for the second reverse pass, we back over the 
loop guard.  Backing over the guard of a while loop is like 
backing over the guard of an if-else statement resulting in the 
conjunct formed from the guard and the assertion to this point: 

       ( ) ( ) ( )2 1x y N m N m N+ = ∧ + = ∧ <  

But this simplifies back to the previous assertion: 

       ( ) ( )2 1x y N m N+ = ∧ + =  

Backing over m = m + 1; we get: 

       ( ) ( )2 2x y N m N+ = ∧ + =  

Backing over y = y + 2; we get: 

       ( ) ( )22 2x y N m N+ + = ∧ + =  

Backing over x = x + y; we get: 

       ( ) ( )22 2x y y N m N+ + + = ∧ + =  

This can be simplified to: 

       ( ) ( )22 2 2x y N m N+ + = ∧ + =  

In order to prepare for the third reverse pass, we add the loop 
guard to this assertion when we back over it: 

       ( ) ( ) ( )22 2 2x y N m N m N+ + = ∧ + = ∧ <  

But this simplifies back to the previous assertion: 

       ( ) ( )22 2 2x y N m N+ + = ∧ + =  

On the third reverse pass, backing over m = m + 1; we get: 

       ( ) ( )22 2 3x y N m N+ + = ∧ + =  

Backing over y = y + 2; we get: 

       ( )( ) ( )22 2 2 3x y N m N+ + + = ∧ + =  

Backing over x = x + y; we get: 

       ( )( ) ( )22 2 2 3x y y N m N+ + + + = ∧ + =  



This can be simplified to: 

       ( ) ( )23 6 3x y N m N+ + = ∧ + =  

It is easy to show that a generalized loop invariant for the kth  
backward pass is: 

       ( )( ) ( )21x ky k k N m k N+ + − = ∧ + =  

Since m k N+ = , we know that k m N= − , so we can rewrite 
this generalized assertion as: 

       ( ) ( )( )( ) ( )21x m N y m N m N N k m N+ − + − − − = ∧ = −  

The terms including k no longer contribute to this assertion so we 
remove them, giving us the loop invariant: 

       ( ) ( )( )( ) ( )21x m N y m N m N N N m+ − + − − − = ∧ ≥  

 

3 Conclusion 

Mathematics is an integral part of science, mathematics, 
engineering, and technological (SMET) education.  In particular, 
mathematics is fundamental to computer science.  Our experience 
has shown an improvement in student learning as a result of an 
active attempt to make mathematics more relevant.  Preliminary 
results indicate that ProVIDE will further enhance student 
learning by providing the seamless integration of analysis with the 
creation of computer programs.  By incorporating mathematical 
analysis tools within ProVIDE, students are able to practice 
“learning by doing”, applying an apprenticeship learning [3], and 
learning in a “situated cognition” environment [1,2].  Although 
we will not be conducting a formal assessment until this fall, our 
preliminary assessment of the impact of ProVIDE in the 
classroom is promising.   
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