Extensible L ogic Program Schemata

Timothy S. Gegg-Harrison

Department of Computer Science
Winona State University
Winona, MN 55987, USA
tsg@vax2.winona.msus.edu

Abstract. Schemabased transformational systems maintain a library of logic
program schemata which capture large classes of logic programs. One of the
shortcomings of schema-based transformation approachesis their reliance on alarge
(possibly incomplete) set of logic program schemata that is required in order to
capture al of the minor syntactic differences between semantically similar logic
programs. By defining a set of extensible logic program schemata and an associated
set of logic program transformations, it is possible to reduce the size of the schema
library while maintaining the robustness of the transformational system. In our
transformationd system, we have defined a set of extensible logic program schemata
in AProlog. Because AProlog is ahigher-order logic programming language, it can
be used as the representation language for both the logic programs and the extensible
logic program schemata. In addition to the instantiation of predicate variables,
extensible logic program schemata can be extended by applying standard program-
ming techniques (e.g., accumulating results), introducing additional arguments (e.g.,
a second list to append to the end of the primary list), combining logic program
schemata which share a common primary input, and connecting logic program
schemata which are connected via a result of one schema being an input to the other
schema. These extensions increase the robustness of logic program schemata and
enhance traditional schema-based transformational systems.

1 Introduction

Schema-based transformational systems maintain alibrary of logic program schemata
which capture large classes of logic programs. One of the shortcomings of schema-
based transformation approaches is their reliance on alarge (possibly incomplete) set of
logic program schemata that is required in order to capture all of the minor syntactic
differences between semantically similar logic programs. By defining a set of extensible
logic program schemata and an associated set of logic program transformations, it is
possible to reduce the size of the schemallibrary while maintaining the robustness of the
transformational system. Our schemar-based approach to logic program transformation
issimilar to the schema-based transformations of Fuchs and his colleagues [6,16]. The
main difference is that their schema language which was developed for representing

Prolog schematain atutoring system [7,8] is not the same as their object language which
is Prolog. We propose using a higher-order logic programming language to represent
the logic programs and the set of extensible logic program schemata.

Logic program schemata have proven useful in teaching recursive logic
programming to novices [8,9], debugging logic programs [10], transforming logic
programs[5,6,16], and synthesizing logic programs[3,4]. A number of researchers have
looked into various approaches to meta-languages which support logic program
schemata, including our work on basic Prolog schemata [7,8], the work by Brnaand his
colleagues on Prolog programming techniques [2], Barker-Plummer’s work on Prolog
clichés [1], the work of Marakakis and Gallagher on program design schemata [14],
Flener’ swork on logic algorithm schemata [3,4], and the work by Hamfelt and Fischer
Nilsson on metalogic programming techniques [12]. An aternative approach to using
a meta-language to represent program schemata is to have a set of general Prolog
programs which can be extended by adding arguments and subgoals to produce other
programswithin the class. Thisisthe approach taken by Sterling and his colleagues with
their Prolog skeletons that are extended with programming techniques[13]. The present
proposal attempts to merge both of these approaches by using a higher-order logic
programming language as both the object language and the meta-language. Like
Sterling' s skeletons, extensible logic program schemata capture well-understood control
flow patterns in logic programs and can be extended by applying programming
techniques. Like traditional logic program schemata, extensible logic program schemata
are higher-order logic programs that contain predicate variables which can be
instantiated to produce logic programs with the same basic structure. Thus, extensible
logic program schemata combine the strengths of both approaches.

2 Logic Program Schemata

AProlog is a higher-order logic programming language that extends Prolog by
incorporating higher-order unification and A-terms[15]. The syntactic conventions of
AProlog are mostly the same as those of Prolog. In addition to AProlog's support of
predicate variables and A-terms, the most notable difference between the syntax of the
Prolog and AProlog isthat AProlog uses a curried notation. The Prolog program sum 2:

sum([], 0). _
sum([H T],B) :- sum(T,R), Bis H+ R

which finds the summation of all the elements in its input list would be written in
AProlog's curried form as;

sum [] O.
sum[HT] B:- sumTR Bis H+ R

We can rewrite sunt 2 as asingle clause using disjunction:

sumA B :- (A
(A

[], B=0); ,
[HT], sumTR Bis H+ R).

which enables usto write sum 2 in AProlog is as a A-term:

sumA B :- (X\Y\(sigma H (sigma T\(sigm R\ (
(X =[], Y =0); ,
X=[HT], sumTR Yis H+ R

A-terms are used in AProlog to represent predicate application and anonymous
predicates. Predicate application is denoted in AProlog by juxtaposition. Anonymous
predicates are denoted with A-abstractions which have the form ax. o(x) in A-calculus
and theform (X\ (p(X)) in AProlog and represents an anonymous predicate that has
a single argument X which succeeds if p(X) succeeds where o(X) isan arbitrary set
of AProlog subgoals. In addition to supporting A-terms, AProlog also permits existential
quantifiers. AProlog usesthe keyword si gma to represent the existential quantifier 3
sotheA-term 2Ax. Ay. 3z. (p x y z) would be coded in AProlog as(X\ Y\ (si gma
Z\(p XY 2))) andrepresentsan anonymous predicate that hastwo arguments X and
Y which succeedsif p X Y Z succeedsfor some Z.

Another important difference between Prolog and AProlog is that AProlog is a
typed language. AProlog has several built-in types, including typesfor int, boal, list, and
o (the type of propositions). If T, and t, are typesthen (t, - 1,) isatype corresponding
to the set of functions whose domain and range are given by t, and t,, respectively. The
application of T, to T, is represented as (T, T,) and hasthe type 1, if T, isaterm of type
(t,- 1) and T, isaterm of typet,. If Xisavariable and T isaterm of type t’, then the
abstraction (X : 7\ T) isaterm of type t -~ t’. AProlog has a built-in type inference
mechanism which gives its programmers the illusion that they are programming in a
typelesslanguage. Thus, the type system of AProlog serves as an aid to the programmer
rather than an added layer of syntax. Lists and integers are handled the same way in
AProlog asthey arein Prolog. Unlike Prolog, however, AProlog supports separate types
for propositions and booleans. The type o captures propositions and has the values
true and fail and operations for conjunction, disunction, and implication of
propositions. The type bool captures boolean expressions and hasthe valuest r ut h and
f al se and operations for conjunction and disjunction of booleans, and relationship
comparisons (<, =<, >, >=). Note that because booleans are distinct from propositions,
it isnecessary to have the AProlog subgoal t rut h i s X < Yin place of the Prolog
subgoal X < .

We have identified several logic program schemata that serve as prototype logic
programs for list processing [11]. Each of these schemata has two arguments, an input
list and aresult. Although many logic programs can be used with various modes, we
assume a given mode for each of our logic programs. In addition to recursive list
processing schemata, it is also possible to define a set of recursive natural number
programs which also have two arguments. One of the largest classes of list processing

programs is the class of global list processing programs which includes all those list
processing programs that process all elements of the input list (i.e., the entire input list
is reduced). Global list processing programs are captured by the r educelLi st/ 2
schema:

reducelList [] Result :-
Base Result.
reduceList [H T] Result :-
reduceList T R Constructor H R Result.

Global natural number processing programs are captured by the r educe-
Nunber / 2 schema:

reduceNunber 0 Result :-
Base Result.

reduceNunber N Result :-
Mis N - 1, reduceNunber MR,
Constructor N R Resul t.

Ther educeLi st/ 2 and r educeNunber / 2 schemata can be generalized to
include al singly-recursive reduction programs by incorporating the termination
condition with the base case value computation and permitting an arbitrary destructor:

reduce Input Result :-
Base I nput Result.

reduce Input Result :-
Destructor Input HT, reduce T R
Constructor H R Result.

Some explanation of ther educe/ 2 schemaisin order. It hastwo argumentsand
contains three predicate variables. The first argument is the primary input and the
second argument is the primary output. The primary input and output can be either
simple or structured terms, but they are both first-order terms. The three predicate
variables represent arbitrary AProlog predicates. The predicate variable Dest r uct or
defines the process for destructing the input. The predicate variable Const r uct or
defines the process for constructing the output. The other predicate variable, Base, is
used to define the terminating condition, defining both the process to identify the
terminating condition and the process which defines how to construct the output for the
terminating condition. An example should help clarify r educe/ 2.

Consider thef act ori al / 2 program. For an arbitrary query factorial A
B, the primary input is A and primary output is B. The destructor predicate decrements
the input by one. This process can be defined with the anonymous predicate (X\ Y\ Z\
(Zis X- 1, Y = X)). Theconstructor predicatefor f act ori al / 2 multiplies
the current input by the factorial of one less than the current input and can be defined
with the anonymous predicate (X\V\Z\ (Z is X * Y)). Ascanbeseeninthebase
case clause of the definition of fact ori al / 2, the terminating condition occurs

4

whenever the input becomes one and the terminating output value should be onein this
case. This process can be defined with the anonymous predicate (X\ Y\ (X = 0, Y
= 1)) . Combining all thistogether, we can produce aprogram for f act ori al / 2 by
instantiating the predicate variablesinr educe/ 2:

factorial N Result :-
(XN (X =0, Y=1)) N Result.
factorial N Result :-
(XXM2\(Zzis X-1, Y=X)) NCM
factorial MR
(XXNMN2Z\(Z2is X* Y)) CR Result.

Furthermore, sincef act ori al / 2 isagloba natural number processing program,
it isaso possible to produce a program for it by instantiating the predicate variablesin
reduceNunber/ 2:

factorial O Result :-
(XA (X = 1)) Result.

factorial N Result :-
Mis N- 1, factorial MR
(XXNMN2\(Zzis X* Y)) NR Result.

Now consider suni 2 again. For an arbitrary query sum A B, the primary input
is A and primary output is B. The destructor predicate decomposes the input into the
head element and the tail of thelist. This process can be defined with the anonymous
predicate (X\ YW Z\ (X = [VY] Z])) . Theconstructor predicate for sum 2 computes
the summation by adding the current element to the sum of therest of thelist and can be
defined with the anonymous predicate (XYY\ Z\ (Z is X + Y)). Ascanbeseenin
the base case clause of the definition of suni 2, the terminating condition occurs
whenever the input list becomes empty and the terminating output value should be 0.
This process can be defined with the anonymous predicate (XXM (X = [], Y =
0)) . Combining al thistogether, we can produce a program for suni 2 by instantiating
the predicate variablesinr educe/ 2:

sum Li st Result :-
(XN (X =[], Y=0)) List Result.
sum Li st Result :-
(XX\NZA (X =1[VY]Z])) List HT, sumT R
(X\NZ\(Zis X+Y)) HR Result.

Furthermore, since suni 2 isaglobal list processing program, it is also possible
to produce a program for it by instantiating the predicate variablesinr educelLi st/ 2:

sum[] Result :-
(XX (X =0)) Result.
sum [H T] Result :-
sumT R, (XX\M2Z\(Zis X+ Y)) HR Result.

5

In order to capture programslike posi t i on/ 3 which simultaneously reduce both
alist and anatural number, we need to introduce another logic program schemata. The
reduceLN 3 schema captures programs which simultaneously reduce a list and a
number. In addition to capturing posi ti on/ 3, the reduceLN 3 schema also
capturesprogramsliket ake/ 3 and dr op/ 3 which keep or removethefirst n elements,
respectively. Ther educeLN 3 schemalooks like:

reduceLN [] N Result.
reduceLN L N Result :-
L=[HT], Mis N- 1, reduceLNT MR
((N =0, Base L Result); Constructor HR Result).

An example of r educeLN 3 schemaistheposi ti on/ 3 program:

position O [E|T] E
position N[HT] E:- Mis N- 1, position MT E

If we instantiate Base to (X\Y\ (sigma 2\ (X = [Y]Z]))) and Con-
structor to (XX\VWZ\(Z = Y)) then we can produce position/ 3 from
reducelLN 3 assuming that the case of requesting the n" element from a list of less
than n elementsis aill-posed query:

position [] N E.

position L N E : -
L=[HT], Mis N- 1, position T MR,
((N =10, (X\XW\(sigm 2\(X =1[Y][Z]))) L B);
(XX\MNZ\(Z2=Y)) HR E).

The class of reduction programs presented so far share acommon destructor. As
such, we can refer to the schemata defined so far as destructor-specific schemata. Itis
also possible to have constructor-specific schemata. Two of the most popular higher-
order programming programs are map/ 3 and fil ter/ 3. Mapping and filtering
programs are a subclass of reduction programs that also share a common constructor.
Rather than reducing alist by combining each element with the result of reducing the
remainder of the list, sometimesit is desirable to map a function predicate across all the
elements of alist. For example, we may want to double all of the elementsin alist. In
order to double all of the elements of alist, we must first apply afunction predicate that
doubles each element and then put the doubled element in the front of the list produced
by doubling al the elements in the remainder of the list. In general, the predicate
map/ 3 can be used to apply an arbitrary binary function predicate to each element of
alist:

map [] [] P.
map [H T] Result P :-
mp T R P,
(XN 2\ (sigma W(PXW Z=[WY]))) HR Result.

6

We canwritedoubl eAl | / 2 using thismap/ 3 predicate:

doubl eAll List Result :-
map List Result (X\V\(Y is 2 * X)).

The predicate fi | t er / 3 takes a unary predicate and a list and filters out all
elements from the list that do not satisfy the predicate. For example, we may want to
filter out al non-positive numbersfrom alist of numbers. We canwritefilter/3in
AProlog as follows:

filter []1 []1 P.
filter [HT] Result P :-
filter T RP,
(XXNZA((P X, Z2=1[XYVY]); Z=Y)) HR Result.

We can writeposi ti vesOnl y/ 2 using thisfil t er/ 3 predicate:

positivesOnly List Result :-
filter List Result (X\(truth is X > 0)).

It is possible to consider the mapping constructor and the filtering constructor as
special cases of the following constructor:

(PXXX, Z=[XXY]); Z=Y

Notice that this constructor has the additional digunctive subgoa (Z = Y) which
is never invoked for mapping programs and it only captures filtering constructorsif we
rewrite the filtering constructor to add an additional argument to its filtering predicate:

(AB (P A A-=B))

which represents the mapped element. Now we can define the following special case of
reduceli st/ 2 for mapping/filtering programs:

mapList [] [].
mapList [H T] Result :-
mapLi st T R
((P HXX Result = [XXR); Result = R).

It isimportant to note that the schemata presented in this section are very robust,
capturing alarge class of programs which also includesr ever se/ 2,i nserti on-
sort/ 2, product/ 2, prefix/ 2, and many others. We can extend each of these
schemata to capture additional logic programs. For example, we can extend r educe/ 2
to capture other programslike append/ 3 and count / 3. Thisisdescribed in the next
section.

3 Extensionsto Logic Program Schemata

Ther educe/ 2 schema captures a large group of logic programs, but there is still a
large group of logic programsthat it is unable to capture. One of the major differences
between logic programs is the number of arguments. In addition to instantiating
predicate variables in logic program schemata to produce logic programs, it is also
possible to extend program schemata to include additional arguments. Vasconcel os and
Fuchs [16] handle this in their enhanced schema language by introducing argument
vectors and having positiona indicators to ensure specified arguments occur in the same
position acrossterms. We propose handling varying number of arguments by extending
our logic program schemata. There are several types of argument extension that can be
applied to ther educe/ 2 schema, corresponding to adding arguments to the predicate
variablesinr educe/ 2. We can extend ther educe/ 2 schemato add an additional
argument to the Base predicate:

reduceB | nput Result ArgBase : -
Base I nput Result ArgBase.

reduceB | nputt Result ArgBase :-
Destructor Input H T,
reduceB T R ArgBase,
Constructor HR Result.

An example of thistype of extension isthe creation of append/ 3 from pr ef i x/ 2:

prefix [] L.
prefix [HT] [HL] :- prefix T L.

The pr ef i x/ 2 predicate succeeds if its primary list is a prefix of its other list.
The prefi x/ 2 predicate can be extended by the adding a new argument which
represents the second list (i.e., the list that is to be appended to the primary list). If we
make the new Base predicate unify its arguments then we get append/ 3:

append [] L List :- (XN(X =Y)) L List.
append [H T] [H L] List :- append T L List.

Another argument extension that can be applied to ther educe/ 2 schemaisto
add an argument to the Const r uct or predicate:

reduceC I nput Result ArgCons : -
Base I nput Result.

reduceC I nput Result ArgCons : -
Destructor Input H T,
reduceC T R ArgCons,
Constructor H R Result ArgCons.

An example of thistype of extension is the creation of count / 3 from| engt h/ 2:

length [] O.
length [HT] L :- length T X, Lis X + 1.

If we make the new Const r uct or predicate increment the count only when the
head of the list satisfies a predicate given by the newly added argument then we can
produce count / 3:

count [] O P.
count [HT] CP :-
count T R P,
(WXINZA(PW Yis X+1); Y=X) HRCP.

Note that the additional argument onthe Const r uct or for count/ 3 servesas
a “filter” which tests the appropriateness of the input element. For such programs, it
would be possible incorporate the “filter” into the Dest r uct or (i.e, itispossibleto
extendr educe/ 2 by adding an additional argument to the Dest r uct or predicate):

count [] O P.

count List CP :-
(WX\N\ 2\ (remove WX Y Z2)) List HT P,
count TRP, Cis R+ 1.

renove [A|B] ABP:- P A
renove [HT] ABP:- renove T ABP.

which is an example of theuse of r educeDy 3:

reduceD | nput Result ArgDest :-
Base I nput Result.

reduceD | nput Result ArgDest :-
Destructor Input H T ArgDest,
reduceD T R ArgDest,
Constructor HR Result.

The purpose of these semantics-altering extensions that enable the addition of
arguments is to widen the applicability of the semantics-preserving schema transforma-
tions. Any transformation that is applicable to r educe/ 2 is aso applicable to
reduceB/ 3, reduced 3, and r educeD/ 3. There are two types of semantics-
preserving extensions that can be applied to logic program schemata to produce
equivalent logic program schemata: application of programming techniques and
combination (or merging) and connection of logic program schemata. The first type of
semantics-preserving extension is the application of programming techniques to logic
program schemata. Programming techniques have been studied fairly extensively and
a number of commonly occurring programming practices have been identified. One
popular programming technique is the introduction of an accumulator, enabling the

9

composition of the output from the right rather than from the left. Given that a program
unifieswith ther educe/ 2 schema, we can transform the program by instantiating the
following r educeAcc/ 2 schemawith the same Base and Const r uct or predicates:

reduceAcc I nput Result :-
Base Dummy Acc,
reduceAcc2 | nput Result Acc.
reduceAcc2 I nput Result Result :-
Base | nput Dumy.
reduceAcc2 | nput Result Acc :-
Destructor Input HT, Constructor Acc H A
reduceAcc2 T Result A

aslong asConst r uct or isan associative predicate. Asan example, consider suni 2
again. We can produce the more efficient (tail recursive) accumulator implementation
of sum 2 by instantiating thisr educeAcc/ 2 schema:

sum List Result :-
(X\ (X =0)) Acc, sun? List Result Acc.
sun2 [] Result Result.
sum? [H T] Result Acc :-
(XXN2\(Z2is X+Y)) Acc HA sun2 T Result A

A similar type of transformation is possible for programs captured by the
reduceLN 3 schema. The r educelLN 3 is a forward processing schema which
reducesitslist from the front and reduces its integer from some maximum value down
to 0. An equivalent backward processing schema which continuesto reduceitslist from
the front but reduces its integer up from O to the maximum rather than from the
maximum down to O looks like:

reduceUpLN L N Result :-
Max = (X\(X = N)),
reduceUpLN2 L 0 Max Result.
reduceUpLN2 [] N Max Result.
reduceUpLN2 L N Max Result :-
L=[HT], Mis N+ 1, reduceUpLN2 T M Max R,
((Max N, Base L Result); Constructor HR Result).

As an example, consider posi ti on/ 3 again. We can transform the standard
forward processing program given in the previous section to a backward processing
programusing ther educeLN 3 = r educeUpLN 3 transformation producing the
following implementation of posi ti on/ 3:

position L N E :

Max = (X\ (X =
position2 L 0 Max E

10

position2 []

N Max Result.

position2 L N Max E : -

L
((Max N,

[H T,

(X\\ (sigma 2\ (X = [Y

Mis N+ 1, position2 T M Max R,

Z]))) L B);

(XNZ\(Z=Y)) HRE).

The second type of semantics-preserving logic program extension is the
combination (or merging) of logic program schemata. Theideaisto merge two logic
program schemata whenever they have a common argument. Combination schema
transformations are listed in the following table.

Initial Schemata

Combination Schema

maplLi st/ 2

reducelLi st/ 2

mapReducelLi st/ 2

reducelLi st/ 2

reducelLi st/ 2

reducelLi stList/3

reduceLN 3

reduceLN 3

reduceLNLN 4

reduceli st Acc/ 2

reduceUpLN 3

reduceConnect/ 2

reduceli st Acc/ 2

reduceUpLNLN 4

reduceConnect/ 3

Probably the most obvious combination schema transformation isto combine logic
program schemata which have a common primary input. The r educeLi st/ 2 +
reducelLi st/ 2 = reduceli st Li st/ 3 transformation combinestwo r educe-
Li st/ 2 schemata that have a common primary input.

reduceList [] Resultl :- reducelList [] Result2 :-
Basel Result1. Base2 Result 2.
reduceList [HT] Resultl :- reducelList [HT] Result2 :-

reduceList T R
Constructorl HR Resultl.

reduceList T R
Constructor2 H R Resul t 2.

l

reduceListList [] Resultl Result2 :-
Basel Resultl, Base2 Result?2.
reduceListList [HT] Resultl Result2 :-
reduceListList T Rl R2,
Constructorl HRL Result1l,
Constructor2 H R2 Resul t 2.

An example of the use of the reducelList/2 + reducelList/2 =
reduceli st Li st/ 3 transformation isthe creation of a singly-recursive implementa-
tion of the aver age/ 2 predicate from the following straightforward solution:

11

average List Average :-
I ength List Length,
sum Li st Sum
Average is Sum/ Length.

length [] O.
length [HT] Length :- length T R, Length is R + 1.

sum [] O.
sum[H T] Sum:- sumT R Sumis R + H.

Applyingther educeli st/ 2 + reduceList/2 = reduceli stList/3
transformation to this program produces the following implementation of aver age/ 2:

average List Average :-
average2 List Length Sum
Average is Sum/ Length.
average2 [] 0 O.
average2 [H T] Length Sum: -
average2 T L S, Lengthis L + 1, Sumis S + H.

Becausether educeli st Li st/ 3 schemawas created by combining two global
list processing schemata which share acommon primary input and have distinct outputs,
the same process can also be used to combine two accumulated implementations of
global list processing schemata (or even one of each). It isalso possible to combine two
reduceLN 3 schemata with the r educeLN' 3 + reduceLN 3 = reduce-
LNLN 4 transformation.

reduceLN [] N Result1. reduceLN [] N Result?2.

reduceLN L N Resultl :- reduceLN L N Result2 :-
L=[HT], Mis N- 1, L=[HT], Mis N- 1,
reduceLN T M R, reduceLN T M R

((N =0, Basel L Resultl);
Constructorl HR Resultl). Constructor2 H R Result

l

reduceLNLN [] N Resultl Result?2.

reduceLNLN L N Resultl Result2 :-

L=[HT], Mis N- 1,

reduceLNLN T M R1 R2,

((N =10, Basel L Resultl, Base2 L Result?2);
(Constructorl H Rl Resultl),
Constructor2 HR2 Result?2)).

; ((N =0, Base2 L Result?2);
2)

An example of the use of ther educelLN' 3 + reduceLN 3 = reduce-
LNLN 4 transformation is the splitting of alist into two sublists, one sublist which
contains the first n elements of the list and a second sublist which contains all but the
first n elements of the list. This task can be accomplished using the well-known

12

t ake/ 3 and dr op/ 3 predicates:

takedrop List N FirstPart ButFirstPart :-
take List N FirstPart, drop List N ButFirstPart.

take [] N].

take L N Result :-
L=[HT], Mis N- 1, take T MR
((N=0, (XXN(Y =1])) L Result);
(XXNZ\(Z=1[XY])) HR Result).

drop [] N[

L=1[HT], M:IS N- 1, drop T MR
((N=0, (XXN(Y = X)) L Result);
(XX\MNZ\(Z =Y)) HR Result).

Applyingther educeLN 3 + reducelLN 3 = reduceLNLN 4 transforma
tiontot akedr op/ 4 produces the following implementation:

takedrop [] N [T [1]-
takedrop L N Resl Res2 : -
L=[HT], Mis N- 1, takedrop T MRl R2,

N = 0,
(((X\Y\(Y: [1)) L Resl, (X\V\(Y = X)) L Res2);
(XNZ2\(Z =1XVY])) HRL Resl),

(XNZ2\(Z = Y)) HR2 Res2)).

ThereducelLN 3 + reducelLN 3 = reduceLNLN 4 transformation has
a corresponding r educeUpLN 3 + reduceUpLN 3 = reduceUpLNLN 4
transformation which enables the combination of two backward processing r educe-
LN 3 programs. Although the transformational system of Vasconcelos and Fuchs[16]
supports the combination of logic program schemata which share a common input, their
system currently does not support any transformations which connect two logic programs
where the output of one schema is the input to another schema. We can support such
transformations by connecting mapLi st/ 2 and reduceLi st/ 2 where the
mapping/filtering program maps a predicate across the elements of the input list and this
mapped lististhenreduced. ThemapLi st/ 2 + reduceli st/ 2 = mapReduce-
Li st/ 2 transformation combinesthe mapLi st / 2 schemawith ther educeli st/ 2
schemawhere the list that is produced by the mapping/filtering program is the input to
the reduction program.

13

mapList [] []. reducelList [] Result :-
mapLi st [H T] TenpRes : - Base Result.

mapList T R reduceList [HT] Result :-
((P H XX, TenpRes = [XX| R]); reduceList T R,

TempRes = R). Constructor H R Result.

l

mapReduceLi st [] Result :-

Base Result.

mapReduceLi st [H T] Result :-

mapReduceList T R,

((P H XX, Constructor XX R Result); Result = R).

As an example, consider the following straightforward solution to counting the
number of positive elementsin alist by filtering out the non-positive elements (using
posi tivesOnl y/ 2) and then counting the number of elements in the filtered list
(using | engt h/ 2):

positiveCount List Result :-
positivesOnly List X, length X Result.

positivesOnly [] [].

positivesOnly [H T] Result :-
positivesOnly T R
((truth is H> 0, XX = H Result = [XX R);
Result = R).

length [] O.
length [HT] L :- length T X, Lis X + 1.

Applying the mapLi st/2 + reducelist/2 = mapReducelList/2
transformation to this positiveCount/2 program produces the following
implementation:

positiveCount [] O.

positiveCount [H T] Result :-
positiveCount T R,
(((truth is H>0, XX =H), Result is R+ 1);
Result = R).

Another class of combination schema transformations enable the connection of two
logic program schemata that share acommon primary input and the result of one schema
isan additional input to the other schema. We have identified two schema transforma-
tions for this type of combination schema transformation: reduceli st Acc/ 2 +

reduceUpLN 2 = reduceConnect/2 andreducelLi st Acc/2 + reduce-
UpLNLN/ 3 = reduceConnect/ 3.

14

reduceLi stAcc L N :- reduceUpLN L N Result :-
Basel A, Max = (X\ (X = N)),
reduceLi stAcc2 L N A reduceUpLN2 L O Max Result.
reduceLi st Acc2 [] N N reduceUpLN2 [] N Max Result.
reduceLi stAcc2 L N A : - reduceUpLN2 L N Max Result :-
L=[HT], L=[HT], Mis N+ 1,
Constructorl A H B, reduceUpLN2 T M Max R,
reduceLi st Acc2 T N B. ((Max N, Base2 L Result);
Constructor2 HR Result).

l

reduceConnect List Result :-

Basel Acc, Max = (X\(X = Q)),

reduceC2 List Acc A O Max Result.

reduceC2 [] Acc Acc N Max Result :-

Connect Acc C, Max = (X\(X = Q).

reduceC2 List Acc RL N Max Result : -

List = [HT], Mis N+ 1, Constructorl Acc H A
reduceC2 T A RL MMx R

((Max N, Base2 List Result); Constructor2 HR Result).

Asan exampleof ther educeAccLi st/ 2 + reduceUpLN 2 = reduce-
Connect / 2 transformation, consider finding the middle element in an arbitrary list.
A gtraightforward solution to this problem is to count the number of elementsin thelist
(using | engt h/ 2), divide this count by two, and then use thisvalueto find the middle

element (using posi ti on/ 3):
mddle List Mddle :-

length List Length, Half is Length div 2,
position List Half M ddle.

length [] O.
length [HT] Length :- length T R, Length is R + 1.
position [] N E.
position L N E : -
L=[HT], Mis N- 1, position T MR
((N =10, (XW(sigm 2\(X =1[Y][Z]))) L B);
(XX\MNZ\(Z2=Y)) HR E).

The first step in the transformation of m ddl e/ 2 isto transform | engt h/ 2 to
an accumulated implementation using ther educe/ 2 = reduceAcc/ 2 tranforma
tion producing the following implementation of | engt h/ 2:

I ength List Length :- Acc = 0, length2 List Length Acc.

length2 [] Len Len.
length2 [H T] Len Acc :- Ais Acc + 1, length2 T Len A

15

The next step isto transform posi t i on/ 3 from aforward processing program
to a backward processing program using the r educeLN' 3 = reduceUpLN 3
transformation producing the following implementation of posi ti on/ 3:

position L N E : -
Max = (X\ (X = N)),
position2 L 0O Max E
position2 [] N Max Result.
position2 L N Max E : -
L=[HT], Mis N+ 1, position2 T M Max R,
(Max N, (X\W\(sigma 2\ (X =1[VY]|Z]))) L B);
(X\NZ\(Z =Y)) HRE).

The fina step in the transformation is to apply the r educeli st Acc/ 2 +
reduceUpLN 3 = reduceConnect / 2 transformationto combinel engt h/ 2 and
posi t i on/ 3 to produce the following implementation of mi ddl e/ 2:

mddle List Mddle :-

Acc = 0, Max = (X\(X = Half)),

m ddl e2 List Acc Length 0 Max M ddl e.
m ddl e2 [] Length Length AH Max M ddle : -

Half is Length div 2, Max = (X\(X = Half)).
m ddl e2 [H T] AL Length AH Max M ddl e : -

NL is AL + 1, NHis AH + 1,

mddle2 T NL Length NH Max M d,

((Max AH, Mddle = H; Mddle = Md).

The final combination schema transformation that we consider isther educe-
Li st Acc/ 2 + reduceUpLNLN 4 = reduceConnect/ 3 transformation.

L=[HT,
Constructorl A H B,
reduceLi st Acc2 T N B.

reduceLi stAcc L N : - reduceUpLNLN L N RL R2 : -

Basel A, Max = (XN (X = N)),

reduceLi stAcc2 L N A reduceUpLNLN2 L 0 Max R1 R2.

reduceLi stAcc2 [] N N reduceUpLNLN2 [] N Max Rl R2.

reduceLi stAcc2 L N A :- [reduceUpLNLN2 L N Max R2 : -
i

L=[HT], Mis N+
reduceUpLNLN2 T M Ma
((Max N, Base2l L R1
(Constructor21 H S1

Constructor22 H S2

16

reduceConnect List RlL R2 :
Basel Acc, Max = (X\ (X
reduceC2 List Acc AO R1
reduceC2 [] Acc Acc N Max R1
Connect Acc C, Max = X

—~

reduceC2 T ARL ML M Max S1 S2,
((Max N, Base2l List Rl, Base22 List R2);
(Constructor21 H S1 R1), Constructor22 H S2 R2)).

As an example of the reduceLi stAcc/2 + reduceUpLNLN 4 =
reduceConnect / 3 transformation, consider the task of splitting alist of elementsin
half. We can do thisin AProlog by invoking three reduction programs:

splitlist List FirstHalf LastHalf :-
length List NN Mis Ndiv 2,
take List MFirstHal f, drop List M LastHalf.

length [] O.
length [H T] Length :- length T R Lengthis R + 1.
take [] N[].
take L N Result :-
L=[HT], Mis N- 1, take T MR,
((N=0, (XW(Y =1])) L Result);
(XN2\(Z2=1[XY])) HR Result).
drop [1 N[].

, drop T MR
X)) L Result);
R Result).

In order to apply ther educeUpLN 3 + reduceUpLN 3 = reduceUp-
LNLN 4 transformation to t ake/ 3 and dr op/ 3 we must first transform them from
forward processing programsto backward processing programsusing ther educeLN 3
= reduceUpLN 3 transformation:

take L N Result :-
Max = (X\ (X = N)),
take2 L 0 Max Result.
take2 [] N Max [].
take2 L N Max Result :-
L=[HT], Mis N+ 1, take2 T M Max R
((Max N, (X\VW(Y =1])) L Result);
(XX\NZ\(Z =[XY])) HR Result).

17

drop L N Result : -
Max = (X\ (X = N)),
drop2 L 0 Max Resul t .

drop2 [] N Max [].

drop2 L N Max Result :-
L=[HT], Mis N+ 1, drop2 T M Max R,
((Max N, (X\VW(Y = X)) L Result);
(XNZ\(Z =Y)) HR Result).

Now we can combinet ake/ 3 and dr op/ 3 by applying ther educeUpLN 3
+ reduceUpLN 3 = reduceUpLNLN 4 transformation:

takedrop L N Resl Res2 : -
Max = (X\ (X = N)),
takedrop2 L 0 Max Resl Res2.
takedrop2 [] N Max [] [].
takedrop2 L N Max Resl Res2 : -
L=[HT], Mis N+ 1,
takedrop2 T M Max Rl R2,

((Max N,

XN (Y =[])) L Resl, (XN(Y = X)) L Res2));
(XNZ\(Z =[X Y])) HRL Resl),

(XN2\(Z = Y)) HR2 Res2)).

After transforming | engt h/ 2 to its accumulated implementation aswe did in the
previous example, we can apply ther educelLi st Acc/ 2 + reduceUpLNLN 4 =
r educeConnect/ 3 transformation producing the following implementation of
splitlist/3:

splitlist L Resl Res2 :-

Acc = 0, Max = (X\(X = Half)),

splitlist2 L Acc N O Max Resl Res2.
splitlist2 [] Length Length N Nax [

Hal f is Length div 2, Max = (X\(X = Half))
splitlist2 L AL Length AH Max Resl Res2 : -

L=[HT, NLis AL +1, NHis AH + 1,

spl itlist2 T NL Length NH Max Rl R2,

((Max AH, (X\Y\(Y =1])) L Resi,
(XN (Y = X)) L Res2);

(XN (Z =[XVY])) H R Res1,
(XX\NZ\(Z =Y)) HR2 Res2)).

Logic program schemata and logic program schema transformations can be used
to help in program development by enabling the programmer to produce a smple
straightforward solution to the problem and then transform that solution into an efficient
one by applying a set of program transformations.

18

4 Conclusion

We have proposed an extensible schema-based logic program transformation system as
an improvement to the traditional schema-based meta-language approaches. In this
system, we have defined a set of extensible logic program schematain AProlog. Because
AProlog isahigher-order logic programming language, it can be used as the representa-
tion language for both the logic programs and the extensible logic program schemata.
In addition to the instantiation of predicate variables, extensible logic program schemata
can be extended by applying standard programming techniques (e.g., accumulating
results), introducing additional arguments (e.g., asecond list to append to the end of the
primary list), combining logic program schemata which share a common primary input,
and connecting logic program schemata which are connected via aresult of one schema
being an input to the other schema. These extensions increase the robustness of logic
program schemata and enhance traditional schema-based transformational systems.

References

[1] D.Barker-Plummer. Cliché Programmingin Prolog. In M. Bruynooghe, editor,
Proceedings of the 2 Workshop on Meta-Programming in Logic, Leuven,
Belgium, pages 247-256, 1990.

[2] P.Brna, A. Bundy, A. Dodd, M. Eisenstadt, C. Looi, H. Pain, D. Robertson, B.
Smith, and M. van Someren. Prolog Programming Techniques. Instructional
Science, 20: 111-133, 1991.

[3] P. Flener. Logic Program Synthesis from Incomplete Information. Kluwer
Academic Publishers, 1995.

[4] P.Flenerand Y. Deville. Logic Program Synthesis from Incomplete Specifica-
tions. Journal of Symbolic Computation, 15: 775-805, 1993.

[5] P.FlenerandY. Deville. Logic Program Transformation Through Generalization
Schemata. In M. Proietti, editor, Proceedings of the 5" International Workshop on
Logic Program Synthesis and Transformation, Utrecht, The Netherlands, pages
171-173, Springer-Verlag, 1995.

[6] N.E. Fuchs and M.P.J. Fromhertz. Schema-Based Transformations of Logic
Programs. In T.P. Clement and K. Lau, editors, Proceedings of the 1% International
Workshop on Logic Program Synthesis and Transformation, Manchester, England,
pages 111-125, Springer-Verlag, 1991.

19

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

T.S. Gegg-Harrison. Basic Prolog Schemata. Technical Report CS-1989-20,
Department of Computer Science, Duke University, Durham, North Carolina,
1989.

T.S. Gegg-Harrison. Learning Prolog in a Schema-Based Environment.
Instructional Science, 20: 173-190, 1991.

T.S. Gegg-Harrison. Adapting Instruction to the Student's Capabilities. Journal
of Artificial Intelligence in Education, 3: 169-181, 1992.

T.S. Gegg-Harrison. Exploiting Program Schemata in an Automated Program
Debugger. Journal of Artificial Intelligence in Education, 5: 255-278, 1994.

T.S. Gegg-Harrison. Representing Logic Program Schemata in AProlog. In L.
Sterling, editor, Proceedings of the 12" International Conference on Logic
Programming, Kanagawa, Japan, pages 467-481, MIT Press, 1995.

A. Hamfelt and J. Fischer Nilsson. Declarative Logic Programming with Primitive
Recursive Relations on Lists. In M. Maher, editor, Proceedings of the 13" Joint
International Conference and Symposiumon Logic Programming, Bonn, Germany,
pages 230-243, MIT Press, 1996.

M. Kirschenbaum and L.S. Sterling. Applying Techniques to Skeletons. In J.
Jacquet, editor, Constructing Logic Programs, pages 127-140, MIT Press, 1993.

E. Marakakis and J.P. Gallagher. Schema-Based Top-Down Design of Logic
Programs using Abstract Data Types. In L. Fribourg and F. Turini, editors,
Proceedings of the 4™ International Workshops on Logic Program Synthesis and
Transformation and Meta-Programming in Logic, Pisa, Italy, pages 138-153,
Springer-Verlag, 1994.

G. Nadathur and D. Miller. An Overview of AProlog. In R.A. Kowaski and K.A.
Bowen, editors, Proceedings of the 5" International Conference and Symposium
on Logic Programming, Seattle, Washington, pages 810-827, MIT Press, 1988.

W.W. Vasconcelos and N.E. Fuchs. An Opportunistic Approach for Logic
Program Analysis and Optimisation Using Enhanced Schema-Based Trans-
formations. In M. Proietti, editor, Proceedings of the 5" International Workshop
on Logic Program Synthesis and Transformation, Utrecht, The Netherlands, pages
174-188, Springer-Verlag, 1995.

20

