
 Ancient Egyptian Numbers: A CS-Complete Example

Timothy S. Gegg-Harrison
Department of Computer Science

Winona State University
Winona, MN 55987

tsg@wind.winona.msus.edu

Abstract
A critical piece of any successful curriculum is a robust
example that permeates the key concepts of the field. For
computer science, we refer to such an example as CS-
complete. A good CS-complete example is applicable in
CS1, CS2, and Discrete Mathematics. Approximately 4000
years ago, the ancient Egyptians used a numbering system
that serves as a prototype CS-complete example. In this
paper, we outline the use of the Egyptian numbering
system as an example that naturally extends through CS1,
CS2, and Discrete Mathematics.

1 Introduction
Because of the dependency of computing on discrete
mathematics, the Computing Curricula 2001 Task Force
has proposed that discrete structures be added as a separate
knowledge area [2]. Although computer scientists
understand the importance of discrete mathematics to the
foundations of their field, computer science students do not
always see the relevance. Thus, it is important to find a
way to show students the relevance via a unifying example.
Some of the key topics included in the CS1/CS2 curriculum
are representation, problem solving, algorithms, recursion,
induction, and data structures. We refer to any example
that includes each of these topics as CS-complete.
 Approximately 4000 years ago, the ancient Egyptians
used a numbering system [1] that makes an interesting
example that is CS-complete. In this paper, we outline the
use of this example in our CS1, CS2, and Discrete
Mathematics classes.

2 CS1/CS2 Lesson
In our CS1 class, students are introduced to representation
and problem solving using the Egyptian numbering system.
Two aspects of the Egyptian numbering system are
presented to our CS1 students. We begin with problem
solving using Egyptian multiplication on integers followed
by the representation of rational numbers using Egyptian
fractions.
 The beauty of Egyptian multiplication is that it
provides a drastically different approach to multiplication
while at the same time providing a natural bridge from the
decimal numbering system to the binary numbering system.
The basic idea behind Egyptian multiplication is to
repeatedly double the multiplicand while at the same time
halving the multiplier until it eventually reaches 1. Note

that this algorithm is based on the fact that 2
2
mm n n× = × .

This works fine as long as m is even in which case
2
m is an

integer. If m is odd, on the other hand, then
2
m is not an

integer. In order to prevent introducing non-integers into
the computation, it is necessary to use the expression

2
2
m n ×

 (where
2
m

 is the whole number of times that 2

will divide into m). When m is even, 2
2
m n m n × = ×

.

When m is odd, on the other hand, 2
2
m n m n × ≠ ×

. In

fact, 2
2
m n ×

 is precisely n less than m n× whenever m is

odd. Thus, the product of two integers is simply the sum of
all the "doubled" multiplicands for which the
corresponding "halved" multiplier is odd.
 After giving a brief history of the Rhind Papyrus and
the Rosetta Stone which unveiled the mathematical secrets
of the ancient Egyptians and their numbering system, we
provide an example of Egyptian multiplication on 33 × 26
using the following table.

"Halved"

Multiplicand

"Doubled"
Multiplier

Remainder

33 26 26
16 52 0
8 104 0
4 208 0
2 416 0
1 832 832

Students can compute the product by summing the values
in the righthand column. Thus, the expression 33 × 26 =
(26 + 832) = 858. The algorithm for multiplying the
number m by the number n producing p is as follows.

Egyptian Multiplication Algorithm

The × operation for the expression m n× is p
as defined in the following cases:

 Case 1: ()0m =
 p is 0

 Case 2: ()1m =
 p is n

 Case 3: ()1m > and ()() mod 2 0m =

 p is () () div 2m n n× +

 Case 4: ()1m > and ()() mod 2 1m =

 p is () ()() div 2m n n n× + +

After studying the Egyptian Multiplication Algorithm and
building on their understanding of recursion, our CS1
students are introduced to the idea of alternate
representations with the binary numbering system.
Students see that it is possible to convert decimal numbers
into binary by repeatedly dividing the decimal number by 2
and maintaining the remainders. We show the conversion
of the decimal number 75 to binary using the same basic
table that we used for Egyptian multiplication.

Decimal
Number

Binary Position

Binary Bit

(Remainder)
75 1 1
37 2 1
18 4 0
9 8 1
4 16 0
2 32 0
1 64 1

This table is used to argue that the striking similarity
between Egyptian multiplication and decimal to binary
conversion is not a coincidence. Students see that, in fact,
it is the same process that is taking place. This can be
made even more clear by looking at decimal to binary
conversion from a slightly different perspective. First of
all, students are reminded that 20 = 1 and therefore 75 can
be rewritten as 75 × 1 = 75 × 20. Following the same
approach taken by the ancient Egyptians, 75 × 20 can be
rewritten as (37 × 21) + 20 since 75 is an odd number so
(37 × 21) is 20 less than 75 × 20. Furthermore, 37 × 21 can
be rewritten as (18 × 22) + 21 since 37 is an odd number so
(18 × 22) is 21 less than 37 × 21. This gives the following
decomposition of 75:

75 = 75 × 1 = 75 × 20
= (37 × 21) + 20
= ((18 × 22) + 21) + 20
= ((9 × 23) + 21) + 20
= (((4 × 24) + 23) + 21) + 20
= (((2 × 25) + 23) + 21) + 20
= (((1 × 26) + 23) + 21) + 20
= ((26 + 23) + 21) + 20

Decimal to Binary Conversion Algorithm

The binary equivalent of the decimal number
d is b as defined in the following cases:

 Case 1: ()0d =
 b is 0

 Case 2: ()1d =
 b is d

 Case 3: ()1d > and ()() mod 2 0d =

 b is (the binary equivalent of () div 2 0d

 Case 4: ()1d > and ()() mod 2 1d =

 b is (the binary equivalent of () div 2 1d

The binary numbering system is important for CS1 students
because in addition to providing them with an alternate
representation for number, it provides them with the
practical knowledge of the actual numbering system that
used in most computational devices. However, the binary
numbering system merely provides a different base rather
than a drastically different representation of number.
Extending the binary numbering system to include integers
by introducing complements and further to include rational
numbers via floating point representation is important, but
still very intuitive.
 Egyptian fractions, on the other hand, provide a
representation of rational numbers that is anything but
intuitive to most first-year CS students. In addition to

providing another example of a recursive algorithm, the
conversion of a standard fraction into the sum of distinct
unit fractions (i.e., fractions with a numerator of 1)
provides an example of a greedy algorithm that uses linked
lists. Thus, Egyptian fraction conversion makes an ideal
programming project for CS2 students.

Egyptian Fraction Conversion Algorithm

The Egyptian fraction equivalent of the

fraction p
q

 is f as defined in the following

cases:

 Case 1: ()0p =
 f is 0
 Case 2: ()0p ≠

 f is 1
k

 + (the Egyptian fraction equivalent

 of 1p
q k

−

) where k is the smallest

 positive integer such that 1p
q k
≥

As an example, students are asked to consider the
application of the Egyptian Fraction Conversion Algorithm

to 6
7

. The largest unit fraction that is less than 6
7

 is 1
2

.

Thus, we reduce the problem to the conversion of the

fraction 6 1 5
7 2 14
− = . The largest unit fraction that is less

than 5
14

 is 1
3

 leaving the fraction 5 1 1
14 3 42

− = . Since 1
42

is a unit fraction, the algorithm terminates with
6 1 1 1
7 2 3 42
= + + .

 The Egyptian Fraction Conversion Algorithm can be
used to convert both proper and improper fractions, but it
will produce duplicate unit fractions on improper fractions.
Students are shown that it is possible to remove duplicates
by applying the following identity:

()

1 1 1
1 1a a a a

= +
+ +

They are shown that an alternative way to remove
duplicates is not allow them to be created in the first place
by modifying the algorithm to force k to be unique in Case
2. From a programming perspective, Egyptian fractions are
very robust. Students create an instantiable class for
rational numbers that contains an inner class to define
recursive nodes that make up a linked list (or a more
sophisticated data structure like a deterministic skip list or
AVL tree) of unit fractions.

Egyptian Fraction Class
import java.math.BigInteger;
public class EgyptianFraction extends Object
 implements Cloneable, Comparable {

 private class UnitFraction {
 private BigInteger denom;
 private UnitFraction next;
 private UnitFraction(BigInteger d, UnitFraction n) {
 denom = d;
 next = n;
 }
 }

 private UnitFraction value = null;

 public EgyptianFraction(BigInteger p, BigInteger q) {
 BigInteger k = new BigInteger("2");
 while (p.compareTo(BigInteger.ZERO) != 0) {
 while (((p.multiply(k)).compareTo(q)) < 0)
 k = k.add(BigInteger.ONE);
 value = new UnitFraction(k, value);
 p = (p.multiply(k)).subtract(q);
 q = q.multiply(k);
 k = k.add(BigInteger.ONE);
 }
 }
 public boolean equals(Object o) {

 }
 public int compareTo(Object o) {

 }
 public Object clone() {

 }
 public EgyptianFraction add(EgyptianFraction e) {

 }
 public EgyptianFraction multiply(EgyptianFraction e) {

 }

}

The Java implementation of the EgyptianFraction
class highlights many key programming concepts. In
addition to giving students practice with inheritance by
extending the Object class and implementing the
Comparable and Cloneable interfaces, students also
encounter computational limits head-on. To avoid
overflowing the program stack, students need to replace the
tail-recursive algorithm with an implementation using
nested while loops. Furthermore, because unit fractions
quickly become too large for the integer primitive types
int and long, students are forced to use Java’s
BigInteger class.

3 Discrete Mathematics Lesson

In our Discrete Mathematics class, students are introduced
to the notion of proof using strong induction. One of the
classic examples in discrete mathematics is to show the
completeness of the binary numbering system. Although
we present this proof, students find it trivial and
unnecessary. Egyptian fractions, on the other hand, are not
as intuitive to most first-year CS students. Some of them
are not at all convinced that every fraction (both proper and
improper) can be expressed as the sum of distinct unit
fractions.

 A proof of the completeness of Egyptian fractions
(i.e., that every rational number can be represented in
Egyptian form) can be given using strong induction. It
provides an excellent example of the need for proof,
especially if it is followed by an attempt to prove that
“powers of two” Egyptian fractions (i.e., Egyptian fractions
whose unit fractions all have denominators that are powers
of two) are complete. Showing that “powers of two”
Egyptian fractions are simply an alternative way of
representing repeating binaries (i.e., the binary equivalent
of repeating decimal numbers) provides further insight into
the representation of number. A proof that all proper
fractions can be represented in Egyptian form is presented
below. The proof that all fractions (both proper and
improper) can be represented in Egyptian form is also
given in class.

Completeness of Egyptian Fractions

Every fraction p
q

 such that 0 1p
q

< < can be

represented in Egyptian form
1 2

1 1 1

m

p
q n n n
= + + +

where 1 2, , , mn n n… are positive integers satisfying

1 2 mn n n< < < .

Proof (by induction on p):

Basis (p = 1):

If p is 1 then p
q

 is already in Egyptian form.

Inductive Hypothesis: Every fraction p
q

 such that

0 1p
q

< < and 1 p k≤ < can be represented in

Egyptian form
1 2

1 1 1

m

p
q n n n
= + + + where

1 2 mn ,n , ,n… are positive integers satisfying

1 2 mn n n< < < .

Inductive Step: We must show that every fraction k
q

such that 0 1k
q

< < can be represented in Egyptian

form:
1 2

1 1 1

m

k
q n n n
= + + + where 1 2, , , mn n n… are

positive integers satisfying 1 2 mn n n< < < . Choose

the smallest positive integer n such that 1 k
n q
≤ .

Clearly, n > 1 since we know that 1k
q
< .

Furthermore, since n is the smallest positive integer

satisfying 1 k
n q
≤ and 1n − is a positive integer less

than n, it follows that 1
1

k
q n
<

−
. There are two cases

to consider: 1 k
n q
= and 1 k

n q
< .

Case 1 (1 k
n q
=): The Egyptian form for k

q
 is 1

n
.

Case 2 (1 k
n q
<): Consider the value 1k

q n
− . Clearly

1 0k
q n
− > since 1 k

n q
< . Furthermore, since,

1
1

k
q n
<

−
 it follows that (1)k n q− < so nk q k− < .

Note that we can rewrite 1k
q n
− as nk q

nq
− . Since

nk q k− < , we know by the inductive hypothesis that
nk q

nq
− can be written in Egyptian form

1 2

1 1 1

m

nk q
nq n n n
−

= + + + where 1 2, , , mn n n… are

positive integers satisfying 1 2 mn n n< < < . So k
q

can be written in Egyptian form

1 2

1 1 1 1

m

k
q n n n n
= + + + + where 1 2, , , mn n n… are

positive integers satisfying 1 2 mn n n< < < .

Hence, regardless of the choice of n, k
q

 can be

represented in Egyptian form. Since we have proved
the basis step and the inductive step of the strong

mathematical induction, every fraction p
q

 such that

0 1p
q

< < can be represented in Egyptian form

1 2

1 1 1

m

p
q n n n
= + + + where 1 2, , , mn n n… are positive

integers satisfying 1 2 mn n n< < < .

Another important concept for first-year CS students to
grasp is the notion of program correctness. The Egyptian
multiplication algorithm can be used as an example of the
use of strong induction to prove the correctness of a Java
program. In addition to proving the correctness of various
Java programs (including one that computes 2n recursively
using the formula ()21 2 1n n− + −), we prove the
correctness of the following Java implementation of a
times method that finds the product of two positive
integers using Egyptian multiplication.

Egyptian Multiplication Method

int times(int m, int n) {

 if (m == 0)

 return 0;

 else if (m == 1)

 return n;

 else if ((m%2) == 0)

 return times(m/2,n+n);

 else

 return times(m/2,n+n)+n;

}

Correctness of Egyptian Multiplication

The function times(m,n) returns the value m n⋅
where , 0m n ≥ .

Proof (by induction on m):
Basis (m = 0 and m = 1):

If m = 0 then the function times(0,n) returns 0 = 0 n⋅
as defined by the then part of the first conditional.

If m = 1 then the function times(1,n) returns n = 1 n⋅
as defined by the then part of the second conditional.

Inductive Hypothesis: For all i with 1 i k≤ < , the
function times(i,n) returns i n⋅ .
Inductive Step: We must show that the function
times(k,n) returns k n⋅ . There are two cases to
consider: k is even and k is odd.
Case 1 (k is even): By the then part of the third (or
innermost) conditional, it follows that:

() = (div 2)

 = (2)
2

k ,n k ,n n
k , n

+

times times

times

 = (2)
2
k , ntimes

 = () (2)
2

 =

k n

k n

⋅

⋅

Case 2 (k is odd): By the else part of the third (or
innermost) conditional, it follows that:

()()

() = (div 2)+

 = (,2)+
2

1 = (,2)+
2

1 = () (2) +
2

 = 1 +

 =

k ,n k ,n n n
k n n

k n n

k n n

k n n

k n

+

−

− ⋅

− ⋅

⋅

times times

times

times

Hence, regardless of whether k is even or odd, the
program is correct. Since we have proved the basis
step and the inductive step of the strong mathematical
induction, the function times(m,n) returns the value
m n⋅ where , 0m n ≥ .

4 Conclusion
Although our students were taking discrete mathematics
during their first year, they were apparently not retaining it.
In order to address this problem, we restructured our CS
curriculum last year. Now our students simultaneously
take two semesters of discrete mathematics, a Discrete
Mathematics course that is taught by the Mathematics
Department followed by a Discrete Structures course taught
by the Computer Science Department, while they are taking
CS1 and CS2.
 The additional semester of discrete mathematics has
helped, however, we believe that the current success of our
CS students in CS1 and CS2 has significantly benefited
from a very active attempt to make the discrete
mathematics more relevant. We have attempted to show
our students this relevance by using a CS-complete
example, a unifying example that is applicable in CS1,
CS2, and Discrete Mathematics.

References
[1] Burton, D.M. The History of Mathematics: An

Introduction. Boston: Allyn and Bacon, Inc., 1985.
[2] Computing Curricula 2001. Chapter 6 – Defining a

Curriculum. Online. Internet. [March 6, 2000 draft].
Available WWW: http://www.computer.org/education/
cc2001/report/curriculum.html

