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Abstract 
A critical piece of any successful curriculum is a robust 
example that permeates the key concepts of the field.  For 
computer science, we refer to such an example as CS-
complete.  A good CS-complete example is applicable in 
CS1, CS2, and Discrete Mathematics.  Approximately 4000 
years ago, the ancient Egyptians used a numbering system 
that serves as a prototype CS-complete example.  In this 
paper, we outline the use of the Egyptian numbering 
system as an example that naturally extends through CS1, 
CS2, and Discrete Mathematics.  
 

1 Introduction 
Because of the dependency of computing on discrete 
mathematics, the Computing Curricula 2001 Task Force 
has proposed that discrete structures be added as a separate 
knowledge area [2].  Although computer scientists 
understand the importance of discrete mathematics to the 
foundations of their field, computer science students do not 
always see the relevance.  Thus, it is important to find a 
way to show students the relevance via a unifying example.  
Some of the key topics included in the CS1/CS2 curriculum 
are representation, problem solving, algorithms, recursion, 
induction, and data structures.  We refer to any example 
that includes each of these topics as CS-complete. 
          Approximately 4000 years ago, the ancient Egyptians 
used a numbering system [1] that makes an interesting 
example that is CS-complete.  In this paper, we outline the 
use of this example in our CS1, CS2, and Discrete 
Mathematics classes. 

 
 
 
 

 

 

 

2 CS1/CS2 Lesson 
In our CS1 class, students are introduced to representation 
and problem solving using the Egyptian numbering system.  
Two aspects of the Egyptian numbering system are 
presented to our CS1 students.  We begin with problem 
solving using Egyptian multiplication on integers followed 
by the representation of rational numbers using Egyptian 
fractions. 
          The beauty of Egyptian multiplication is that it 
provides a drastically different approach to multiplication 
while at the same time providing a natural bridge from the 
decimal numbering system to the binary numbering system.  
The basic idea behind Egyptian multiplication is to 
repeatedly double the multiplicand while at the same time 
halving the multiplier until it eventually reaches 1.  Note 

that this algorithm is based on the fact that 2
2
mm n n× = × .  

This works fine as long as m is even in which case 
2
m  is an 

integer.  If m is odd, on the other hand, then 
2
m  is not an 

integer.  In order to prevent introducing non-integers into 
the computation, it is necessary to use the expression 

2
2
m n  ×  

 (where 
2
m 
  

 is the whole number of times that 2 

will divide into m).  When m is even, 2
2
m n m n  × = ×  

.  

When m is odd, on the other hand, 2
2
m n m n  × ≠ ×  

.  In 

fact, 2
2
m n  ×  

 is precisely n less than m n×  whenever m is 

odd.  Thus, the product of two integers is simply the sum of 
all the "doubled" multiplicands for which the 
corresponding "halved" multiplier is odd. 
          After giving a brief history of the Rhind Papyrus and 
the Rosetta Stone which unveiled the mathematical secrets 
of the ancient Egyptians and their numbering system, we 
provide an example of Egyptian multiplication on 33 × 26 
using the following table. 



 
"Halved" 

Multiplicand 

 
"Doubled" 
Multiplier 

 
Remainder 

33 26 26 
16 52 0 
8 104 0 
4 208 0 
2 416 0 
1 832 832 

Students can compute the product by summing the values 
in the righthand column.  Thus, the expression 33 × 26 = 
(26 + 832) = 858.  The algorithm for multiplying the 
number m by the number n producing p is as follows. 

 
Egyptian Multiplication Algorithm  

 
The × operation for the expression m n×  is p 
as defined in the following cases: 

 Case 1: ( )0m =   
  p is 0 

 Case 2: ( )1m =  
  p is n 

 Case 3: ( )1m >  and ( )( ) mod 2 0m =  

  p is ( ) ( ) div 2m n n× +  

 Case 4: ( )1m >  and ( )( ) mod 2 1m =  

  p is ( ) ( )( ) div 2m n n n× + +  

After studying the Egyptian Multiplication Algorithm and 
building on their understanding of recursion, our CS1 
students are introduced to the idea of alternate 
representations with the binary numbering system.  
Students see that it is possible to convert decimal numbers 
into binary by repeatedly dividing the decimal number by 2 
and maintaining the remainders.  We show the conversion 
of the decimal number 75 to binary using the same basic 
table that we used for Egyptian multiplication. 

 
Decimal 
Number 

 
Binary Position 

 
Binary Bit 

(Remainder)
75 1 1 
37 2 1 
18 4 0 
9 8 1 
4 16 0 
2 32 0 
1 64 1 

This table is used to argue that the striking similarity 
between Egyptian multiplication and decimal to binary 
conversion is not a coincidence.  Students see that, in fact, 
it is the same process that is taking place.  This can be 
made even more clear by looking at decimal to binary 
conversion from a slightly different perspective.  First of 
all, students are reminded that 20 = 1 and therefore 75 can 
be rewritten as 75 × 1 = 75 × 20.  Following the same 
approach taken by the ancient Egyptians, 75 × 20 can be 
rewritten as (37 × 21) + 20 since 75 is an odd number so  
(37 × 21) is 20 less than 75 × 20.  Furthermore, 37 × 21 can 
be rewritten as (18 × 22) + 21 since 37 is an odd number so 
(18 × 22) is 21 less than 37 × 21.  This gives the following 
decomposition of 75: 

75 =   75 × 1 = 75 × 20 
= (37 × 21) + 20 
= ((18 × 22) + 21) + 20 
= ((9 × 23) + 21) + 20 
= (((4 × 24) + 23) + 21) + 20 
= (((2 × 25) + 23) + 21) + 20 
= (((1 × 26) + 23) + 21) + 20 
= ((26 + 23) + 21) + 20 

 
 

Decimal to Binary Conversion Algorithm  
 

The binary equivalent of the decimal number 
d is b as defined in the following cases: 

 Case 1: ( )0d =  
  b is 0 

 Case 2: ( )1d =  
  b is d 

 Case 3: ( )1d >  and ( )( ) mod 2 0d =  

  b is (the binary equivalent of ( ) div 2 0d  

 Case 4: ( )1d >  and ( )( ) mod 2 1d =  

  b is (the binary equivalent of ( ) div 2 1d  

The binary numbering system is important for CS1 students 
because in addition to providing them with an alternate 
representation for number, it provides them with the 
practical knowledge of the actual numbering system that 
used in most computational devices.  However, the binary 
numbering system merely provides a different base rather 
than a drastically different representation of number.  
Extending the binary numbering system to include integers 
by introducing complements and further to include rational 
numbers via floating point representation is important, but 
still very intuitive. 
          Egyptian fractions, on the other hand, provide a 
representation of rational numbers that is anything but 
intuitive to most first-year CS students.  In addition to 



providing another example of a recursive algorithm, the 
conversion of a standard fraction into the sum of distinct 
unit fractions (i.e., fractions with a numerator of 1) 
provides an example of a greedy algorithm that uses linked 
lists.  Thus, Egyptian fraction conversion makes an ideal 
programming project for CS2 students. 

Egyptian Fraction Conversion Algorithm  

The Egyptian fraction equivalent of the 

fraction p
q

 is f as defined in the following 

cases: 

 Case 1: ( )0p =  
  f  is 0 
 Case 2: ( )0p ≠  

  f  is 1
k

 + (the Egyptian fraction equivalent  

  of 1p
q k

 
− 

 
) where k is the smallest  

  positive integer such that 1p
q k
≥  

As an example, students are asked to consider the 
application of the Egyptian Fraction Conversion Algorithm 

to 6
7

.  The largest unit fraction that is less than 6
7

 is 1
2

.  

Thus, we reduce the problem to the conversion of the 

fraction 6 1 5
7 2 14
− = .  The largest unit fraction that is less 

than 5
14

 is 1
3

 leaving the fraction 5 1 1
14 3 42

− = .  Since 1
42

 

is a unit fraction, the algorithm terminates with 
6 1 1 1
7 2 3 42
= + + . 

          The Egyptian Fraction Conversion Algorithm can be 
used to convert both proper and improper fractions, but it 
will produce duplicate unit fractions on improper fractions.  
Students are shown that it is possible to remove duplicates 
by applying the following identity: 

 
( )

1 1 1
1 1a a a a

= +
+ +

 

They are shown that an alternative way to remove 
duplicates is not allow them to be created in the first place 
by modifying the algorithm to force k to be unique in Case 
2.  From a programming perspective, Egyptian fractions are 
very robust.  Students create an instantiable class for 
rational numbers that contains an inner class to define 
recursive nodes that make up a linked list (or a more 
sophisticated data structure like a deterministic skip list or 
AVL tree) of unit fractions. 

Egyptian Fraction Class 
import java.math.BigInteger; 
public class EgyptianFraction extends Object 
             implements Cloneable, Comparable { 
 
 private class UnitFraction { 
  private BigInteger denom; 
  private UnitFraction next; 
  private UnitFraction(BigInteger d, UnitFraction n) { 
    denom = d; 
    next = n; 
  } 
 } 
 
 private UnitFraction value = null; 

 public EgyptianFraction(BigInteger p, BigInteger q) { 
   BigInteger k = new BigInteger("2"); 
   while (p.compareTo(BigInteger.ZERO) != 0) {    
     while (((p.multiply(k)).compareTo(q)) < 0) 
       k = k.add(BigInteger.ONE); 
     value = new UnitFraction(k, value); 
     p = (p.multiply(k)).subtract(q); 
     q = q.multiply(k); 
     k = k.add(BigInteger.ONE); 
   } 
 } 
 public boolean equals(Object o) { 
  #  
 } 
 public int compareTo(Object o) { 
  #  
 } 
 public Object clone() { 
  #  
 } 
 public EgyptianFraction add(EgyptianFraction e) { 
  #  
 } 
 public EgyptianFraction multiply(EgyptianFraction e) {
  #  
 } 
 #  
} 

The Java implementation of the EgyptianFraction 
class highlights many key programming concepts.  In 
addition to giving students practice with inheritance by 
extending the Object class and implementing the 
Comparable and Cloneable interfaces, students also 
encounter computational limits head-on.  To avoid 
overflowing the program stack, students need to replace the 
tail-recursive algorithm with an implementation using 
nested while loops.  Furthermore, because unit fractions 
quickly become too large for the integer primitive types 
int and long, students are forced to use Java’s 
BigInteger class.   

3 Discrete Mathematics Lesson 

In our Discrete Mathematics class, students are introduced 
to the notion of proof using strong induction.  One of the 
classic examples in discrete mathematics is to show the 
completeness of the binary numbering system.  Although 
we present this proof, students find it trivial and 
unnecessary.  Egyptian fractions, on the other hand, are not 
as intuitive to most first-year CS students.  Some of them 
are not at all convinced that every fraction (both proper and 
improper) can be expressed as the sum of distinct unit 
fractions. 



          A proof of the completeness of Egyptian fractions 
(i.e., that every rational number can be represented in 
Egyptian form) can be given using strong induction.  It 
provides an excellent example of the need for proof, 
especially if it is followed by an attempt to prove that 
“powers of two” Egyptian fractions (i.e., Egyptian fractions 
whose unit fractions all have denominators that are powers 
of two) are complete.  Showing that “powers of two” 
Egyptian fractions are simply an alternative way of 
representing repeating binaries (i.e., the binary equivalent 
of repeating decimal numbers) provides further insight into 
the representation of number.  A proof that all proper 
fractions can be represented in Egyptian form is presented 
below.  The proof that all fractions (both proper and 
improper) can be represented in Egyptian form is also 
given in class. 

Completeness of Egyptian Fractions 
 

Every fraction p
q

 such that 0 1p
q

< <  can be 

represented in Egyptian form 
1 2

1 1 1

m

p
q n n n
= + + +"  

where 1 2, , , mn n n…  are positive integers satisfying 

1 2 mn n n< < <" .  

 
Proof (by induction on p):  
 
 
Basis (p = 1): 

If p is 1 then p
q

 is already in Egyptian form. 

 

Inductive Hypothesis:  Every fraction p
q

 such that 

0 1p
q

< <  and 1 p k≤ <  can be represented in 

Egyptian form 
1 2

1 1 1

m

p
q n n n
= + + +"  where 

1 2 mn ,n , ,n…  are positive integers satisfying 

1 2 mn n n< < <" . 
 

Inductive Step:  We must show that every fraction k
q

 

such that 0 1k
q

< <  can be represented in Egyptian 

form:  
1 2

1 1 1

m

k
q n n n
= + + +"  where 1 2, , , mn n n…  are 

positive integers satisfying  1 2 mn n n< < <" .  Choose 

the smallest positive integer n such that 1 k
n q
≤ .  

Clearly, n > 1 since we know that 1k
q
< .  

Furthermore, since n is the smallest positive integer 

satisfying 1 k
n q
≤  and 1n −  is a positive integer less 

than n, it follows that 1
1

k
q n
<

−
.  There are two cases 

to consider:  1 k
n q
=  and 1 k

n q
< . 

 

Case 1 ( 1 k
n q
= ):  The Egyptian form for k

q
 is 1

n
. 

 

Case 2 ( 1 k
n q
< ):  Consider the value 1k

q n
− .  Clearly 

1 0k
q n
− >  since 1 k

n q
< .  Furthermore, since, 

1
1

k
q n
<

−
 it follows that ( 1)k n q− <  so nk q k− < .  

Note that we can rewrite 1k
q n
−  as nk q

nq
− .  Since 

nk q k− < , we know by the inductive hypothesis that 
nk q

nq
−  can be written in Egyptian form 

1 2

1 1 1

m

nk q
nq n n n
−

= + + +"  where 1 2, , , mn n n…  are 

positive integers satisfying 1 2 mn n n< < <" .  So k
q

 

can be written in Egyptian form 

1 2

1 1 1 1

m

k
q n n n n
= + + + +"  where 1 2, , , mn n n…  are 

positive integers satisfying 1 2 mn n n< < <" .   

Hence, regardless of the choice of n, k
q

 can be 

represented in Egyptian form.  Since we have proved 
the basis step and the inductive step of the strong 

mathematical induction, every fraction p
q

 such that 

0 1p
q

< <  can be represented in Egyptian form 

1 2

1 1 1

m

p
q n n n
= + + +"  where 1 2, , , mn n n…  are positive 

integers satisfying 1 2 mn n n< < <" .  ,  



Another important concept for first-year CS students to 
grasp is the notion of program correctness.  The Egyptian 
multiplication algorithm can be used as an example of the 
use of strong induction to prove the correctness of a Java 
program.  In addition to proving the correctness of various 
Java programs (including one that computes 2n  recursively 
using the formula ( )21 2 1n n− + − ), we prove the 
correctness of the following Java implementation of a 
times method that finds the product of two positive 
integers using Egyptian multiplication. 

Egyptian Multiplication Method 
 

int times(int m, int n) { 

  if (m == 0) 

    return 0; 

  else if (m == 1) 

    return n;  

  else if ((m%2) == 0) 

    return times(m/2,n+n); 

  else 

    return times(m/2,n+n)+n; 

} 

 
Correctness of Egyptian Multiplication 

 
The function times(m,n) returns the value m n⋅  
where , 0m n ≥ .   

Proof (by induction on m): 
Basis (m = 0 and m = 1): 

If m = 0 then the function times(0,n) returns 0 = 0 n⋅  
as defined by the then part of the first conditional. 

If m = 1 then the function times(1,n) returns n = 1 n⋅  
as defined by the then part of the second conditional. 

Inductive Hypothesis: For all i with 1 i k≤ < , the 
function times(i,n) returns i n⋅ . 
Inductive Step: We must show that the function 
times(k,n) returns k n⋅ .  There are two cases to 
consider:  k is even and k is odd. 
Case 1 (k is even): By the then part of the third (or 
innermost) conditional, it follows that: 

     
( ) = (  div 2 )

              = ( 2 )
2

k ,n k ,n n
k , n

+

 
  

times times

times
 

        = ( 2 )
2
k , ntimes  

       = ( ) (2 )
2

   = 

k n

k n

⋅

⋅
 

Case 2 (k is odd): By the else part of the third (or 
innermost) conditional, it follows that: 

     

( )( )

( ) = (  div 2 )+

   = ( ,2 )+
2

1   = ( ,2 )+
2

1   = ( ) (2 ) +
2

   = 1 +

  = 

k ,n k ,n n n
k n n

k n n

k n n

k n n

k n

+

 
  
−

− ⋅ 
 

− ⋅

⋅

times times

times

times
 

Hence, regardless of whether k is even or odd, the 
program is correct.  Since we have proved the basis 
step and the inductive step of the strong mathematical 
induction, the function times(m,n) returns the value 
m n⋅  where , 0m n ≥ .  ,  

 
4 Conclusion 
Although our students were taking discrete mathematics 
during their first year, they were apparently not retaining it.  
In order to address this problem, we restructured our CS 
curriculum last year.  Now our students simultaneously 
take two semesters of discrete mathematics, a Discrete 
Mathematics course that is taught by the Mathematics 
Department followed by a Discrete Structures course taught 
by the Computer Science Department, while they are taking 
CS1 and CS2.   
          The additional semester of discrete mathematics has 
helped, however, we believe that the current success of our 
CS students in CS1 and CS2 has significantly benefited 
from a very active attempt to make the discrete 
mathematics more relevant.  We have attempted to show 
our students this relevance by using a CS-complete 
example, a unifying example that is applicable in CS1, 
CS2, and Discrete Mathematics. 
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