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Abstract.  Recursion is a complex concept that most novice logic programmers have
difficulty grasping.  Problems associated with recursion are avoided in imperative
languages where iteration is provided as an alternative to recursion.  Although
difficult to learn, recursion is very easy to use once it is understood.  In fact, many
problems that have straightforward recursive solutions have very sophisticated
iterative solutions.  Many of the difficulties associated with learning recursion can be
overcome by incorporating conditional recursion (i.e., a structured recursive
equivalent to the WHILE loop) into logic programming languages.  Two popular
instructional techniques are collaborative learning and situated learning.  The
underlying claim of the situated cognition movement is the desire to enculturate the
student into the domain of the teacher by involving the student in a series of authentic
activities which are designed to incrementally improve the skills of the student.  In
the domain of computer programming, collaboration is an authentic activity.  In this
paper, we present logic program templates and schemata which add conditional
recursion to logic programming languages and enable collaborative logic program-
ming.  Conditional recursion also provides a bridge to higher-order programming.
Higher-order programming is the essence of abstraction in problem solving.  Thus,
in addition to aiding its students in acquiring the knowledge of recursion, conditional
recursion also promotes abstract problem solving skills.  We have successfully
employed this schema-based approach to teaching recursion in several declarative
programming languages with much success over the past four years.

1  Introduction

The strength of logic programming languages is their duality of semantics.  The
declarative semantics of a logic programming language is based on logic, while the
procedural semantics of a logic programming language is based on execution
mechanisms (e.g., SLD-resolution + computation rule + search rule).  Because the
declarative and procedural semantics can be shown to be equivalent (at least for some
classes of programs), it is possible for logic programmers to think less in terms of what
processes the computer must go through and much more in terms of the logic of the
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problem itself and its possible solution.  Logic programming promotes thinking about
what the problem is rather than how to solve the problem.  Problem solving becomes a
process that is independent of the particular machine.  Programs become easier to write
and easier to debug because their structures more closely resemble the problem that is
being solved rather some representation of the procedure required to solve it.

Since logic programming languages embody a declarative programming style and
their syntax is extremely simple, it would seem that they should be easy to learn and easy
to use.  However, logic programming languages require their programmers to define
their programs recursively.  Recursion is a very difficult concept at first, but once it is
learned it becomes a very straightforward (and natural) problem solving technique.  The
trick is finding a method for representing common recursive control flow patterns.  The
solution is program schemata and programming techniques.  Program schemata enable
the creation of conditional recursion (i.e., a structured recursive equivalent to the
WHILE loop).  Conditional iteration imposes structure on iterative programming
languages, abstracting the essence of conditional repetition.  Conditional recursion can
serve the same role for logic programming languages.

Logic program schemata have proven useful in teaching recursive logic
programming to novices [22], debugging logic programs [25], transforming logic
programs [18,20,27,37], and synthesizing logic programs [17].  Furthermore, using
program schemata to teach programming facilitates instruction that is tailored to the
student's capabilities [23].  Program schemata enable improved instruction for novice
programmers while at the same time promoting a structured programming style and the
acquisition of abstract problem solving skills.  In addition to being helpful for novice
programmers, program schemata are essential to expert programmers.  The key
difference between experts and novices is not the size of their memory span, but rather
their ability to chunk information together into meaningful units.  Schemata provide a
method of organizing meaningful information about complex domains.  Experts have
more and better problem schemata than novices.  Novice programmers tend to categorize
problems based on surface syntax-based features of the problem statement, while experts
categorized problems with respect to a more abstract hierarchical organization of
algorithms [1,36].  Thus, program schemata are essential to expert programmers.

By abstracting out common recursive control flow patterns, program schemata
capture large classes of logic programs.  Programming techniques represent common
program components.  By instantiating portions of program schemata with programming
techniques, it is possible to generate arbitrary logic programs.  In order to represent
program schemata for any programming language, it is desirable to use a higher-order
programming language as the representation language.  Functional programming
languages (e.g., Lisp, ML, Miranda, etc.) support higher-order functions.  Most logic
programming languages, on the other hand, do not have full support of higher-order
predicates.  Prolog supports first-order Horn clauses with only limited higher-order
features.  �Prolog is a higher-order logic programming language that extends Prolog by
incorporating higher-order unification and �-terms [30].  Because of its support of
higher-order Horn clauses [31], �Prolog makes an excellent logic programming language
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for representing logic program schemata [26].
In this paper, we present a set of logic program schemata and show how to use

them to promote a structured approach to teaching logic programming.  Our approach
to teaching recursive programming is to use logic program templates to help guide the
student to produce a correct program by providing her with the basic structure for the
program.  Using templates as an instructional aid has an important side effect of
promoting the development of abstract problem solving skills which are born out as logic
program schemata.  Thus, program templates help novices learn to program while at the
same time encourage the development and acquisition of program schemata which are
the basis of abstract problem solving.

2 The �Prolog Language

The basic syntactic conventions of �Prolog are the same as those of Prolog:  all
legal statements must be in clausal form where :- represents implication, the comma
represents conjunction, the semicolon represents disjunction, cut is represented by the
exclamation mark, and identifiers that begin with an uppercase letter represent variables
while identifiers that begin with a lowercase letter represent constants.  The same set of
built-in predicates for unifying terms and evaluating arithmetic expressions exist in
�Prolog.  In addition to �Prolog's support of predicate variables and �-terms, the most
notable difference between the syntax of the Prolog and �Prolog is that �Prolog uses a
curried notation.  Thus, the Prolog program length/3:

length([],0).
length([H|T],Result) :-

length(T,X), Result is X + 1.

which finds the summation of all the elements in its input list would be written in
�Prolog's curried form as:

length [] 0.
length [H|T] Result :-

length T X, Result is X + 1.

We can rewrite length/2 as a single clause using disjunction:

length List Result :-
(List = [], Result = 0);
(List = [H|T], length T X, Result is X + 1).

which enables us to write length/2 in �Prolog is as a �-term:
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length List Result :-
(X\Y\(sigma H\(sigma T\(sigma R\(
 (X = [], Y = 0);
 (X = [H|T], length T R, Y is R + 1)

     ))))) List Result.

�-terms are used in �Prolog to represent predicate application and anonymous
predicates (i.e., predicates that have no name associated with them).  Predicate
application is denoted in �Prolog by juxtaposition.  Anonymous predicates are denoted
with �-abstractions which have the form �x.�(x) in �-calculus and the form
(X\(�(X)) in �Prolog and represents an anonymous predicate that has a single
argument X which succeeds if �(X) succeeds where �(X) is an arbitrary set of �Prolog
subgoals.  In addition to supporting �-terms, �Prolog also permits existential quantifiers.
�Prolog uses the keyword sigma to represent the existential quantifier � so the �-term
�x.�y.�z.(p x y z) would be coded in �Prolog as (X\Y\(sigma Z\(p X
Y Z))) and represents an anonymous predicate that has two arguments X and Y which
succeeds if p X Y Z succeeds for some Z.

Another important difference between Prolog and �Prolog is that �Prolog is a
typed language.  �Prolog has several built-in types, including types for int, bool, list, and
o (the type of propositions).  If �  and �  are types then (�  � � ) is a type corresponding1 2 1 2

to the set of functions whose domain and range are given by �  and � , respectively.  The1 2

application of T  to T  is represented as (T  T ) and has the type �  if T  is a term of type1 2 1 2 1 1

(�  � � ) and T  is a term of type � . If X is a variable and T is a term of type ��, then the2 1 2 2   

abstraction (X : � \ T) is a term of type � � ��.
�Prolog has a built-in type inference mechanism which gives its programmers the

illusion that they are programming in a typeless language.  Thus, the type system of
�Prolog serves as an aid to the programmer rather than an added layer of syntax.  Lists
and integers are handled the same way in �Prolog as they are in Prolog.  Unlike Prolog,
however, �Prolog supports separate types for propositions and booleans.  The type o
captures propositions and has the values true and fail and operations for conjunc-
tion, disjunction, and implication of propositions.  The type bool captures boolean
expressions and has the values truth and false and operations for conjunction and
disjunction of booleans, and relationship comparisons (<, =<, >, >=).  Note that because
booleans are distinct from propositions, it is necessary to have the �Prolog subgoal
truth is X < Y in place of the Prolog subgoal X < Y.

It is possible to define a set of �Prolog program schemata which enable the
incorporation of conditional recursion into logic programming.  Conditional iteration in
the form of WHILE loops imposes structure on imperative languages, abstracting the
essence of conditional repetition.  WHILE loops are basic program schemata which
capture commonly occurring imperative programming techniques.  Conditional recursion
serves the same role for logic programming languages.
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3 Logic Program Templates

Computers have been used in various aspects of instruction for several years. The first
use of computers in an educational setting was computer-aided instruction (CAI) where
instructional materials (e.g., textbooks or workbooks) were simply stored in computer
files and students were able to use them in a variety of structured ways.  Intelligent
tutoring systems (ITS) emerged in the 1970s with the goal of enhancing the instruction
available on traditional CAI systems by facilitating instruction that was tailored to its
individual students.  Not only did this shift in focus enable an enhancement over
traditional CAI, it also provided a style of teaching that was not possible in traditional
classrooms with one teacher per thirty students.  One of the original goals of ITSs was
to extend the power and accuracy of the adaptive instruction available in traditional CAI
systems by examining more than just the student's answers to the problems she was
assigned [35].

By equipping them with a student model, ITSs are able to dynamically adapt their
instruction through instructional planning.  Instructional planning has the goal of
configuring the most efficient sequence of instructional operations to communicate a
body of knowledge to the student. There are two major aspects of instructional planning:
presentation determination and subject matter selection. Determining how the subject
material should be presented relies on accurate modeling of the student's preferences and
learning styles. Subject matter selection requires knowledge of the student's abilities (i.e.,
prerequisite or background knowledge) and her capabilities (i.e., her readiness to learn
the new material).  This adaptive tutoring is made possible by a precise understanding
and modeling of both the student and the domain being taught.  Obtaining a precise
model of the student, however, is a formidable (if not intractable) task.  Self [34] has
outlined the shortcomings of current approaches to student modeling and proposed that
ITSs take on a more collaborative role.

Even if it was possible to obtain precise student models, ITSs still fall short of their
goal of truly adaptive instruction because they plan instruction based on their students'
ability to perform with known concepts rather than their students' readiness to learn new
concepts. Based on Vygotsky's developmental theory and his concept of the "zone of
proximal development" [38], the schema-based instructional technique employed by our
Prolog tutor [24] provides an ideal framework for implementing the guided learning
environment necessary to measure the student's knowledge zone.

Traditionally, mental development level has been determined by an individual's
performance on a test requiring some sort of individual problem solving. Lev Vygotsky,
an influential Russian developmental psychologist in the 1930s, was bothered by the use
of this form of testing to determine mental development level since it "oriented learning
towards yesterday's development, toward developmental stages already completed" [38,
p. 89]. As an alternative, he proposed an extension to the traditional testing paradigm
which included both independent problem solving and guided (or assisted) problem
solving. While independent problem solving provides a good indicator of actual
developmental level, he proposed the use of guided problem solving as an indicator of
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potential developmental level.
Guided problem solving provided a mechanism for measuring what he labelled the

"zone of proximal development" which is "the difference between the actual develop-
mental level as determined by independent problem solving and the level of potential
development as determined through problem solving under adult guidance or in
collaboration with more capable peers" [38, p. 86]. The "zone of proximal development"
provides a means for distinguishing fully developed (or mature) concepts from
developing (or immature) concepts. Empirical evidence [7,8] has shown the effective-
ness of guided problem solving as an instructional technique.

An extension to Vygotsky's basic framework is the method of collaborative
problem solving (or peer collaboration) in which two or more individuals of essentially
equal abilities work together to solve problems [14,15,19,32]. It has also been argued
that collaborative problem solving promotes mental development by creating an
environment which produces critical cognitive conflicts [12].  Piaget [33] claimed that
cognitive conflicts arise when a child's beliefs are in contradiction with actual
experiences.  When a child finds herself in disagreement with a collaborating peer, she
is forced to examine her point of view and reassess its validity.  Thus, collaborative
problem solving provides an effective mechanism for motivating children to reassess the
validity of their views which in turn forces them to reformulate their beliefs.

Collaborative problem solving has been incorporated into intelligent tutoring
systems for a number of domains, including mathematics [9] and political science [13].
Each of these collaborative learning systems has replaced the expert and student models
with an automated collaborating peer which learns along with the human student.  These
systems avoid the difficult problems associated with expert and student modeling, while
providing the student with a learning environment that promotes the acquisition of
planning and problem solving skills [3].  Recently, some researchers have suggested that
the traditional approach to instruction be replaced by a form of cognitive apprenticeship
[11] or anchored instruction [10], arguing for instruction that is situated [6].  The
underlying claim of the situated cognition movement is the desire to enculturate the
student into the domain of the teacher by involving the student in a series of authentic
activities which are designed to incrementally improve the skills of the student.

Large programming projects are seldom completed by a single programmer.
Rather they are designed, implemented, and tested by larger teams of programmers
working together to achieve the common goal of producing a useable final software
product.  This collaborative effort enables the creation of sophisticated systems that
would otherwise be impossible to produce. Thus, in the case of computer programming,
collaborative learning is situated learning.  For such domains, the creation of a
collaborative learning environment exploits the advantages of both of these approaches.
In order to facilitate collaborative programming, a programming language must support
structured programming constructs.  Unfortunately, logic programming languages do not
have explicit support of any structured programming constructs.  It is possible to
incorporate a structured style of programming into logic programming languages by
exploiting program schemata and programming techniques.
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In order to successfully enculturate the novice into the domain of the expert
programmer, it is not possible to simply thrust them into the world of abstract problem
solving.  While the expert talks about programs at an abstract level, novices necessarily
are focussed at the concrete level.  In order for the expert (teacher) to situate the learning
towards a more abstract level, she must first "compromise" with the novice (student) and
talk at very concrete level using carefully chosen examples.  By selecting similar
problems and using templates to both guide the student and highlight the common
programming patterns or techniques, it is possible to facilitate the learning of abstract
problem solving skills.  The idea is to use program templates to help the novice
understand concrete programming examples while at the same time promoting the
concept of abstract program schemata.  Thus, we propose using an abstract meta-
language as a crutch to a more useful higher-order programming language.

A number of researchers have looked into various approaches to meta-languages
which support templates, including our work on basic Prolog schemata [21,24], the work
by Brna and his colleagues on Prolog programming techniques [4,5], the work by
Barker-Plummer on Prolog clichés [2], Flener’s work on logic algorithm schemata [16],
and the work by Hamfelt and Nilsson on metalogic programming techniques [28].  An
alternative approach to using templates in a meta-language is have a set of general
Prolog programs which can be extended by adding arguments and subgoals to produce
other programs within the class.  This is the approach taken by Kirschenbaum and
Sterling with their Prolog skeletons and programming techniques [29].  Although
appropriate for the construction of logic programs by experienced programmers, we
believe that novices find completing templates rather than extending programs easier to
understand.

Like most logic programming languages, lists are a basic type in Prolog and
�Prolog.  Recall the length/2 program from the previous section:

length [] 0.
length [H|T] Result :-

length T X, Result is X + 1.

 �Prolog program which finds the summation of all the elements of an arbitrary list
of integers (e.g., the summation of the list [2,4,1,9,12,3] is 31) would look like:

sum [] 0.
sum [H|T] Result :-

sum T X, Result is X + H.

A pattern seems to be arising here.  The only difference between sum/2 and
length/2 is that sum/2 adds the first element to the sum of the remainder of the list
whereas length/2 merely increments the length of the remainder of the list by one.
Indeed, this pattern is quite common among list processing tasks.  Consider, for example,
the task of finding the product of a list of numbers (e.g., the product of the list
[2,4,1,9,12,3] is 2592).  Thus, we merely change the Result is X + H subgoal to
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Result is X * H in the body of the clause and we have a product/2 program:

product [] 1.
product [H|T] Result :-

product T X, Result is X * H.

Note, however, that product/2 has an additional difference.  The base case
value was changed from 0 to 1 since 1 is the identity for multiplication.  These programs
are not the only ones that show this common pattern.  Other programs which perform
quite different tasks on lists are also members of this class of programs.  Consider the
task of enqueueing an element to the end of a list.   �Prolog program for this task would
look like:

enqueue [] E [E].
enqueue [H|T] E Result :-

enqueue T E X, Result = [H|X].

Now consider appending two lists together.  A �Prolog program for this task would
look like:

append [] L L.
append [H|T] L Result :-

append T L X, Result = [H|X].

The more common implementation of append/3 has the Result = [H|X]
subgoal unfolded into the head of the clause:

append [] L L.
append [H|T] L [H|X] :- append T L X.

One of the most commonly used program examples for recursive list processing
is list reversal.  Although there are other ways to write a list reversal program in �Prolog,
the one produced by most novice programmers is the following naive reverse/2:

reverse [] [].
reverse [H|T] Result :-

reverse T X, append X [H] Result.

All of these programs are examples of global list processing tasks and can be
captured by a common logic program schema and realized in a couple of general
templates.  It is possible to represent a two argument global list processing template by
adapting our meta-language [21,24] to �Prolog:

template2 [] � .1
template2 [H|T] �  :- 2

«�  � «� » ,» template2 T �  «,� � «� » ».1 3 4 5 2 6 7
j k
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and a three argument global list processing template:

template3 [] � � .1 8
template3 [H|T] �  �  :-2 9

«�  � «� » ,» template3 T �  � «,�  � «� » ».1 3 4 5 10 2 6 7
j k

One can further instantiate the two argument global list processing template into
tally/2:

tally [] � .1
tally [H|T] X :-

«�  �  «� » ,» tally T Y, X is F(H,Y).1 3 4
j

where F(H,Y) represents an arbitrary arithmetic expression. The two argument global
list processing schema can also be instantiated into alter/2:

alter [] � .1
alter [H|T] X :-

«�  �  «� » ,» alter T Y, P H Y X.1 3 4
j

where P/3 is an arbitrary predicate which has three arguments. It is possible to further
instantiate tally/2, alter/2, and the three argument global list processing template
into programs for length/2, sum/2, product/2, reverse/2, insertion-
sort/2,  append/3, and enqueue/3.

The underlying philosophy of our Prolog tutor is to teach programming through
program templates and schemata.   Rather than teaching recursion as a general technique
by presenting the mathematical foundations of recursive function theory whereby the
student is given a  universal recursive schemata (e.g., [39]) or using an example-based
method whereby the student is forced to generalize a general understanding of recursion
from specific examples, schema-based instruction teaches recursion through a set of
general programming techniques. Thus, the student is relieved of the task of inducing the
basic concept of recursion while being provided with a "toolbox" of general program-
ming techniques.

Because of the hierarchical nature of our domain, it is possible to measure a
student's capability with respect to her understanding of the schemata (or programming
techniques). When a program is assigned, a schema is selected to serve as a template for
the student to complete. The template serves as a �Prolog microworld. These �Prolog
microworlds limit the number of ways of implementing a program. If the student is
unable to complete the template to produce the desired program (or if she incorrectly
completes the template) then hints are given. Hints include explaining the components
of the templates (i.e., describing the microworld) and providing the student with partial
or complete solutions to the assigned programs (i.e., simplifying the microworld).

The student's performance on the assigned program determines her knowledge
zone with respect to the assigned schema. If the student is able to solve the problem (i.e.,
produce the desired program) without any hints then the schema (i.e., programming



10

technique) is within her ability.  If she can solve the problem after being given some of
the above hints then the programming technique is within her capability, but is not a
mature concept within her ability yet. Finally, if the student is still unable to solve the
problem after she has been given hints then the programming technique is considered
outside her "zone of proximal development." Once the knowledge zone has been
identified, the tutor can use it to adapt the lesson plan to the student's cognitive potential.
The lesson plan can be modified in a number of ways, including the selection of the next
problem and template to be assigned.  The basic lesson plan is the same for each student
as shown in Figure 1. Each of the programs of the lessons have corresponding entries in
the schema hierarchy of Figure 2.  The following notation has been used:

� The prefix tr_ has been used to represent the  tail recursive version of the
program. Note that the absence of the tr_ prefix implies the more general
(declarative or non-accumulator) version of the program.

� The prefix g_ has been used to represent a guarded version of the schema.  For
programs, the actual guard (e.g., odd) is part of the predicate name.  A guarded
version of a program is one which contains multiple recursive clauses.

Lesson Problem Template Example

1 tr_sum/2 tr_tally/2 tr_length/2

2 tr_product/2 tr_template/2 -

3 tr_odd_sum/2 gtr_tally/2 tr_count/2

4 tr_even_sum/2 gtr_template/2 -

5 tr_pos_product/2 gtr_template/2 -

6 sum/2 template/2 length/2

7 count/2 g_template/2 tr_count/2

8 append/3 template/3 enqueue/3

9 reverse/2 - -

Figure 1. Initial Lesson Plan

For example, tr_odd_sum/2 (which is the tail recursive version of the sum/2
program using the odd guard) has the following normal form implementation:
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tr_odd_sum L S :- tr_odd_sum L 0 S.
tr_odd_sum [] S S.
tr_odd_sum [H|T] X S :-

odd H, !, Y is X + H, tr_odd_sum T Y S.
tr_odd_sum [H|T] X S :- tr_odd_sum T X S.

Each lesson consists of three components:   problem, template, and example. The
general form of each lesson is as follows. If a new concept is being introduced then the
tutor gives the student a brief overview of the new concept in order to provide  an
appropriate context. If the lesson includes an example then the example is shown and
explained. The problem is then described and the student is asked to complete the
template in order to produce a correct program.

                            �����
                            �glp�
                            �����
   ������������������������������������������������������������
��������                 ������������                    ������������
�list/1�                 �template/2�                    �template/3�
��������                 ������������                    ������������
              ����������������������������������         ������������
          ���������                        ��������� ���������� �����������     
          �tally/2�                        �alter/2� �append/3� �enqueue/3�  
          ���������                        ��������� ���������� �����������
    ���������������������           �����������������������
���������� ������� ����������� ����������� ��������� ������������ 
�length/2� �sum/2� �product/2� �reverse/2� �level/2� �ins_sort/2�
���������� ������� ����������� ����������� ��������� ������������

Figure 2. Global List Processing Schema Hierarchy

A tutoring session is initiated by the student entering tutor.  The following
scenario gives the interaction between a student who has mastered tail recursion and is
now ready to be introduced to the more general forms of recursion with lesson 6:

Student: tutor

Tutor: Welcome to the Schema-Based Prolog Tutor!
What is your name?

Student: Barb

Tutor: OK, Barb, let's look at more general forms of
recursion today.  We have already looked at tail-
recursive versions of tr_length/3, tr_sum/3, and
tr_product/3.  Now let's look at alternative, more
declarative, approaches to solving these problems.
For example, the tail-recursive program for tr_
length/3 looks like:

length List Length :-
tr_length List 0 Length.
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tr_length [] Acc Acc.
tr_length [H|T] N L :-

M is N + 1, tr_length T M L.

and the corresponding declarative version of
length/2 looks like:

The "length" of the empty list is 0 (Base Case):

length [] 0.

The "length" of a non-empty list is equal to 1
more than the "length" of its tail (Recursive
Step):

length [H|T] Length :-
length T L, Length is L + 1.

Your task is to write a Prolog program which
takes as input a list and returns the sum of the
list of elements using this declarative ap-
proach.  You've done this before with the
tail-recursive tr_sum/3:

sum List Sum :- tr_sum List 0 Sum.
tr_sum [] Acc Acc.
tr_sum [H|T] N S :-

M is N + H, tr_sum T M S.

Now try writing the declarative version of sum/2
by completing the following template:

       �����
sum [] �   �.
       �����
                         ����������

  sum [H|T] Sum :- sum T S,�        �.
                         ����������

At this point, the student has two options.  She can either attempt to write the
program or she can request assistance.  If she attempts to write the program and produces
a correct program then the tutor assigns her the next problem in the original lesson plan
which is count/2.  Because she was able to solve the problem without any assistance
from the tutor, it is assumed that the student has a good grasp of the programming
construct being taught (i.e., the construct is well within her "zone of proximal
development") so the lesson is tailored to the student by omitting the remedial problems
of product/2 and square_sum/2 and generalizing the template (i.e., instead of
assigning template g_tally/2 in lesson 7 the tutor assigns the more general template
g_template/2):
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Student: sum [] 0.
sum [H|T] Sum :- sum T S, Sum is S + H.

Tutor: Very good, Barb!  OK, now let's try a similar
problem.  Let's assume that our list now contains
arbitrary elements (i.e., some of the elements are
integers and some of them are non-integers) and we
want to "count" the number of integers in the list.
You've already given a tail-recursive solution for
this problem:

count List Count :- tr_count List 0 Count.
tr_count [] Acc Acc.
tr_count [H|T] N C :- 

integer H, !, M is N + 1, tr_count T N C.
tr_count [H|T] N C :- tr_count T N C.

Now try writing this program again using the de-
clarative approach you've just learned by complet-
ing the following template:

         �����
count [] �   �.
         �����
            �����    �����������
count [H|T] �   � :- �         �,!,
            �����    �����������

�����������         ����� �����������
�         �,count T �   �,�         �.
�����������         ����� �����������

            �����    �����������
count [H|T] �   � :- �         �,
            �����    �����������

        ����� �����������
count T �   �,�         �.
        ����� �����������

If the student is unable to solve the problem then she can request assistance from
the tutor by typing help.  The first level of assistance that the tutor provides is to
explain the components of the template. There are two ways to explain the components
of the template.  The first approach is to simply break the template down into its
recursive function components, base case and recursive step, and explain the role of each
component:

Student: help

Tutor: There are 2 major components to this template:
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� base case
� recursive step

For the base case, the basic idea is to stop
processing when the list becomes empty and
return 0 for the sum.

For the recursive step, the basic idea is to
remove the first element from the input list and
recursively invoke the main predicate with the
tail of the list and then add the value of the
head to the sum of the tail of the list.

Which component do you want to attempt first:

1. base case
2. recursive step
3. need more assistance

After explaining each of these components, the tutor gives the student a chance to
complete them one at a time or the student can request further assistance. If a student
requests further assistance then the tutor provides her with a more detailed template
"explanation" by providing her with a more specific template to complete:

Student: help

Tutor: Try writing the program by completing the following
template:

       �����
  sum [] �   �.

       �����
                         ����������

  sum [H|T] Sum :- sum T S,�        �.
                         ����������

By providing a more specific template for the student to complete, the tutor has
given the student a partial solution to the problem.  This type of "hint" may be sufficient
for some students to complete the program. For such students, the problem is within their
"zone of proximal development" but is not a mature concept yet.  It is now the goal of
the tutor to ensure that this concept is more fully developed.  This can be done by
assigning a remedial problem (e.g., product/2) which belongs to the same class of
programs as the problem that she just completed. At this point, the tutor is fairly
confident that the student could solve the new problem given the more-specific template,
but must ensure that the student can solve this problem given the original template:

Student: sum [] 0.
sum [H|T] Sum :- sum T S, Sum is S + H.
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Tutor: Very good, Barb!  OK, now let's try a similar
problem.  Write a program which takes as input a
list and returns the product of the list of ele-
ments by completing the following template:

           �����
product [] �   �.
           �����
                                  ����������
product [H|T] Prod :- product T P,�        �.
                                  ����������

Upon successful completion of this remedial lesson, the tutor returns to the 7th
lesson of the student's lesson plan and assigns count/2 with template g_tally/2:

Student: product [] 1.
product [H|T] Prod :- product T P, Prod is P * H.

Tutor: Very good, Barb!  OK, now let's try a similar
problem.  Let's assume that our list now contains
arbitrary elements (i.e., some of the elements are
integers and some of them are non-integers) and we
want to "count" the number of integers in the list.
You've already given a tail-recursive solution for
this problem:

count List Count :- tr_count List 0 Count.
tr_count [] Acc Acc.
tr_count [H|T] N C :-

integer H, !, M is N + 1, tr_count T N C.
tr_count [H|T] N C :- tr_count T N C.

Now try writing this�program again using the de-
clarative approach you've just learned by complet-
ing the following template:

         �����
count [] �   �.
         �����
            �����
count [H|T] �   � :- integer H, !,
            �����

        ����� �����������
count T �   �,�         �.
        ����� �����������

            �����   
count [H|T] �   � :-
            �����   

        ����� �����������
count T �   �,�         �.
        ����� �����������
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If the student is still unable to solve the problem after being given a partial solution
(i.e., a more-specific template) then the complete solution is given and explained.  In this
case, the problem is considered outside the student's "zone of proximal development" so
the tutor must alter its original instructional goal and focus on a smaller class of
problems. Note that in this case, it is not clear whether or not the student can handle this
smaller class of problems. This can be tested by assigning a remedial problem (e.g.,
product/2 and asking the student to complete the more-specific template. Even if she
is able to handle this problem then another remedial problem (e.g., square_sum/2
which is the same as sum/2 except the addition operator is replaced with a "new"
operator #) should be assigned with the original template to ensure that the original class
of problems is within the student's capabilities.

Student: help

Tutor: Since you seem to be having so much trouble, let me
give you my solution to the problem:

The "sum" of the empty list is 0 (Base Case):

sum [] 0.

The "sum" of a non-empty list is equal to the "sum"
of its tail plus the head of the list (Recursive
Step):

sum [H|T] Sum :- sum T S, Sum is S + H.

OK, Barb, let's continue with another problem.
Write a program which takes as input a list and
returns the product of the list of elements by
completing the following template:

           �����
product [] �   �.
           �����
product [H|T] Prod :-

                    �����
product T P,Prod is �   �.
                    �����

Student: product [] 1.
product [H|T] Prod :- product T P, Prod is P * H.

Tutor: Very good, Barb!  OK, now let's try a similar
problem.  Write a program which takes as input a
list and returns the "square_sum" (i.e., the sum of
the squares of the elements) of the list of ele-
ments (where "X is Y#Z" binds X to the expression
Y+Z ) by completing the following template:2
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              �����
square_sum [] �   �.
              �����  
square_sum [H|T] SSum :-

               �������������
square_sum T S,�           �.
               �������������

If the student is able to complete this second remedial problem given the original
template then the tutor returns to the 7th lesson of the student's lesson plan and assigns
count/2 with template g_tally/2:

Student: square_sum [] 0.
square_sum [H|T] SSum :- square_sum T S, 

Ssum is S # H.

Tutor: Very good, Barb!  OK, now let's try a similar
problem.  Let's assume that our list now contains
arbitrary elements (i.e., some of the elements are
integers and some of them are non-integers) and we
want to "count" the number of integers in the list.
You've already given a tail-recursive solution for
this problem:

count List Count :- tr_count List 0 Count.
tr_count [] Acc Acc.
tr_count [H|T] N C :-

integer H, !, M is N + 1, tr_count T N C.
tr_count [H|T] N C :- tr_count T N C.

Now try writing this program again using the de-
clarative approach you've just learned by complet-
ing the following template:

         �����
count [] �   �.
         �����
            �����     
count [H|T] �   � :- integer H, !,
            �����    

                    ����� �����������
            count T �   �,�         �.
                    ����� �����������

            �����            ����� 
count [H|T] �   � :- count T �   �,
            �����            �����

              �����������
              �         �.
              �����������
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We have presented schema-based instruction as an alternative to the approaches
advocated in most introductory and intermediate logic programming texts. By explicitly
presenting logic programming templates and presenting programs in the same class as
a coherent unit, schema-based instruction stresses the importance of classes of programs
and promotes the acquisition of basic logic programming constructs while at the same
time providing a bridge to higher-order programming.

4 Logic Program Schemata

In addition to enhancing instruction, the use of logic program templates also promotes
a structured approach to logic programming.  Structured logic programming is made
possible with logic program schemata. High-level programming languages were
developed to make programming easier by abstracting out the essence of programming
from the physical architecture of the machine on which the programs are executed.  The
progression of high-level programming languages over time has shown higher levels of
abstraction.  For example, control structures like WHILE loops were included in
imperative programming languages because it was discovered that looping structures
were used throughout programs.  A similar abstraction is possible for recursive programs
in the form of higher-order program schemata.  We have identified several logic program
schemata that serve as prototype logic programs for list processing [26] and a
corresponding set of schema-based logic program transformations that enable a
programmer to transform a given prototype logic program schema into the desired logic
program [27].

Each of the logic program schemata has two arguments, an input list and a result.
Although many logic programs can be used with various modes, we assume a given
mode for each of our logic programs. In addition to recursive list processing schemata,
it is also possible to define a set of recursive numeric programs which also have two
arguments.  One of the largest classes of list processing programs is the class of global
list processing programs which includes all those list processing programs that process
all elements of the input list (i.e., the entire input list is reduced).  Global list processing
programs are captured by the reduceList/2 schema:

reduceList [] Result :- 
Base Result.

reduceList [H|T] Result :- 
reduceList T R, Constructor H R Result.

Global integer processing programs are captured by the reduceNumber/2 schema:

reduceNumber 1 Result :- 
Base Result.

reduceNumber N Result :- 
M is N - 1, reduceNumber M R,
Constructor N R Result.



19

These logic program schemata can be converted to higher-order logic programs by
adding the predicate variables to the set of arguments.  For example, the following
higher-order reduceList/4 program can be produced from the reduceList/2
schema:

reduceList [] Result Constructor Base :- 
Base Result.

reduceList [A|B] Result Constructor Base :-
reduceList B C Constructor Base,
Constructor A C Result.

which can be written using a single disjunctive clause:

reduceList List Result Constructor Base :-
(List = [], Base Result);
(List = [A|B], 
 reduceList B C Constructor Base,
 Constructor A C Result).

Likewise, it is possible to produce a higher-order global integer processing
program reduceNumber/4 by adding the predicate arguments to the reduce-
Number/2 schema:

reduceNumber 1 Result Constructor Base :- 
Base Result.

reduceNumber N Result Constructor Base:- 
M is N - 1, reduceNumber M R Constructor Base,
Constructor N R Result.

which can be written using a single disjunctive clause:

reduceNumber N Result Constructor Base :-
(N = 1, Base Result);
(M is N - 1, reduceNumber M R Constructor Base,
 Constructor N R Result).

The reduceList/2 and reduceNumber/2 schemata can be generalized to
include all singly-recursive reduction programs by incorporating the termination (or
stopping) condition with the base case value computation and permitting an arbitrary
destructor:

reduce List Result :- 
Base List Result.

reduce List Result :-
Destructor List H T, reduce T R,
Constructor H R Result.
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which corresponds to the higher-order reduce/5 program:

reduce List Result Destructor Constructor Base:-
Base List Result.

reduce List Result Destructor Constructor Base :-
Destructor List H T,
reduce T R Destructor Constructor Base,
Constructor H R Result.

which can be written using a single disjunctive clause:

reduce List Result Destructor Constructor Base:-
(Base List Result);
(Destructor List H T,
 reduce T R Destructor Constructor Base,
 Constructor H R Result).

Some explanation of the reduce/2 schema (and corresponding higher-order
reduce/5 program) is in order.  It contains two arguments and has three predicate
variables.  The first argument is the primary input and the second argument is the
primary output.  The primary input and output can be either simple or structured terms,
but they are both first-order terms.  The three predicate variables represent arbitrary
�Prolog predicates.  The predicate variable Destructor defines the process for
destructing the input.  The predicate variable Constructor defines the process for
constructing the output.  The other predicate variable, Base, is used to define the
terminating condition, defining both the process to identify the terminating condition and
the process which defines how to construct the output for the terminating condition.  An
example should help clarify reduce/2.

Consider the factorial/2 program.  For an arbitrary query factorial A
B, the primary input is A and primary output is B.  The destructor predicate decrements
the input by one.  This process can be defined with the anonymous predicate (X\Y\Z\(
Z is Y - 1, Y = X)).  The constructor predicate for factorial/2 multiplies
the current input by the factorial of one less than the current input and can be defined
with the anonymous predicate (X\Y\Z\(Z is X * Y)).  As can be seen in the base
case clause of the definition of factorial/2, the terminating condition occurs
whenever the input becomes one and the terminating output value should be 1.  This
process can be defined with the anonymous predicate (X\Y\(X = 1, Y = 1)).
Combining all this together, one can produce a program for factorial/2 by
instantiating the predicate variables in reduce/2:

factorial N Result :-
(X\Y\(X = 1, Y = 1)) N Result.

factorial N Result :-
(X\Y\Z\(Z is X - 1, Y = X)) N C M,
factorial M R,
(X\Y\Z\(Z is X * Y)) C R Result.
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Furthermore, since factorial/2 is a global integer processing program, it is
also possible to produce a program for it by instantiating the predicate variables in
reduceNumber/2:

factorial 1 Result :- 
(X\(X = 1)) Result.

factorial N Result :-
M is N - 1, factorial M R,
(X\Y\Z\(Z is X * Y)) N R Result.

Now consider sum/2 again.  For an arbitrary query sum A B, the primary input
is A and primary output is B.  The destructor predicate decomposes the input into the
head element and the tail of the list.  This process can be defined with the anonymous
predicate (X\Y\Z\(X = [Y|Z])).  The constructor predicate for sum/2 computes
the summation by adding the current element to the sum of the rest of the list and can be
defined with the anonymous predicate (X\Y\Z\(Z is X + Y)).  As can be seen in
the base case clause of the definition of sum/2, the terminating condition occurs
whenever the input list becomes empty and the terminating output value should be 0.
This process can be defined with the anonymous predicate (X\Y\(X = [], Y =
0)).  A program for sum/2 can be produced by instantiating the predicate variables in
reduce/2:

sum List Result :- 
(X\Y\(X = [], Y = 0)) List Result.

sum List Result :-
(X\Y\Z\(X = [Y|Z])) List H T, sum T R,
(X\Y\Z\(Z is X + Y)) H R Result.

Furthermore, since sum/2 is a global list processing program, it is also possible
to produce a program for it by instantiating the predicate variables in reduceList/2:

sum [] Result :- 
(X\(X = 0)) Result.

sum [H|T] Result :-
sum T R, (X\Y\Z\(Z is X + Y)) H R Result.

It is also possible to write each of the programs that have been presented so far as
one line programs by simply invoking the reduceList/4 program.  For example,
sum/2 can be written more concisely as follows:

sum A B :- reduceList A B
(X\Y\Z\(Z is X + Y))
(X\(X = 0)).

One can write append/3 more concisely as follows:
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append A B C :- reduceList A C
(X\Y\Z\(Z = [X|Y]))
(X\(X = B)).

The following �Prolog implementation of reverse/2 using only reduce-
List/4 can be written:

reverse A B :- reduceList A B 
(F\G\H\(reduceList G H (X\Y\Z\(Z = [X|Y])) [F])
(F\(F = [])).

This implementation of reverse/2 shows the notion of nested recursion, which
is synonymous to nested WHILE loops in imperative languages.  An alternative
implementation of reverse/2 takes advantage of a pre-existing procedure definition
for append/3 and invokes it directly rather than redefining it:

reverse A B :- reduceList A B 
(X\Y\Z\(append Y [X] Z))
(X\(X = [])).

Consider append/3 again.  For an arbitrary query append A B C, the primary
input is A and primary output is C.  The destructor predicate decomposes the input into
the head element and the tail of the list.  This process can be defined with the anonymous
predicate (X\Y\Z\(X = [Y|Z])).  Likewise, the constructor predicate for
append/3 composes a new list and can be defined with the anonymous predicate
(X\Y\Z\(Z = [X|Y])).  The terminating condition occurs whenever the input list
becomes empty and the terminating output value should be assigned to B.  This can be
defined with the anonymous predicate (X\Y\(X = [], Y = B)).  Combining all
this together produces the following definition for append/3:

append A B C :- reduce A C 
(X\Y\Z\(X = [Y|Z]))
(X\Y\Z\(Z = [X|Y])) 
(X\Y\(X = [], Y = B)).

In a similar fashion, reverse/2 (which reverses the elements of a list) can be
defined using reduce/5:

reverse A B :- reduce A B 
(X\Y\Z\(X = [Y|Z]))
(X\Y\Z\(append Y [X] Z)) 
(X\Y\(X = [], Y = [])).

The higher-order reduceList/4 program (or any of the other programs
presented so far) can also be defined using reduce/5:
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reduceList A B C D :- reduce A B 
(X\Y\Z\(X = [Y|Z])) 
C 
(X\Y\(X = [], D Y)).

All of the programs that we have seen so far fall in the class of global list
processing programs since they process the entire input list.  Some programs only
process part of the input list.  For example, insert/3 takes a sorted list and an element
and inserts the element in its correct position in the list, stopping whenever it finds an
element in the input list that is larger than the element being inserted or the input list
becomes empty.  A �Prolog program for insert/3 can be written using reduce/5:

insert A B C :- reduce A C
(X\Y\Z\(X = [Y|Z]))
(X\Y\Z\(Z = [X|Y]))
(X\Y\(sigma V\(sigma W\(
  ((X = []);
  (X = [V|W], truth is B<V)), Y = [B|X]
)))).

The main difference between insert/3 and all of the previous programs is the
terminating condition.  There are actually two terminating conditions.  The correct
position for insertion of a given element into a sorted list is either immediately in front
of the first element in the list which is larger than the given element or at the end of the
list if every element in the list is smaller than or equal to the given element.  The use of
sigma identifies the existence of variables which satisfy the terminating condition.
Specifically, the �-term  (X\Y\(sigma V\(sigma W\(((X = []); (X =
[V|W], truth is B < V)), Y = [B|X])))) represents an anonymous two-
argument predicate which succeeds if either its first argument is an empty list (i.e., all
of the elements in the original list are smaller than or equal to the given element) or if
there exist variables V and W such that the predicate's first argument is unifiable with
[V|W] where V is larger than the given element (i.e., V is the smallest element in the
original list which is larger than the given element).

Other classic partial list processing programs include member/2 and posi-
tion/3.  Each of these predicates can be written using reduce/5.  The predicate
member/2 is a predicate that produces no outputs, it merely succeeds if the given
element is a member of the input list or fails if the given element is not a member of the
input list.  Thus, the �Prolog implementation of member/2 has a dummy variable in
place of the output argument and has the subgoal true in place of the recursive and
base case constructors in its invocation of reduce/5:

member A B :- reduce A Dummy
(X\Y\Z\(X = [Y|Z]))
(X\Y\Z\(true))
(X\Y\(sigma W\(X = [B|W]))).
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The predicate position/3 takes an input list and an element and returns the
position of the element in the input list:

position A B P :- reduce A P
(X\Y\Z\(X = [Y|Z]))
(X\Y\Z\(Z is Y+1))
(X\Y\(sigma W\(X = [B|W], Y = 1))).

It is also possible to capture programs that construct more than one output or have
more than one input list that is being decomposed.  Consider the task of partitioning an
input list into two output lists which contain all the elements that are less than or equal
to a given partitioning element and one which contains all elements that are strictly
greater than the given partitioning element.  A �Prolog implementation of parti-
tion/4 can be written using reduce/5 by combining the two output lists into a single
list which is manipulated appropriately by the constructor predicates:

partition A B C D :- reduce A [C,D]
(X\Y\Z\(X = [Y|Z]))
(X\Y\Z\(sigma V\(sigma W\(
  (false is X>B, Y = [V,W], Z = [[X|V],W]);
  (truth is X>B, Y = [V,W], Z = [V,[X|W]])
))))
(X\Y\(X = [], Y = [[B],[]])).

Notice the use of disjunction in the constructor predicate to permit putting the
current element on the appropriate output list.  The subgoal Y = [V,W] breaks the
output into its two output lists V and W.  If the current element is less than or equal to the
partitioning element then the current element is added to the first output list with the
subgoal  Z = [[X|V],W].  Otherwise, it is added to the second output list with the
subgoal Z = [V,[X|W]].

Now consider the task of merging two sorted lists into a single sorted list.  This task
requires decomposing two input lists.  A �Prolog implementation of merge/3 can be
written using reduce/5 by combining the two input lists into a single input list which
is manipulated appropriately by the destructor predicate:

merge A B C :- reduce [A,B] C
(X\Y\Z\(sigma U\(sigma V\(sigma W\(

   (X = [[Y|U],[V|W]], truth is Y<V, Z = [U,[V|W]]);
   (X = [[V|W],[Y|U]], false is Y>V, Z = [[V|W],U])

)))))
(X\Y\Z\(Z = [X|Y]))
(X\Y\((X = [[],Y]); (X = [Y,[]]))).

Disjunction is used in the destructor predicate in the definition of merge/3 to
enable removing the first element from only one of the input lists.  The element is
removed from whichever input list has the smallest element.  If the smallest element is
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contained in the first input list then it is "identified" with the subgoals X = [[Y|U],
[V|W]], truth is Y<V and "removed" with the subgoals X = [U,[V|W]],
false is Y>V.  Likewise, if the smallest element is contained in the second input list
(or if the first element in both input lists is identical) then it is "identified" with the
subgoal X = [[V|W],[Y|U]] and "removed" from the second input list with the
subgoal X = [[V|W],U].

An alternative to developing recursive programs using higher-order programs is
to instantiate prototype logic program schemata and extend them.  It is important to note
that the reduceList/2 schema is very robust, capturing a large class of programs
which also includes reverse/2, insertion_sort/2, product/2, prefix/2,
and many others.  However, although the logic program schemata given so far capture
a large group of logic programs, there is still a large group of logic programs that they
are unable to capture.  We can extend reduceList/2 to capture other programs like
append/3 and count/3.  Programming techniques constitute components of
programs and program schemata which enable the creation of specialized program
schemata from more generalized program schemata.  There are two major types of
programming techniques:  control flow techniques and context techniques.  Control flow
techniques are applied to program schemata as a way of defining the basic recursive
control flow of the program schema.  The two most common recursive control flow
techniques are single_recursion and double_recursion which enable the creation of
singly recursive and doubly recursive program schemata, respectively.  Context
techniques are applied to program schemata as a way of defining a context for
arguments.  The three most common context techniques are same, decompose, and
compose which define an argument to be the same across recursive calls, decrease in size
across recursive calls, and increase in size across recursive calls, respectively.  The
techniques list subgoal and list head are special forms of decompose and compose which
apply to list arguments.  It is possible to apply programming techniques to the following
general �Prolog program schema:

schema A1 ... An :- Goals.

to produce the reduce/2 program schema or any of the programs given in this paper.
One begins with a 2-argument version of this schema and apply the single_recursion
technique.  The single_recursion technique is used to split the body of a clause into a
disjunction of two sets of subgoals.  One of the subgoals contains base case clauses,
while the other set of subgoals contains a recursive call to the predicate.  Applying this
technique to the general �Prolog program schema produces:

schema A1 A2 :-
BaseCase;
(Before, schema B1 B2, After).

Now one can instantiate the BaseCase variable in the base portion and the
Before and After variables in the recursive portion of this clause to the subgoals
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(Base A A2), (Destructor A1 A B1), and (Constructor A B2 A2),
respectively.  The resultant clause is identical (modulo variable renaming) to
reduce/2.  It is also possible to produce the global list processing reduceList/2
schema by beginning with a 2-argument �Prolog schema.  Applying the single_recursion
technique produces:

schema A1 A2 :-
BaseCase;
(Before, schema B1 B2, After).

Applying the list head technique to the first argument produces:

schema A1 A2 :-
BaseCase;
(Before, A1 = [A|B1], schema B1 B2, After).

Now one can remove Before (or instantiate it to true) and instantiate
BaseCase and After to (A1 = [], Base A2) and (Constructor A B2
A2), respectively.  The resultant clause is identical (modulo variable renaming) to
reduceList/2 which captures all global list processing programs (e.g., sum/2 and
reverse/2).  It is also possible to produce the reduceNumber/2 schema from a 2-
argument �Prolog schema.  An important thing to note about our approach to generating
�Prolog program schemata  is that there is no need for a meta-language to represent the
programming techniques.  Furthermore, all intermediate programs are valid (albeit not
very useful) �Prolog programs.

One of the major differences between logic programs is the number of arguments.
In addition to instantiating predicate variables in logic program schemata to produce
logic programs, it is also possible to extend program schemata to include additional
arguments.  There are two types of argument extension that can be applied to the
reduceList/2 schema, corresponding to adding arguments to each of the predicate
variables in reduceList/2.  One can extend the reduceList/2 schema to have
an additional argument on the Base predicate:

reduceList [] Result ArgBase :- 
Base Result ArgBase.

reduceList [H|T] Result ArgBase :-
reduceList T R ArgBase, Constructor H R Result.

An example of this type of extension is the creation of append/3 from prefix/2:

prefix [] L.
prefix [H|T] [H|L] :- prefix T L.

The predicate prefix/2 succeeds if its primary list is a prefix of its other list.
The prefix/2 predicate can be extended by the adding a new argument which
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represents the second list (i.e., the list that is to be appended to the primary list).  If one
makes the new Base predicate unify its arguments then append/3 can be created:

append [] L NewArg :- (X\Y\(X = Y)) L NewArg.
append [H|T] [H|L] NewArg :- append T L NewArg.

The other argument extension that can be applied to the reduceList/2 schema
is to add an argument to the  Constructor predicate:

reduceList [] Result ArgCons :-
Base Result.

reduceList [H|T] Result ArgCons :-
reduceList T R ArgCons,
Constructor H R Result ArgCons.

An example of this type of extension is the creation of count/3 from length/2:

length [] 0.
length [H|T] L :- length T X, L is X + 1.

If the new Constructor predicate increments the count only when the head of
the list is unifiable with the newly added argument then count/3 can be created:

count [] 0 Element.
count [H|T] L Element :- 

count T X Element,
((H = Element, L is X + 1); L = X).

In addition to these semantics-altering extensions, there are two types of semantics-
preserving extensions that can be applied to logic programs and schemata to produce
equivalent logic programs and schemata: application of programming techniques and
combination (or merging) and connection of logic programs and schemata.  The first
type of semantics-preserving extension is the application of programming techniques to
logic program schemata.  Programming techniques have been studied fairly extensively
and a number of commonly occurring programming practices have been identified.  One
popular programming technique is the introduction of an accumulator, enabling the
composition of the output from the right rather than from the left.  Given that a program
unifies with the reduce/2 schema, it can be transformed into the more efficient
accumlator implementation by instantiating the following reduceAcc/2 schema with
the same Base and Constructor predicates:
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reduceAcc Input Result :- 
Base Dummy Acc, reduceAcc2 Input Result Acc.

reduceAcc2 Input Result Result :- 
Base Input Dummy.

reduceAcc2 Input Result Acc :-
Destructor Input H T, Constructor Acc H A,
reduceAcc2 T Result A.

assuming Constructor is associative.  As an example, consider sum/2 again.  The
more efficient (tail recursive) accumulator implementation of sum/2 is produced by
instantiating this reduceAcc/2 schema:

sum List Result :-
(X\(X = 0)) Acc, sum2 List Result Acc.

sum2 [] Result Result.
sum2 [H|T] Result Acc :-

(X\Y\Z\(Z is X + Y)) Acc H A, sum2 T Result A.

Learning this general accumulator schema enables the student programmer to
mentally transform straightforward non-accumulator programs into more efficient ones.
The other type of semantics-preserving logic program extension which student
programmers can use to improve the efficiency of their programs is the combination (or
merging) of logic program schemata.  The idea is to merge two logic program schemata
whenever they have a common argument.  Probably the most obvious logic program
schemata is to combine logic program schemata which have a common primary input.
The reduceListList/3 combines two reduceList/2 schemata that have a
common primary input:

reduceListList [] Result1 Result2 :- 
Base1 Result1, Base2 Result2.

reduceListList [H|T] Result1 Result2 :-
reduceListList T R1 R2,
Constructor1 H R1 Result1, 
Constructor2 H R2 Result2.

An example of the use of reduceListList/2 is the creation of a singly-
recursive implementation of the average/2 predicate:

average List Average :-
length List Length, sum List Sum,
Average is Sum / Length.

length [] 0.
length [H|T] L :- length T X, L is X + 1.

sum [] 0.
sum [H|T] S :- sum T X, S is X + H.
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which calculates the average value for the elements of a list.  Using the reduceList-
List/3 schema, it is possible to transform the average/2 predicate into the
following more efficient implementation:

average List Average :-
average2 List Length Sum, Average is Sum / Length.

average2 [] 0 0.
average2 [H|T] Length Sum :-

average2 T L S, Length is L + 1, Sum is S + H.

Because the reduceListList/3 schema was created by combining two global
list processing schemata which share a common primary input and have distinct outputs,
the same process can be used to combine two accumulated implementations of global list
processing schemata (or even one of each).  In addition to combining logic program
schemata, it is also possible to connect two logic program schemata that share a common
primary input and the result of one schema is an additional input to the other schema.
For example, consider finding the middle element in an arbitrary list:

middle List Middle :-
length List Length, Half is (Length + 1) div 2,
position List Half Middle.

length [] 0.
length [H|T] L :- length T X, L is X + 1.

position 1 [X|T] X.
position N [H|T] X :- M is N - 1, position M T X.

In order to capture position/3, the student must be introduced to another logic
program schemata.  The reduceLN/3 schema simultaneously reduces a list and a
number.  In addition to including position/3, the reduceLN/3 schema also
captures programs like take/3 and drop/3 which keep or remove the first n elements,
respectively.  The reduceLN/3 schema looks like:

reduceLN [] N Result.
reduceLN L N Result :-

L = [H|T], M is N - 1, reduceLN T M R,
((N = 1, Base L Result); Constructor H R Result).

An equivalent schema which reduces its number up from 1 to the maximum rather
than from the maximum down to 1 looks like:

reduceLN L N Result :- 
reduceLN2 L 1 N Result.

reduceLN2 [] N Max Result.
reduceLN2 L N Max Result :-

L = [H|T], M is N + 1, reduceLN2 T M Max R,
((N = Max, Base L Result); Constructor H R Result).
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If one instantiates Base to (X\Y\(sigma Z\(X = [Y|Z]))) and instantiate
Constructor to (X\Y\Z\(true)) then position/3 can be produced from
reduceLN/3 assuming that the case of requesting the n  element from a list of lessth

than n elements is a ill-posed query:

position [] N Result.
position L N Result :-

L = [H|T], M is N - 1, position T M R,
((N = 1, (X\Y\(sigma Z\(X = [Y|Z]))) L Result);
 (X\Y\Z\(Z = Y)) H R Result).

It is possible to connect the accumulated implementation of reduceList/2 with
the upward reduction implementation of reduceLN/3 to produce the following
connection schema:

reduceConnect List Result :- 
Base1 Acc, reduceC2 List Acc Length 1 Half Result.

reduceC2 [] Acc Acc N Max Result :- Connect Acc Max.
reduceC2 List Acc RL N Max Result :-

List = [H|T], M is N + 1,
Constructor1 Acc H A, reduceC2 T A RL M Max R,
((N = Max, Base2 List Result); 
 Constructor2 H R Result).

where Base1 and Constructor1 are predicates from the accumulated implementa-
tion of reduceList/2 and Base2 and Constructor2 are predicates from the
upward reduction implementation of reduceLN/3.  Applying this connection schema
to the middle/2 program produces the following more efficient implementation:

middle List Middle :- 
middle2 List 0 Length 1 Half Middle.

middle2 [] Length Length AH Half Middle :-
Half is (Length + 1) div 2.

middle2 [H|T] AL Length AH Half Middle :-
NL is AL + 1, NH is AH + 1,
middle2 T NL Length NH Half Mid,
((AH = Half, Middle = H); Middle = Mid).

The class of reduction programs share a common destructor.  As such, we can refer
to the transformations defined so far as destructor-specific transformations.  It is also
possible to have constructor-specific transformations.  Two of the most popular higher-
order programming programs are map/3 and filter/3.  Mapping and filtering
programs are a subclass of reduction programs that also share a common constructor.
Rather than reducing a list by combining each element with the result of reducing the
remainder of the list, sometimes it is desirable to map a function predicate across all the
elements of a list.  For example, we may want to double all of the elements in a list.  In
order to double all of the elements of a list, we must first apply a function predicate that
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doubles each element and then put the doubled element in the front of the list produced
by doubling all the elements in the remainder of the list.  In general, the predicate
map/3 can be used to apply an arbitrary binary function predicate to each element of
a list:

map [] Result P :-
(X\(X = [])) Result.

map [H|T] Result P :-
map T R P,
(X\Y\Z\(sigma W\(P X W, Z = [W|Y]))) H R Result.

We can write doubleAll/2 using this map/3 predicate:

doubleAll List Result :
 map List Result (X\Y\(Y is 2 * X)).

The predicate filter/3 takes a unary predicate and a list and filters out all
elements from the list that do not satisfy the predicate.  For example, we may want to
filter out all non-positive numbers from a list of numbers.  We can write filter/3:

filter [] Result P :- 
(X\(X = [])) Result.

filter [H|T] Result P :-
filter T R P,
(X\Y\Z\((P X, Z = [X|Y]); Z = Y)) H R Result.

We can write positivesOnly/2 using this filter/3 predicate:

positivesOnly List Result :-
filter List Result (X\(truth is X > 0)).

It is possible to consider the mapping constructor and the filtering constructor as
special cases of the following constructor:

(P X XX, Z = [XX|Y]); Z = Y

Notice that this constructor has the additional disjunctive subgoal (Z = Y) which
is never invoked for mapping programs and it captures filtering constructors if we
rewrite the filtering constructor to add an additional argument to its filtering predicate:

(A\B\(P A, A = B))

which represents the mapped element.  Now we can define the following special case of
reduceList/2 for mapping/filtering programs:
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mapList [] Result :- 
Base Result.

mapList [H|T] Result :-
mapList T R,
((P H XX, Result = [XX|R]); Result = R).

We can connect mapList/2 and reduceList/2 where the mapping/filtering
program maps a predicate across the elements of the input list and this mapped list is
then reduced.  For example, we can count the number of positive elements in a given list
by filtering out the non-positive elements (using positivesOnly/2) and counting
the number of elements in the filtered list (using length/2):

positiveCount List Result :-
positivesOnly List X, length X Result.

positivesOnly [] [].
positivesOnly [H|T] Result :-

positivesOnly T R,
((truth is H > 0, XX = H, Result = [XX|R]);
 Result = R).

length [] 0.
length [H|T] L :- length T X, L is X + 1.

Given Base and Constructor from the reduction program and P from the
mapping/filtering program, the mapping/filtering connection to reduction transformation
would look like:

mapReduceList [] Result :- Base Result.
mapReduceList [H|T] Result :-

mapReduceList T R,
((P H XX, Constructor XX R Result); Result = R).

Applying this transformation to the original positiveCount/2 program
produces the following more efficient implementation:

positiveCount [] 0.
positiveCount [H|T] Result :-

positiveCount T R,
(((truth is H > 0, XX = H), Result is R + 1);
 Result = R).

Logic program schemata can be used to help in program development by enabling
the programmer to produce a simple straightforward solution to the problem and then
transform that solution into an efficient one by applying a set of program transforma-
tions.  Other examples of schema combination transformations can be found in [27].



33

5 Conclusion

Imperative programming languages provide their programmers with a set of structured
programming constructs.  There are currently no structured constructs, however, in logic
programming languages.  Conditional iteration in the form of WHILE loops imposes
structure on imperative languages, abstracting the essence of conditional repetition.
WHILE loops are basic program schemata which capture commonly occurring
imperative programming techniques.  Conditional recursion serves the same role for
logic programming languages.

In this paper, we have argued that it is possible to incorporate a structured style of
programming into logic programming languages by exploiting program templates and
schemata.  Program schemata capture the notion of conditional recursion which serves
the same role for logic programming languages that conditional iteration does for
imperative languages.  Representing program schemata requires a higher-order
representation language.  Previous approaches to representing program templates and
schemata have relied on the introduction of an abstract meta-language.  Higher-order
logic programming languages like �Prolog provide an alternative to the meta-language
approach which can be introduced after one has mastered the meta-language.  In addition
to providing an alternative to an abstract meta-language, �Prolog's ability to represent
�Prolog program schemata as �Prolog programs enables �Prolog to support conditional
recursion naturally which promotes a more structured style of logic programming.  We
have successfully employed this schema-based approach to teaching recursion in several
declarative programming languages (including Prolog, �Prolog, Logo, Lisp, and
Miranda) with much success over the past four years.

Schemata serve a fundamental role in most human cognitive processes.  It has been
shown that schemata enable the organization of meaningful information for complex
domains like computer programming.  In addition to being essential to expert program-
mers, program schemata have also been shown to be useful in teaching recursive Prolog
programming to novices.  Thus, the incorporation of structured constructs into logic
programming made possible with logic program schemata enhances the logic program-
ming paradigm for programmers of all levels.
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