

Lecture 05: CSP and Local Search

CS 445 – Artificial Intelligence Spring 2022

Instructor: Dr. Trung T. Nguyen

• Lecture 05 – Constrain Satisfaction Problems (CSPs)

- CSP definition and examples
- Backtracking search for CSPs
- Problem structure and problem decomposition
- Local search for CSPs

- Recommended readings on search:
	- AIMA Ch 6.1-6.4 (required)
	- AIMA Ch 4.1 (required)

Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space

Planning: sequences of actions The path to the goal is the important thing Paths have various costs, depths Heuristics give problem-specific guidance

Identification: assignments to variables The goal itself is important, not the path All paths at the same depth (for some formulations) CSPs are specialized for identification problems

Constraint Satisfaction Problems (CSPs)

Standard search problem:

state is a "black box" ----- arbitrary data structure that supports goal test, eval, successor

CSP:

a special subset of search problems state is defined by variables Xi with values from domain Dⁱ goal test is a set of constraints specifying allowable combinations of values for subsets of variables

Allows useful general-purpose algorithms with more power than standard search algorithms

N variables domain D constraints states goal test successor function partial assignment complete; satisfies constraints

assign an unassigned variable

Example: Map Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: $D = \{ red, green, blue \}$
- Constraints: adjacent regions must have different colors Implicit: $WA \neq NT$

Explicit: $(WA, NT) \in \{ (red, green), (red, blue), \ldots \}$

• Solutions are assignments satisfying all constraints, e.g.:

> {WA=red, NT=green, Q=red, NSW=green, $V = red$, SA=blue, T=green}

Northern Territory Western
Australia Queenslar New South Wal Tasm<mark>an</mark>i

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Example: Sudoku

- Variables:
	- Each (open) square
- Domains:
	- \blacksquare {1,2,...,9}
- Constraints:

9-way alldiff for each row 9-way alldiff for each column 9-way alldiff for each region (or can have a bunch of pairwise inequality constraints)

Varieties of CSPs and Constraints

- Discrete Variables
	- Finite domains
		- Size d means $O(d^n)$ complete assignments
		- E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
	- Infinite domains (integers, strings, etc.)
		- E.g., job scheduling, variables are start/end times for each job
		- Linear constraints solvable, nonlinear undecidable
- Continuous variables
	- E.g., start/end times for Hubble Telescope observations
	- Linear constraints solvable in polynomial time by LP methods

CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig 15

Varieties of CSPs and Constraints

- Varieties of Constraints
	- Unary constraints involve a single variable (equivalent to reducing domains), e.g.:

 $SA \neq green$

- Binary constraints involve pairs of variables, e.g.: $SA \neq WA$
- Higher-order constraints involve 3 or more variables: e.g., cryptarithmetic column constraints
- Preferences (soft constraints):
	- E.g., red is better than green
	- Often representable by a cost for each variable assignment
	- Gives constrained optimization problems
	- (We'll ignore these until we get to Bayes' nets)

Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation schedulir
- Factory scheduling
- Circuit layout
- Fault diagnosis
- … lots more!

• Many real-world problems involve real-valued variables…

Solving CSPs

Standard Search Formulation

- Standard search formulation of CSPs
- States defined by the values assigned so far (partial assignments)
	- Initial state: the empty assignment, {}
	- Successor function: assign a value to an unassigned variable
	- Goal test: the current assignment is complete and satisfies all constraints
- We'll start with the straightforward, naïve approach, then improve it

• What would BFS do?

- What would DFS do?
	- let's see!

• What problems does naïve search have?

[Demo: coloring -- dfs]

Video of Demo Coloring -- DFS

Backtracking Search

- Backtracking search is the basic uninformed algorithm for solving CSPs
- Idea 1: One variable at a time
	- Variable assignments are commutative, so fix ordering -> better branching factor!
	- I.e., [WA = red then $NT = green$] same as $INT = green$ then $WA = red$]
	- Only need to consider assignments to a single variable at each step
- Idea 2: Check constraints as you go
	- i.e., consider only values which do not conflict previous assignments
	- Might have to do some computation to check the constraints
	- "Incremental goal test"
- Depth-first search with these two improvements

is called *backtracking search* (not the best name)

Can solve n-queens for $n \approx 25$

Backtracking Example

[Demo: coloring -- backtracking]

Video of Demo Coloring – Backtracking

- Backtracking = DFS + variable-ordering + fail-on-violation
- What are the choice points?
- General-purpose ideas give huge gains in speed
- Ordering:
	- Which variable should be assigned next?
	- In what order should its values be tried?
- Filtering: Can we detect inevitable failure early?

Filtering

Keep track of domains for unassigned variables and **cross off bad options**

Filtering: Forward Checking

- **Filtering**: Keep track of domains for unassigned variables and cross off bad options
- **Forward checking**: Cross off values that violate a constraint when added to the existing assignment

[Demo: coloring -- forward checking]

Video of Demo Coloring – Backtracking with Forward Checking

Filtering: Constraint Propagation

• Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!
- Why didn't we detect this yet?
- *Constraint propagation:* reason from constraint to constraint

Consistency of A Single Arc

• An arc X → Y is consistent iff for *every* x in the tail there is *some* y in the head which could be assigned without violating a constraint

Forward checking?

Enforcing consistency of arcs pointing to each new assignment

Arc Consistency of an Entire CSP

• A simple form of propagation makes sure all arcs are consistent:

- Important: If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment
- What's the downside of enforcing arc consistency?

Remember: Delete from the tail!

Enforcing Arc Consistency in a CSP

```
function AC-3(csp) returns the CSP, possibly with reduced domains
   inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}local variables: queue, a queue of arcs, initially all the arcs in cspwhile queue is not empty \bf{do}(X_i, X_j) \leftarrow REMOVE-FIRST (queue)
      if REMOVE-INCONSISTENT-VALUES(X_i, X_j) then
         for each X_k in NEIGHBORS[X_i] do
            add (X_k, X_i) to queue
function REMOVE-INCONSISTENT-VALUES(X_i, X_j) returns true iff succeeds
   removed \leftarrow falsefor each x in DOMAIN[X_i] do
      if no value y in \text{DOMAIN}[X_i] allows (x, y) to satisfy the constraint X_i \leftrightarrow X_jthen delete x from DOMAIN[X_i]; removed \leftarrow truereturn removed
```
- Runtime: $O(n^2d^3)$, can be reduced to $O(n^2d^2)$
- … but detecting all possible future problems is NP-hard why?

Limitations of Arc Consistency

- After enforcing arc consistency:
	- Can have one solution left
	- Can have multiple solutions left
	- Can have no solutions left (and not know it)
- Arc consistency still runs inside a backtracking search!

[Demo: coloring -- forward checking]

[Demo: coloring -- arc consistency]

Demo – Backtracking with Forward Checking – Complex Graph

Demo – Backtracking with Arc Consistency – Complex Graph

Iterative Improvement

Iterative Algorithms for CSPs

- Local search methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
	- Take an assignment with unsatisfied constraints
	- Operators *reassign* variable values
	- No fringe! Live on the edge.
- Algorithm: While not solved,
	- Variable selection: randomly select any conflicted variable
	- Value selection: min-conflicts heuristic:
		- Choose a value that violates the fewest constraints
		- I.e., hill climb with $h(x)$ = total number of violated constraints

Example: 4-Queens with Min-Conflict heuristics

- States: 4 queens in 4 columns $(4^4 = 256$ states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: $c(n)$ = number of attacks

[Demo: n-queens – iterative improvement (L5D1)] [Demo: coloring – iterative improvement]

Video of Demo Iterative Improvement – n Queens

Video of Demo Iterative Improvement – Coloring

Local Search (AIMA 4.1)

Local Search (AIMA 4.1)

- Tree search keeps unexplored alternatives on the fringe (ensures completeness)
- Local search: improve a single option until you can't make it better (no fringe!)
- New successor function: local changes

• Generally, much faster and more memory efficient (but incomplete and suboptimal)

Hill Climbing (AIMA 4.1)

- Simple, general idea:
	- Start wherever
	- Repeat: move to the best neighboring state
	- If no neighbors better than current, quit
- What's **bad** about this approach?
- What's good about it?

Hill Climbing Diagram

Hill Climbing Quiz

Starting from X, where do you end up ?

Starting from Y, where do you end up ?

Starting from Z, where do you end up ?

Simulated Annealing

- Idea: Escape local maxima by allowing downhill move
	- But make them rarer as time goes on

Simulated Annealing

- Theoretical guarantee:
	- $p(x) \propto e^{\frac{E(x)}{kT}}$ • Stationary distribution:
	- If T decreased slowly enough, will converge to optimal state!
- Is this an interesting guarantee?
- Sounds like magic, but reality is reality:
	- The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
	- People think hard about *ridge operators* which let you jump around the space in better ways

- Genetic algorithms use a natural selection metaphor
	- Keep best N hypotheses at each step (selection) based on a fitness function
	- Also have pairwise crossover operators, with optional mutation to give variety
- Possibly the most misunderstood, misapplied (and even maligned) technique around

Example: N-Queens

- Why does crossover make sense here?
- When wouldn't it make sense?
- What would mutation be?
- What would a good fitness function be?