
CS 445 – Artificial Intelligence
Spring 2022

Instructor: Dr. Trung T. Nguyen

Lecture 05: CSP and Local
Search

Agenda

• Lecture 05 – Constrain Satisfaction Problems (CSPs)

• CSP definition and examples

• Backtracking search for CSPs

• Problem structure and problem decomposition

• Local search for CSPs

• Recommended readings on search:
– AIMA Ch 6.1-6.4 (required)

– AIMA Ch 4.1 (required)

CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig 2

What is Search For?

CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig 3

Assumptions about the world: a single agent, deterministic actions, fully
observed state, discrete state space

Planning: sequences of actions
The path to the goal is the important thing
Paths have various costs, depths
Heuristics give problem-specific guidance

Identification: assignments to variables
The goal itself is important, not the path
All paths at the same depth (for some formulations)
CSPs are specialized for identification problems

Credit: ai.berkeley.edu

Constraint Satisfaction Problems (CSPs)

CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig 4

Standard search problem:
state is a "black box" ----- arbitrary data structure

that supports goal test, eval, successor

CSP:
a special subset of search problems
state is defined by variables Xi with values from domain Di

goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

Allows useful general-purpose algorithms with more power
than standard search algorithms

N variables

domain D
constraints

states

goal test

successor function

partial
assignment

complete; satisfies constraints

assign an unassigned variable

Credit: ai.berkeley.edu

Example: Map Coloring

• Variables:

• Domains:

• Constraints: adjacent regions must have different

colors

• Solutions are assignments satisfying all constraints,

e.g.:

CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig 5

Implicit:

Explicit:

Credit: ai.berkeley.edu

Constraint Graphs

• Binary CSP: each constraint relates (at most) two
variables

• Binary constraint graph: nodes are variables, arcs
show constraints

• General-purpose CSP algorithms use the graph
structure to speed up search. E.g., Tasmania is an
independent subproblem!

CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig 6

Credit: ai.berkeley.edu

Example: Sudoku

CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig 11

▪ Variables:

▪ Each (open) square

▪ Domains:

▪ {1,2,…,9}

▪ Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

(or can have a bunch of pairwise
inequality constraints)

Varieties of CSPs and Constraints

• Discrete Variables

• Finite domains

• Size d means 𝑂(𝑑𝑛) complete assignments

• E.g., Boolean CSPs, including Boolean
satisfiability (NP-complete)

• Infinite domains (integers, strings, etc.)

• E.g., job scheduling, variables are start/end
times for each job

• Linear constraints solvable, nonlinear
undecidable

• Continuous variables
• E.g., start/end times for Hubble Telescope

observations

• Linear constraints solvable in polynomial time
by LP methods

CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig 14

Varieties of CSPs and Constraints

CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig 15

• Varieties of Constraints

• Unary constraints involve a single variable (equivalent
to reducing domains), e.g.:

• Binary constraints involve pairs of variables, e.g.:

• Higher-order constraints involve 3 or more variables:

e.g., cryptarithmetic column constraints

• Preferences (soft constraints):

• E.g., red is better than green

• Often representable by a cost for each variable
assignment

• Gives constrained optimization problems

• (We’ll ignore these until we get to Bayes’ nets)

Real-World CSPs

• Assignment problems: e.g., who teaches what class

• Timetabling problems: e.g., which class is offered when and where?

• Hardware configuration

• Transportation scheduling

• Factory scheduling

• Circuit layout

• Fault diagnosis

• … lots more!

• Many real-world problems involve real-valued variables…

CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig 16

Solving CSPs

CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig 17

• Standard search formulation of CSPs

• States defined by the values
assigned so far (partial assignments)

• Initial state: the empty assignment, {}

• Successor function: assign a value to
an unassigned variable

• Goal test: the current assignment is
complete and satisfies all constraints

• We’ll start with the straightforward,
naïve approach, then improve it

CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig 18

Standard Search Formulation

Search Methods

• What would BFS do?

CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig 19

{}

{WA=g} {WA=r} {NT=g}… …

Search Methods

• What would BFS do?

• What would DFS do?

• let’s see!

• What problems does naïve search have?

CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig 20

[Demo: coloring -- dfs]

Video of Demo Coloring -- DFS

21CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig; Berkeley AI

Credit: ai.berkeley.edu

Backtracking Search

CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig 22

• Backtracking search is the basic uninformed algorithm for solving CSPs

• Idea 1: One variable at a time

• Variable assignments are commutative, so fix ordering -> better branching factor!

• I.e., [WA = red then NT = green] same as [NT = green then WA = red]

• Only need to consider assignments to a single variable at each step

• Idea 2: Check constraints as you go

• i.e., consider only values which do not conflict previous assignments

• Might have to do some computation to check the constraints

• “Incremental goal test”

• Depth-first search with these two improvements

is called backtracking search (not the best name)

• Can solve n-queens for n  25

Backtracking Example

CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig 23

[Demo: coloring -- backtracking]

Video of Demo Coloring – Backtracking

24CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig; Berkeley AI

Credit: ai.berkeley.edu

Backtracking Search

• Backtracking = DFS + variable-ordering + fail-on-violation

• What are the choice points?

25CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig

Improving Backtracking

• General-purpose ideas give huge gains in
speed

• Ordering:
• Which variable should be assigned next?

• In what order should its values be tried?

• Filtering: Can we detect inevitable failure
early?

26CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig

Filtering

27CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig

Keep track of domains for unassigned variables and cross off bad options

Filtering: Forward Checking

• Filtering: Keep track of domains for unassigned variables and cross off bad
options

• Forward checking: Cross off values that violate a constraint when added to the
existing assignment

28

WA
SA

NT Q

NSW

V

[Demo: coloring -- forward checking]

CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig

Video of Demo Coloring – Backtracking with Forward Checking

29CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig; Berkeley AI

Credit: ai.berkeley.edu

Filtering: Constraint Propagation

• Forward checking propagates information from assigned to unassigned variables, but

doesn't provide early detection for all failures:

• NT and SA cannot both be blue!

• Why didn’t we detect this yet?

• Constraint propagation: reason from constraint to constraint

30

WA
SA

NT Q

NSW

V

CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig

Consistency of A Single Arc

• An arc X → Y is consistent iff for every x in the tail there is some y in the head

which could be assigned without violating a constraint

Forward checking?

Enforcing consistency of arcs pointing to each new assignment

31

Delete from the tail!

WA
SA

NT Q

NSW

V

CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig

Arc Consistency of an Entire CSP

• A simple form of propagation makes sure all arcs are consistent:

• Important: If X loses a value, neighbors of X need to be rechecked!

• Arc consistency detects failure earlier than forward checking

• Can be run as a preprocessor or after each assignment

• What’s the downside of enforcing arc consistency?

32

Remember: Delete
from the tail!

WA SA

NT Q

NSW

V

CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig

Enforcing Arc Consistency in a CSP

• Runtime: O(n2d3), can be reduced to O(n2d2)

• … but detecting all possible future problems is NP-hard – why?

33CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig

Limitations of Arc Consistency

• After enforcing arc consistency:
• Can have one solution left

• Can have multiple solutions left

• Can have no solutions left (and
not know it)

• Arc consistency still runs inside
a backtracking search!

34

[Demo: coloring -- arc consistency]

[Demo: coloring -- forward checking]

CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig

Demo – Backtracking with Forward Checking – Complex Graph

35CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig; Berkeley AI

Credit: ai.berkeley.edu

Demo – Backtracking with Arc Consistency – Complex Graph

36CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig; Berkeley AI

Iterative Improvement

37CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig

Iterative Algorithms for CSPs

• Local search methods typically work with “complete” states, i.e., all variables assigned

• To apply to CSPs:

• Take an assignment with unsatisfied constraints

• Operators reassign variable values

• No fringe! Live on the edge.

• Algorithm: While not solved,

• Variable selection: randomly select any conflicted variable

• Value selection: min-conflicts heuristic:

• Choose a value that violates the fewest constraints

• I.e., hill climb with h(x) = total number of violated constraints

38CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig

Example: 4-Queens with Min-Conflict heuristics

• States: 4 queens in 4 columns (44 = 256 states)

• Operators: move queen in column

• Goal test: no attacks

• Evaluation: c(n) = number of attacks

39

[Demo: n-queens – iterative improvement (L5D1)]
[Demo: coloring – iterative improvement]

CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig

Video of Demo Iterative Improvement – n Queens

40CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig; Berkeley AI

Credit: ai.berkeley.edu

Video of Demo Iterative Improvement – Coloring

41CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig; Berkeley AI

Local Search (AIMA 4.1)

43CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig

Local Search (AIMA 4.1)

• Tree search keeps unexplored alternatives on the fringe (ensures completeness)

• Local search: improve a single option until you can’t make it better (no fringe!)

• New successor function: local changes

• Generally, much faster and more memory efficient (but incomplete and
suboptimal)

44CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig

Hill Climbing (AIMA 4.1)

• Simple, general idea:

• Start wherever

• Repeat: move to the best neighboring state

• If no neighbors better than current, quit

• What’s bad about this approach?

• What’s good about it?

45CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig

Hill Climbing Diagram

46CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig

Hill Climbing Quiz

47

Starting from X, where do you end up ?

Starting from Y, where do you end up ?

Starting from Z, where do you end up ?

CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig

Simulated Annealing

• Idea: Escape local maxima by allowing downhill moves
• But make them rarer as time goes on

48CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig

Simulated Annealing

• Theoretical guarantee:

• Stationary distribution:

• If T decreased slowly enough, will converge to optimal state!

• Is this an interesting guarantee?

• Sounds like magic, but reality is reality:

• The more downhill steps you need to escape a local

optimum, the less likely you are to ever make them all in a

row

• People think hard about ridge operators which let you jump

around the space in better ways

49CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig

Genetic Algorithms

• Genetic algorithms use a natural selection metaphor
• Keep best N hypotheses at each step (selection) based on a fitness function

• Also have pairwise crossover operators, with optional mutation to give variety

• Possibly the most misunderstood, misapplied (and even maligned) technique around

50CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig

Example: N-Queens

• Why does crossover make sense here?

• When wouldn’t it make sense?

• What would mutation be?

• What would a good fitness function be?

51CS 445 Sp22 Ref: AIMA Fourth Edition Russel & Novig

