Chapter 2: Operating-System
Services

Operating System Concepts — 10t Edition Silberschatz, Galvin and Gagne ©2018



=

S Outline

= Qperating System Services

= User and Operating System-Interface

= System Calls

=  System Services

= Linkers and Loaders

= Why Applications are Operating System Specific
= Design and Implementation

= Qperating System Structure

= Building and Booting an Operating System

= QOperating System Debugging

«.‘..’ '-h‘ ‘l
7 W
U 29X

Operating System Concepts — 10t Edition 2.2 Silberschatz, Galvin and Gagne ©2018




Li‘,»/ Obj ectives

= |dentify services provided by an operating system

= |llustrate how system calls are used to provide operating
system services

= Compare and contrast monolithic, layered, microkernel,
modular, and hybrid strategies for designing operating
systems

= |llustrate the process for booting an operating system
= Apply tools for monitoring operating system performance

= Design and implement kernel modules for interacting with
a Linux kernel

,A,_g_,.,/{, /-‘;S;"%:

A%

—

Operating System Concepts — 10t Edition 23 Silberschatz, Galvin and Gagne ©2018



2.1 Operating System Services

user and other system programs

GUI

touch screen

command line

user interfaces

system calls

program
execution

I/0
operations

file

systems

communication

resource
allocation

accounting

protection
and
security

error
detection

services

operating system

hardware

A View of Operating System Services

Operating System Concepts — 10t Edition Silberschatz, Galvin and Gagne ©2018

2.4



L,,j;:l Operating System Services

" 4

= Operating systems provide an environment for execution of programs and
services to programs and users

= One set of operating-system services provides functions that are helpful to
the user:

* User interface - Almost all operating systems have a user interface
(UI).
» Varies between Command-Line (CLI), Graphics User Interface
(GUI), touch-screen, Batch

* Program execution - The system must be able to load a program into
memory and to run that program, end execution, either normally or
abnormally (indicating error)

* 1/O operations - A running program may require 1/0, which may
involve a file or an I/O device

* File-system manipulation - The file system is of particular interest.
Programs need to read and write files and directories, create and delete
them, search them, list file Information, permission management. m

- //3,‘;

(7

Operating System Concepts — 10t Edition 25 Silberschatz, Galvin and Gagne ©2018




=

2 Operating System Services (Cont.)

&T""":; r

= One set of operating-system services provides functions that are helpful
to the user (Cont.):

¢ Communications — Processes may exchange information, on the
same computer or between computers over a network

» Communications may be via shared memory or through message
passing (packets moved by the OS)

* Error detection — OS needs to be constantly aware of possible
errors

» May occur in the CPU and memory hardware, in I/O devices, in
user program

» For each type of error, OS should take the appropriate action to
ensure correct and consistent computing

» Debugging facilities can greatly enhance the user’ s and
programmer’ s abilities to efficiently use the system

Operating System Concepts — 10t Edition 2.6 Silberschatz, Galvin and Gagne ©2018

P\ W=




=

“%7/ Operating System Services (Cont.)

= Another set of OS functions exists for ensuring the efficient operation of
the system itself via resource sharing

* Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them

» Many types of resources - CPU cycles, main memory, file
storage, 1/0O devices.

* Logging - To keep track of which users use how much and what
kinds of computer resources

* Protection and security - The owners of information stored in a
multiuser or networked computer system may want to control use of
that information, concurrent processes should not interfere with each

other

» Protection involves ensuring that all access to system resources
is controlled

» Security of the system from outsiders requires user
authentication, extends to defending external I/O devices from
invalid access attempts

|

-

G

o

h {
b
o ol
W/
~ =

N

Operating System Concepts — 10t Edition 2.7 Silberschatz, Galvin and Gagne ©2018




-\"{3
—
(g

“»7 2.2 OS Interface - Command Line Interpreter

* CLI or command interpreter allows direct command
entry

* Sometimes implemented in kernel, sometimes by
systems program

* Sometimes multiple flavors implemented — shells

* Primarily fetches a command from user and executes
It

* Sometimes commands built-in, sometimes just
names of programs

» If the latter, adding new features doesn’t require
shell modification

R ol
.
94 ”‘v\}
U 28

Operating System Concepts — 10t Edition 28 Silberschatz, Galvin and Gagne ©2018




,\n

{

<4%7 Bourne Shell Command Interpreter

; 1. root@r6181-d5-us01:~ (ssh)
X root@r6181-d5-u.. @ 81 X ssh 3% 82 X root@r6181-d5-us01... #3

Operating System Concepts — 10t Edition ) Silberschatz, Galvin and Gagne ©2018



=

=

e

“wf User Operating System Interface - GUI

= User-friendly desktop metaphor interface
* Usually mouse, keyboard, and monitor
* lcons represent files, programs, actions, etc.

* Various mouse buttons over objects in the interface cause various
actions (provide information, options, execute function, open
directory (known as a folder)

* |nvented at Xerox PARC
= Many systems now include both CLI and GUI interfaces
* Microsoft Windows is GUI with CLI “command” shell

* Apple Mac OS X is “Aqua” GUI interface with UNIX kernel
underneath and shells available

* Unix and Linux have CLI with optional GUI interfaces (CDE, KDE,
GNOME)

\

B = ;\1
Oa

<
v

A

Operating System Concepts — 10t Edition 2.10 Silberschatz, Galvin and Gagne ©2018




)
B Touchscreen Interfaces
eee00 AT&T LTE
= Touchscreen devices require new .
interfaces pr—
Messages Calendar Photos
* Mouse not possible or not desired g
o -1
¢ Actions and selection based on .
gestu reS Stocks ;i LS Stor‘]e
* Virtual keyboard for text entry @ =< B
. Settings Calculator App Store Weather
= Voice commands R CE .

Podcasts Photography Avalanche

& ¢
“

Mtn Project Dropbox Spotify

yo®w

Twitter Instagram Weather NYT Now

°
| .
Phone Safari m

Y : R ..‘ \!
& /‘SQ ..\\él
o g "?;

5
AL

Operating System Concepts — 10t Edition 211 Silberschatz, Galvin and Gagne ©2018




& PowerPoint Fie Edit View lnset For

#_Arangs Tools _Siide Show _Window _Help

o) - ST T WS S MM
comcon s Toa 7 . 2 mew 22 .
© ) pbg > imp > book » 0s10-dir » - text-dir - © ) osc > 0s10c-dir > text-dir > Chapters > ch2 JERal Bl -
Name su ome~ rame sue
= 2o 1ave  srtezsoru |1 A 20kes 35008 =
- vpdt 77 KB . OSX-0S.eps AELL) v
) o S e Ve B mwvr
. 7-p0gm i @ witaps 19m8
= 7.bgear s o UNcLOADaR 14ne Y oo
o Toee P -
D e it Q dietionary -
LR o o 2028
+ Tiessiaren @ 202mmold ot
< e 10208 « slscenacersos
= st foern a2t
e Wi W horer O e Dictkrary
1 am eks nzs 32008 a i lee P
. vctex xe 2215, 326 PM « 220008 Dictation & Speach
" Sudos s 22718, 328 P PR BErwron
pr— 2K s | s 2tees
g ke ymnsaaee || e 2ives oarzres wsres
* rstcezes w azzssaem | 4 216 iy — \
o sttt K w218 20PN a 2150 Dictionary
< parrtee o sz || s 20 8 seRcmsocmen = ety s -
. parttren o 22218, 3:20 P9 - 272 s
P o s szem || 4 2ives W Detinry
+ swtetmn oa wzmaaeee || w zioms wres
* pansian e sz ||y 200m W o Steeping Dctonsy o septcain
o swtzim s sz || e 207w . Lo
bpetens e yais s | o 2oem jem— eatnd 32008
somath sty oa yas e || o zoses
14 o . - Music b i
™ torks  yazrss2eem | g 20%es DIRHEZENS: S
we azn e ¢
ke xS saeme
B Az s B syncotny
s see —
e sz Croative Coud Fles
o xzs a0 =
“xa 32215, 326 PM "] e
om s aaeew s
P Devces
o s e =
MacPro
e azns 32 =
am yzs,aaem B s
o s sz
s zzsaaneu o
° D06 + 2 PFS summary s
ORI oot Dosign Transitons wtioos  Side Show _ Review _ View -
;. FE—— =TT .
© s e
e - g A Pewe Sees et Amime G ave Ouie
9 seaon - -
1 in. Format Background 3
B
r = )
< ALA wing syst 7
i ven
stsney
o O sssa
n pas—n
ORETG AyR operating system | ‘apasading sistam | s = Pictirs or texture fl
oparating systems noun - _—
% ki Hide Backgreund Grahics
ohocall & color
v Te. Trowparancy O— [ :
| DSSD HIGH PERFORMANCE
ok o sk notes
sexty 1o 1
Sica 1 o1 8 Engisn (Untes Statsst = Notes W Cammons B e s k8

Operating System Concepts — 10t Edition

2.12

EE @ ez B0 BB I T Fiosiieor

ams omemcaiiea v s o
_ 2.08eps Today, 3:08 PM Enca..cript
Screen Shot 2016-09-00 at 3.05.17 PM Today, 3:05 PM PNG image
= Scroen Shot 2016-09-09 at 3.05.15 PM (2) Toc 3 PNG image
i Screen Shot 2016-09-09 at 3.05.15 PM Today, 3:06 7.8W PNG image
= Screen Shot 2016-09-09 at 2.37.04 PM loday. 2:37 PM 13MB  PNG image

» s Civilization IV Bayond the Sword Folder
= Screen Shot 2016-09-09 at 10.30.22 AM PNG image

= Screen Shot 2016-09-09 at 10.24.55 AM
~ Screen Shot 2016-09-09 at 10.12.40 AM

PNG image

» = ChronoSync Documents Today, 3:04 AM
« Screen Shot 2016-09-08 at 5,33.65 PM Yesterday, 5:34 PM
« Screen Shot 2016-09-08 at 5.24.42 PM y, 5:24 PM
= Scroen Shot 2016-09-08 at 5,12.47 PM 5:12PM
@ xfs-gpfs-performance v53 500 PM
= Screen Shot 2016-09-08 at 5.00.18 PM Yesterday, 5:00 PM
= Screen Shot 2016-09-08 at 5.08.49 PM rday, 5:08 PM
= Screen Shot 2016-09-08 at 5.08.29 PM y, 5:08 PM
« Screen Shot 2016-09-08 at 5.05.22 PM Yesterday, 5:05 PM

= Screen Shot 2016-09-08 at 5.04.33 PM 04 PM PNG image
= Screen Shot 2016-09-08 at 5.04.27 PM erday, 5:04 PM PNG image
= Screen Shot 2016-09-08 at 5.04.08 PM Yesterday, 5:04 PM PNG image
= Screen Shot 2016-09-08 at 4.56.21 PM Yesterday, 4:56 PM PNG image
= Scroen Shot 2016-09-08 at 4,56.14 PM day, 4:56 PM PNG image
= Scroen Shot 2016-09-08 at 4.53.40 PM 3 PM

PNG image
« Screen Shot 2016-09-08 at 4.44.37 PM P

mage
- Screen Shot 2016-09-08 at 4.42.43 PM 8 PNG image

-« Screen Shot 2016-09-06 at 4.41.37 PM Yesterday, 4:41 PM PNG image

= Screen Shot 2016-09-08 at 4,29.24 PM sterday, 429 PM PNG image
 Scroon Shot 2016-09-08 at 3.47.41 PM PNG image
 Screen Shot 2016-09-08 at 3.46.43 PM PNG image
~ Screen Shot 2016-08-08 at 11.48.03 AM PNG image
= Screen Shot 2016-09-08 at 11.45.45 AM Yesterday, 11 PNG image
Yesterday, 11 PNG image

Apple Computer Inc.

rcra 1 (300) MYAPRLE
05002500, 2ipg  Spain Trave

a O}t Facatime hudio uides Coflection

el 8002752273

ok 1 Infnite Loop

Cupertian CA 85014
pretty

05502507.2. 199

290.2425

Untitied Export

hex oct bin | ¢ )

1. Warming b

Silberschatz, Galvin and Gagne ©2018



=

2
=

(o

r & 2.3 System Calls

= Programming interface to the services provided by the OS

= Typically written in a high-level language (C or C++)

= Mostly accessed by programs via a high-level Application
Programming Interface (API) rather than direct system call use

= Three most common APIs are Win32 API for Windows, POSIX
API for POSIX-based systems (including virtually all versions of
UNIX, Linux, and Mac OS X), and Java API for the Java virtual
machine (JVM)

Note that the system-call names used throughout this text are generic

4 ~l ‘\.‘ ‘
.w_,./'/‘ /.S; \\!
154 "‘v\}

U 29X

Operating System Concepts — 10t Edition 2.13 Silberschatz, Galvin and Gagne ©2018




Example of System Calls

= System call sequence to copy the contents of one file to another file

source file

>

destination file

4 Example System Call Sequence

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Create output file
if file exists, abort

Loop
Read from input file
Write to output file

Until read fails

Close output file

Write completion message to screen

Terminate normally

A

~

4

Operating System Concepts — 10t Edition

2.14

EXAMPLE OF STANDARD API

As an example of a standard API, consider the read () function that is avail-
able in UNIX and Linux systems. The API for this function is obtained from
the man page by invoking the command

man read

on the command line. A description of this API appears below:

#include <unistd.h>

ssize t read(int f£d, void *buf, size t count)
return function parameters
value name

A program that uses the read () function must include the unistd.h header
file, as this file defines the ssize_t and size_t data types (among other
things). The parameters passed to read () are as follows:

® int fd—the file descriptor to be read

¢ void *buf —a buffer into which the data will be read

® size_t count—the maximum number of bytes to be read into the

buffer

On a successful read, the number of bytes read is returned. A return value of
0 indicates end of file. If an error occurs, read () returns —1.

“ AN

Silberschatz, Galvin and Gagne ©2018



=

=

( g

<377 System Call Implementation

= Typically, a number is associated with each system call

* System-call interface maintains a table indexed according to
these numbers

= The system call interface invokes the intended system call in OS
kernel and returns status of the system call and any return values

= The caller need know nothing about how the system call is
implemented

* Just needs to obey API and understand what OS will do as a
result call

* Most details of OS interface hidden from programmer by API

» Managed by run-time support library (set of functions built into
libraries included with compiler)

N\

B =
94 ”‘v\}

A 29X

Operating System Concepts — 10t Edition 2.16 Silberschatz, Galvin and Gagne ©2018




~$»7 API| — System Call — OS Relationship

user application

open()
user
mode
system call interface
kernel
mode A
B—— open()
* Implementation
i » of open()
. system call
return

Operating System Concepts — 10t Edition 217 Silberschatz, Galvin and Gagne ©2018




=

=

( g

<37 System Call Parameter Passing

= Often, more information is required than simply identity of desired
system call

* Exact type and amount of information vary according to OS and
call

= Three general methods used to pass parameters to the OS
* Simplest: pass the parameters in registers
» In some cases, may be more parameters than registers

* Parameters stored in a block, or table, in memory, and address of
block passed as a parameter in a register

» This approach taken by Linux and Solaris

* Parameters placed, or pushed, onto the stack by the program and
popped off the stack by the operating system

* Block and stack methods do not limit the number or length of
parameters being passed

N\
B =
94 ”‘v\}

A 29X

Operating System Concepts — 10t Edition 2.18 Silberschatz, Galvin and Gagne ©2018




o
7,

~“$»/ Parameter Passing via Table

b X
register
X: parameters
for call
™ use parameters code for
load address X AL systemn
system call 13 > aall 13

user program

operating system

Operating System Concepts — 10t Edition 2.19 Silberschatz, Galvin and Gagne ©2018




o Types of System Calls

= Process control
* create process, terminate process
* end, abort
* load, execute
* get process attributes, set process attributes
* wait for time
* wait event, signal event
 allocate and free memory
* Dump memory if error
* Debugger for determining bugs, single step execution
* Locks for managing access to shared data between processes

Operating System Concepts — 10t Edition 2.20 Silberschatz, Galvin and Gagne ©2018




Types of System Calls (Cont.)

= File management

create file, delete file
open, close file

read, write, reposition
get and set file attributes

= Device management

request device, release device

read, write, reposition

get device attributes, set device attributes
logically attach or detach devices

= |nformation maintenance

Operating System Concepts — 10t Edition 221

get time or date, set time or date
get system data, set system data
get and set process, file, or device attributes

e —

£ ‘\;1 \\;\‘g

a

A48

Silberschatz, Galvin and Gagne ©2018



~$77 Types of System Calls (Cont.)

=  Communications
* create, delete communication connection

* send, receive messages if message passing model to host
name or process name

» From client to server

¢ Shared-memory model create and gain access to memory
regions

* transfer status information

» attach and detach remote devices
= Protection

* Control access to resources

* Get and set permissions

* Allow and deny user access

Operating System Concepts — 10t Edition 222 Silberschatz, Galvin and Gagne ©2018




=

-

“§w’ Examples of Windows and Unix System Calls

L\
PSS

EXAMPLES OF WINDOWS AND UNIX SYSTEM CALLS

The following illustrates various equivalent system calls for Windows and

UNIX operating systems.
Windows Unix
Process CreateProcess() fork()
control ExitProcess() exit ()
WaitForSingleObject () wait ()
File CreateFile() open()
management ReadFile() read()
WriteFile() write()
CloseHandle () close()
Device SetConsoleMode () ioctl()
management ReadConsole() read()
WriteConsole() write()
Information GetCurrentProcessID() getpid ()
maintenance SetTimer () alarm()
Sleep() sleep()
Communications CreatePipe() pipe()
CreateFileMapping() shm_open ()
MapViewOfFile () mmap ()
Protection SetFileSecurity() chmod ()
InitlializeSecurityDescriptor() umask()
SetSecurityDescriptorGroup() chown ()

Operating System Concepts — 10t Edition

2.23

b
A

A

Silberschatz, Galvin and Gagne ©2018



=

-

“4%/  Standard C Library Example

= C program invoking printf() library call, which calls write() system call

THE STANDARD C LIBRARY

The standard C library provides a portion of the system-call interface for
many versions of UNIX and Linux. As an example, let’s assume a C pro-
gram invokes the printf () statement. The C library intercepts this call and
invokes the necessary system call (or calls) in the operating system—in this
instance, the write () system call. The C library takes the value returned by
write() and passes it back to the user program:

#include <stdio.h>
int main()
{

—printf ("Greetings"); |5

return 0;

}

user
mode

standard C library

kernel
mode

write()

write()
system call

.‘/Q‘

Operating System Concepts — 10t Edition 2.24 Silberschatz, Galvin and Gagne ©2018




g Example: Arduino

= Single-tasking

_ free memor
= No operating system y

" Programs (sketch) loaded via | memory

USB into flash memory user
= Single memory space program
= Boot loader loads program (sketch)
) rpgl‘c’)grdaerg exit -> shell boot loader boot loader
(a) (b)
At system startup running a program

e —

SN,
S ‘._l‘
, i N
<
WS
“l A48

Operating System Concepts — 10t Edition 2.05 Silberschatz, Galvin and Gagne ©2018




.

w & Example: FreeBSD

=  Unix variant

high
= Multitasking memory kernel
= User login -> invoke user’ s choice of
shell free memory
= Shell executes fork() system call to create
process process C
* Executes exec() to load program into
process interpreter
* Shell waits for process to terminate or
continues with user commands process B
= Process exits with:
* code =0 - no error mel(:nV\(/)ry process D

e code > 0 — error code

Operating System Concepts — 10t Edition 2.26 Silberschatz, Galvin and Gagne ©2018




=

=
,_ﬁﬂ’?»"“‘-’-l

" 2.4 System Services

= System programs provide a convenient environment for program
development and execution. They can be divided into:

* File manipulation

* Status information sometimes stored in a file
* Programming language support

* Program loading and execution

¢ Communications

* Background services

* Application programs

= Most users’ view of the operation system is defined by system
programs, not the actual system calls

«.‘..’ '-h‘ ‘l
y W
U 29X

Operating System Concepts — 10t Edition 227 Silberschatz, Galvin and Gagne ©2018




N

Py
€ gxr

System Services (Cont.)

= Provide a convenient environment for program development and execution

* Some of them are simply user interfaces to system calls; others are
considerably more complex

= File management - Create, delete, copy, rename, print, dump, list, and
generally manipulate files and directories

= Status information

* Some ask the system for info - date, time, amount of available memory,
disk space, number of users

* Others provide detailed performance, logging, and debugging
information

* Typically, these programs format and print the output to the terminal or
other output devices

* Some systems implement a registry - used to store and retrieve
configuration information

{
)
) ”
=

b
y

S

Operating System Concepts — 10t Edition 2.28 Silberschatz, Galvin and Gagne ©2018




-5 System Services (Cont.)

File modification
* Text editors to create and modify files

* Special commands to search contents of files or perform
transformations of the text

= Programming-language support - Compilers, assemblers, debuggers
and interpreters sometimes provided

= Program loading and execution- Absolute loaders, relocatable loaders,
linkage editors, and overlay-loaders, debugging systems for higher-level
and machine language

=  Communications - Provide the mechanism for creating virtual
connections among processes, users, and computer systems

 Allow users to send messages to one another’ s screens, browse web
pages, send electronic-mail messages, log in remotely, transfer files

from one machine to another

& N

-

h {
b
o ol
W/
~ =

A

S

Operating System Concepts — 10t Edition 2.29 Silberschatz, Galvin and Gagne ©2018




=

e :
o System Services (Cont.)

= Background Services
* Launch at boot time
» Some for system startup, then terminate
» Some from system boot to shutdown

* Provide facilities like disk checking, process scheduling, error
logging, printing

* Run in user context not kernel context

* Known as services, subsystems, daemons

= Application programs
* Don't pertain to system
* Run by users
* Not typically considered part of OS
* Launched by command line, mouse click, finger poke

e —

< .\‘\."'.
& VJT‘\V'(/
U 29X

Operating System Concepts — 10t Edition 2.30 Silberschatz, Galvin and Gagne ©2018




J— 2.5 Linkers and Loaders

= Source code compiled into object files designed to be loaded into any
physical memory location — relocatable object file

= Linker combines these into single binary executable file

* Also brings in libraries
= Program resides on secondary storage as binary executable
= Must be brought into memory by loader to be executed

* Relocation assigns final addresses to program parts and adjusts
code and data in program to match those addresses

= Modern general-purpose systems don't link libraries into executables

* Rather, dynamically linked libraries (in Windows, DLLSs) are
loaded as needed, shared by all that use the same version of that
same library (loaded once)

= Object, executable files have standard formats, so operating system
knows how to load and start them

e
=N
194 ”‘v\}

A

Operating System Concepts — 10t Edition 231 Silberschatz, Galvin and Gagne ©2018




=

source
program

main.c

gcc -c main.c

l generates

main.o

gcc -0 main main.o -1m

i i generates

main

executable
file

i

dynamically
linked
libraries

program
in memory

Operating System Concepts — 10t Edition 232 Silberschatz, Galvin and Gagne ©2018




‘U

W w 2.6 Why Applications are Operating System Specific

=  Apps compiled on one system usually not executable on other operating
systems

= Each operating system provides its own unique system calls
*  Own file formats, etc.
= Apps can be multi-operating system

* Written in interpreted language like Python, Ruby, and interpreter
available on multiple operating systems

* App written in language that includes a VM containing the running app
(like Java)

* Use standard language (like C), compile separately on each operating
system to run on each

= Application Binary Interface (ABI) is architecture equivalent of API, defines
how different components of binary code can interface for a given operating
system on a given architecture, CPU, etc.

o
A

Operating System Concepts — 10t Edition 2.33 Silberschatz, Galvin and Gagne ©2018




A‘ )
w

&{;/ 2.7 Design and Implementation

= Design and Implementation of OS is not “solvable”, but some
approaches have proven successful

= [nternal structure of different Operating Systems can vary widely
= Start the design by defining goals and specifications

= Affected by choice of hardware, type of system

= User goals and System goals

* User goals — operating system should be convenient to use,
easy to learn, reliable, safe, and fast

* System goals — operating system should be easy to design,
implement, and maintain, as well as flexible, reliable, error-free,
and efficient

= Specifying and designing an OS is highly creative task of software
engineering

e
=N
194 ”‘v\}

A

Operating System Concepts — 10t Edition 2.34 Silberschatz, Galvin and Gagne ©2018




<SP Policy and Mechanism

= Policy: What needs to be done?
* Example: Interrupt after every 100 seconds
= Mechanism: How to do something?
* Example: timer
= |mportant principle: separate policy from mechanism

= The separation of policy from mechanism is a very
important principle, it allows maximum flexibility if policy
decisions are to be changed later.

* Example: change 100 to 200

e —

TR\ " \
V‘»f; b |
& ‘JW(
“ 2957

Operating System Concepts — 10t Edition 2.35 Silberschatz, Galvin and Gagne ©2018




“Sy7 Implementation

= Much variation
* Early OSes in assembly language
* Then system programming languages like Algol, PL/1
* Now C, C++
= Usually, a mix of languages
* Lowest levels in assembly
* Main body in C

* Systems programs in C, C++, scripting languages like PERL,
Python, shell scripts

= More high-level language easier to port to other hardware
* But slower
= Emulation can allow an OS to run on non-native hardware

e —

X\ ."'.
a:
U 29X

Operating System Concepts — 10t Edition 2.36 Silberschatz, Galvin and Gagne ©2018




o
Y,

o«

S |
‘*’%r/ 2.8 Operating System Structure

= General-purpose OS is very large program

= Various ways to structure ones
* Simple structure — MS-DOS
* More complex — UNIX
* Layered — an abstraction
* Microkernel — Mach

Operating System Concepts — 10t Edition 237 Silberschatz, Galvin and Gagne ©2018




;:—"i ‘Monolithic Structure — Original UNIX

= UNIX - limited by hardware functionality, the original UNIX operating
system had limited structuring.

= The UNIX OS consists of two separable parts
* Systems programs
* The kernel

» Consists of everything below the system-call interface and
above the physical hardware

» Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a large
number of functions for one level

S S|
: JT‘V\,/

/ (

U 29X

Operating System Concepts — 10t Edition 2.38 Silberschatz, Galvin and Gagne ©2018




;;ﬁ \Traditional UNIX System Structure

Beyond simple but not fully layered

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

= signals terminal file system CPU scheduling

GE’ ) handling swapping block I/O  page replacement

Q character I/0O system system demand paging
terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

Operating System Concepts — 10t Edition 2.39 Silberschatz, Galvin and Gagne ©2018



7 Linux System Structure

Monolithic plus modular design

Operating System Concepts — 10t Edition

applications

glibc standard c library

system-call interface
file CPU
systems scheduler
networks memory
(TCP/IP) manager
block character
devices devices

device drivers

hardware

2.40

Silberschatz, Galvin and Gagne ©2018



it Layered Approach

layer N
user interface

= The operating system is divided
into a number of layers (levels),
each built on top of lower layers.
The bottom layer (layer 0), is the
hardware; the highest (layer N) is
the user interface.

layer 0
hardware

= With modularity, layers are
selected such that each uses
functions (operations) and
services of only lower-level layers

Operating System Concepts — 10t Edition 241 Silberschatz, Galvin and Gagne ©2018




N Microkernels

= Moves as much from the kernel into user space
= Mach is an example of microkernel
* Mac OS X kernel (Darwin) partly based on Mach

= Communication takes place between user modules using
message passing

= Benefits:
* Easier to extend a microkernel
* Easier to port the operating system to new architectures
* More reliable (less code is running in kernel mode)
* More secure
= Detriments:

* Performance overhead of user space to kernel space
communication

Operating System Concepts — 10t Edition 2.42 Silberschatz, Galvin and Gagne ©2018




=
‘rﬁ,ﬁml
-\s,\ﬁ_/?‘/

L\ /4

-

Microkernel System Structure

microkernel

application file device user
program system driver mode
N A N A
' messages ' H messages H ]
interprocess oMoty _ kernel
communication managment scheduling mode

hardware

Operating System Concepts — 10t Edition

2.43

Silberschatz, Galvin and Gagne ©2018



g5 Modules

= Many modern operating systems implement loadable kernel
modules (LKMs)

* Uses object-oriented approach

* Each core component is separate

* Each talks to the others over known interfaces
* Each is loadable as needed within the kernel

= Qverall, similar to layers but with more flexible
* Linux, Solaris, etc.

Operating System Concepts — 10t Edition 2.44 Silberschatz, Galvin and Gagne ©2018




o Hybrid Systems

= Most modern operating systems are not one pure model

* Hybrid combines multiple approaches to address performance,
security, usability needs

* Linux and Solaris kernels in kernel address space, so monaolithic,
plus modular for dynamic loading of functionality

*  Windows mostly monolithic, plus microkernel for different
subsystem personalities

= Apple Mac OS X hybrid, layered, Aqua Ul plus Cocoa programming
environment

* Below is kernel consisting of Mach microkernel and BSD Unix
parts, plus 1/O kit and dynamically loadable modules (called
kernel extensions)

e
=N
194 ”‘v\}

A

Operating System Concepts — 10t Edition 2.45 Silberschatz, Galvin and Gagne ©2018




w-f macOS and 10S Structure

applications

v

user experience

application frameworks

core frameworks

kernel environment (Darwin)

applications
7 v
library interface
» v
Mach BSD (POSIX)
traps system calls
Y n*emory
scheduling | IPC management
iokit
Mach kernel
kexts

Operating System Concepts — 10t Edition

2.46

Silberschatz, Galvin and Gagne ©2018



o I0S

= Apple mobile OS for iPhone, iPad
* Structured on Mac OS X, added functionality
* Does not run OS X applications natively

» Also runs on different CPU architecture Cocoa Touch
(ARM vs. Intel)
¢ Cocoa Touch Objective-C API for Media Services

developing apps

* Media services layer for graphics, audio, Core Services

video

Core OS

* Core services provides cloud computing,
databases

* Core operating system, based on Mac OS X
kernel

S
2 ‘i;_M
A 29X

Operating System Concepts — 10t Edition 247 Silberschatz, Galvin and Gagne ©2018




o Android

= Developed by Open Handset Alliance (mostly Google)
* Open Source

= Similar stack to I0OS

= Based on Linux kernel but modified
* Provides process, memory, device-driver management
* Adds power management

=  Runtime environment includes core set of libraries and Dalvik
virtual machine

* Apps developed in Java plus Android API

» Java class files compiled to Java bytecode then translated
to executable than runs in Dalvik VM

= Libraries include frameworks for web browser (webkit), database
(SQLite), multimedia, smaller libc

e
=N
194 ”‘v\}

A

Operating System Concepts — 10t Edition 2.48 Silberschatz, Galvin and Gagne ©2018




s Android Architecture

applications
ART Android
VM frameworks NI

native libraries

SQLite openGL webkit

surface media
manager SSL| |framework
HAL
Bionic
Linux kernel
hardware

Operating System Concepts — 10t Edition 2.49 Silberschatz, Galvin and Gagne ©2018




».,,:-/ 2.9 Building and Booting an Operating System

= QOperating systems generally designed to run on a class of systems
with variety of perpherals

= Commonly, operating system already installed on purchased
computer

* But can build and install some other operating systems
* If generating an operating system from scratch
» Write the operating system source code

» Configure the operating system for the system on which it will
run

» Compile the operating system
» Install the operating system
» Boot the computer and its new operating system

4 ~l ‘\.‘ ‘
.w_,./'/‘ /.S; \\!
154 "‘v\}

U 29X

Operating System Concepts — 10t Edition 2.50 Silberschatz, Galvin and Gagne ©2018




g5 Building and Booting Linux

= Download Linux source code (http://www.kernel.org)
= Configure kernel via “‘make menuconfig’
=  Compile the kernel using “make”

* Produces vmlinuz, the kernel image

* Compile kernel modules via “make modules”

* |nstall kernel modules into vmlinuz via “‘make
modules_install”

* Install new kernel on the system via “make install”

Operating System Concepts — 10t Edition 251 Silberschatz, Galvin and Gagne ©2018



g System Boot

= When power initialized on system, execution starts at a fixed memory
location

= Operating system must be made available to hardware so hardware
can start it

* Small piece of code — bootstrap loader, BIOS, stored in ROM or
EEPROM locates the kernel, loads it into memory, and starts it

* Sometimes two-step process where boot block at fixed location
loaded by ROM code, which loads bootstrap loader from disk

* Modern systems replace BIOS with Unified Extensible
Firmware Interface (UEFI)

= Common bootstrap loader, GRUB, allows selection of kernel from
multiple disks, versions, kernel options

= Kernel loads and system is then running

= Boot loaders frequently allow various boot states, such as single user
mode

N\

B =
I54 ”‘v\}

U AN A

Operating System Concepts — 10t Edition 252 Silberschatz, Galvin and Gagne ©2018




-\‘-&5
o Wwi

S 2.10 Operating-System Debugging

L,

= Debugging is finding and fixing errors, or bugs
= Also, performance tuning
= (OS generate log files containing error information

= Failure of an application can generate core dump file capturing
memory of the process

= Operating system failure can generate crash dump file containing
kernel memory

= Beyond crashes, performance tuning can optimize system performance
* Sometimes using trace listings of activities, recorded for analysis

* Profiling is periodic sampling of instruction pointer to look for
statistical trends

Kernighan' s Law: “Debugging is twice as hard as writing the code in the
first place. Therefore, if you write the code as cleverly as possible, you are,
by definition, not smart enough to debug it.”

N\

B =
I54 ”‘v\}

U 29X

Operating System Concepts — 10t Edition 253 Silberschatz, Galvin and Gagne ©2018




g5 Performance Tuning

= |mprove performance by removing bottlenecks

= OS must provide means of computing and displaying measures of
system behavior

= For example, “top” program or Windows Task Manager

Task Manager

Processes | Performance | App history Startup Users Details Services

P
\ g y,\J ?4%”1,656!41 CPU Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz
| ‘

Memory
1.9/3.8 GE (50%)

1| Disk O (C)
(| 28%

Ethernet
Not connecte

| ’ Wi-Fi i
Ad LAy 80 360Keps

Bluetooth
Not connected

tilzatior 250 GH:
14%  1.65 GHz
Processes  Thread and| Logical proce 4
112 1550 49904 Virtuslzatior Enabled
L1 cache 128 KB
L2 cache 512KB
143:08:39:26 L3 cache 30M8

Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10t Edition 254




- Tracing

il

= Collects data for a specific event, such as steps involved
In a system call invocation

= Tools include
* strace — trace system calls invoked by a process
* gdb — source-level debugger
* perf — collection of Linux performance tools
* tcpdump — collects network packets

Operating System Concepts — 10t Edition 255 Silberschatz, Galvin and Gagne ©2018



| w” BCC

= Debugging interactions between user-level and kernel code nearly
impossible without toolset that understands both and an instrument
their actions

= BCC (BPF Compiler Collection) is a rich toolkit providing tracing
features for Linux

* See also the original DTrace
= For example, disksnoop.py traces disk I/O activity

TIME(s) T BYTES LAT (ms)
1946.29186700 R 8 0.27
1946.33965000 R 8 0.26
1948.34585000 W 8192 0.96
1950.43251000 R 4096 0.56
1951.74121000 R 4096 0.35

= Many other tools (next slide)

Operating System Concepts — 10t Edition 256 Silberschatz, Galvin and Gagne ©2018




=

~“$»7  Linux bcc/BPF Tracing Tools

Linux bcc/BPF Tracing Tools

filetop opensnoop c* java* node* mysqld gslower gethostlatency Other:
filelife fileslower Statsnoop  php* python* bashreadline memleak capable
vEscount vfsstat syncsnoop ruby* sslsniff
ucalls uflow syscount
cachestat cachetop ugc uobjnew killsnoop
dcstat dcsnoop ustat uthreads
mountsnoop | execsnoop
ol idpersec
l Applications l l / EXeR
cpudist
trace N\ System Libraries 4 / runqlat runglen
5 deadlock detector
:zg:::ﬁnt %\ ¥ System Call Interface ¥ rd / S
funcslower VFS Sockets Schedu[er‘ - .
funclatency . offcputime
_\ .
il # File Systems TCP/UDP , : wakeuptime
profile Volume Manager IP Virtual \ GEERSRETLIN
Block Device Interface Ethernet Memory ¥ Nortirgy
N f 4 Device Drivers oomkill memleak
mdflush , slabratetop
btrEsdist hardirgs ttysnoop
btrfsslower - DRAM
extd4dist extdslower SEptop topllfe teptoaces

tcpconnect tcpaccept |
tcpconnlat tcpretrans llecstat —>

CPU

xfsdist xfsslower
zfsdist zfsslower

biotop biosnoop profile —»
biolatency bitesize

S
A

A

Operating System Concepts — 10t Edition 257 Silberschatz, Galvin and Gagne ©2018




End of Chapter 2

Operating System Concepts — 10t Edition Silberschatz, Galvin and Gagne ©2018



	Slide 1: Chapter 2: Operating-System Services
	Slide 2: Outline
	Slide 3: Objectives
	Slide 4: 2.1 Operating System Services
	Slide 5: Operating System Services
	Slide 6: Operating System Services (Cont.)
	Slide 7: Operating System Services (Cont.)
	Slide 8: 2.2 OS Interface - Command Line Interpreter 
	Slide 9: Bourne Shell Command Interpreter
	Slide 10: User Operating System Interface - GUI
	Slide 11: Touchscreen Interfaces
	Slide 12: The Mac OS X GUI
	Slide 13: 2.3 System Calls
	Slide 14: Example of System Calls
	Slide 16: System Call Implementation
	Slide 17: API – System Call – OS Relationship
	Slide 18: System Call Parameter Passing
	Slide 19: Parameter Passing via Table
	Slide 20: Types of System Calls
	Slide 21: Types of System Calls (Cont.)
	Slide 22: Types of System Calls (Cont.)
	Slide 23: Examples of Windows and Unix System Calls
	Slide 24: Standard C Library Example
	Slide 25: Example: Arduino
	Slide 26: Example: FreeBSD
	Slide 27: 2.4 System Services
	Slide 28: System Services (Cont.)
	Slide 29: System Services (Cont.)
	Slide 30: System Services (Cont.)
	Slide 31: 2.5 Linkers and Loaders
	Slide 32: The Role of the Linker and Loader
	Slide 33: 2.6 Why Applications are Operating System Specific
	Slide 34: 2.7 Design and Implementation
	Slide 35: Policy and Mechanism
	Slide 36: Implementation
	Slide 37: 2.8 Operating System Structure
	Slide 38: Monolithic Structure – Original UNIX
	Slide 39: Traditional UNIX System Structure
	Slide 40: Linux System Structure
	Slide 41: Layered Approach
	Slide 42: Microkernels
	Slide 43: Microkernel System Structure 
	Slide 44: Modules
	Slide 45: Hybrid Systems
	Slide 46: macOS and iOS Structure
	Slide 47: iOS
	Slide 48: Android
	Slide 49: Android Architecture
	Slide 50: 2.9 Building and Booting an Operating System
	Slide 51: Building and Booting Linux
	Slide 52: System Boot
	Slide 53: 2.10 Operating-System Debugging
	Slide 54: Performance Tuning
	Slide 55: Tracing
	Slide 56: BCC
	Slide 57: Linux bcc/BPF Tracing Tools
	Slide 58: End of Chapter 2

