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Outline

▪ Process Concept

▪ Process Scheduling

▪ Operations on Processes

▪ Interprocess Communication

▪ IPC in Shared-Memory Systems

▪ IPC in Message-Passing Systems
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Objectives

▪ Identify the separate components of a process and illustrate how

they are represented and scheduled in an operating system.

▪ Describe how processes are created and terminated in an

operating system, including developing programs using the

appropriate system calls that perform these operations.

▪ Describe and contrast interprocess communication using shared

memory and message passing.

▪ Design programs that use pipes and POSIX shared memory to

perform interprocess communication.

▪ Describe client-server communication using sockets and remote

procedure calls.

▪ Design kernel modules that interact with the Linux operating

system.
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3.1 Process Concept

▪ An operating system executes a variety of programs that run as a 

process.

▪ Process – a program in execution; process execution must 

progress in sequential fashion. No parallel execution of instructions 

of a  single process

▪ Multiple parts

• The program code, also called text section

• Current activity including program counter, processor 

registers

• Stack containing temporary data

Function parameters, return addresses, local variables

• Data section containing global variables

• Heap containing memory dynamically allocated during run time



3.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Concept (Cont.)

▪ Program is passive entity stored on disk (executable

file); process is active

• Program becomes process when an executable file is 

loaded into memory

▪ Execution of program started via GUI mouse clicks, 

command line entry of its name, etc.

▪ One program can be several processes

• Consider multiple users executing the same program
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Process in Memory
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Memory Layout of a C Program
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Diagram of Process State

New:  The process is being 
created
Running:  Instructions are being 
executed
Waiting:  The process is waiting 
for some event to occur

Ready:  The process is waiting to 
be assigned to a processor
Terminated:  The process has 
finished execution
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Process Control Block (PCB)

▪ Process state – running, waiting, etc.

▪ Program counter – location of instruction to next 

execute

▪ CPU registers – contents of all process-centric 

registers

▪ CPU scheduling information- priorities, scheduling 

queue pointers

▪ Memory-management information – memory 

allocated to the process

▪ Accounting information – CPU used, clock time 

elapsed since start, time limits

▪ I/O status information – I/O devices allocated to 

process, list of open files

Information associated with each process(also called task control 

block)
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Threads

▪ So far, process has a single thread of execution

▪ Consider having multiple program counters per 

process

• Multiple locations can execute at once

Multiple threads of control -> threads

▪ Must then have storage for thread details, 

multiple program counters in PCB

▪ Explore in detail in Chapter 4
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Process Representation in Linux

Represented by the C structure task_struct

pid t_pid; /* process identifier */ 

long state; /* state of the process */ 

unsigned int time_slice /* scheduling information */ 

struct task_struct *parent;/* this process’s parent */ 
struct list_head children; /* this process’s children */ 
struct files_struct *files;/* list of open files */ 

struct mm_struct *mm; /* address space of this process */
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3.2 Process Scheduling

▪ Process scheduler selects among available 

processes for next execution on CPU core

▪ Goal -- Maximize CPU use, quickly switch processes 

onto CPU core

▪ Maintains scheduling queues of processes

• Ready queue – set of all processes residing in 

main memory, ready and waiting to execute

• Wait queues – set of processes waiting for an 

event (i.e., I/O)

• Processes migrate among the various queues
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Ready and Wait Queues
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Representation of Process Scheduling
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CPU Switch From Process to Process

A context switch occurs when the CPU switches from one process 
to another.
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Context Switch

▪ When CPU switches to another process, the system 

must save the state of the old process and load the 

saved state for the new process via a context switch

▪ Context of a process represented in the PCB

▪ Context-switch time is pure overhead; the system 

does no useful work while switching

• The more complex the OS and the PCB ➔ the 

longer the context switch

▪ Time dependent on hardware support

• Some hardware provides multiple sets of registers 

per CPU ➔ multiple contexts loaded at once
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Multitasking in Mobile Systems

▪ Some mobile systems (e.g., early version of iOS)  allow only one 

process to run, others suspended

▪ Due to screen real estate, user interface limits iOS provides for a 

• Single foreground process- controlled via user interface

• Multiple background processes– in memory, running, but not 

on the display, and with limits

• Limits include single, short task, receiving notification of 

events, specific long-running tasks like audio playback

▪ Android runs foreground and background, with fewer limits

• Background process uses a service to perform tasks

• Service can keep running even if background process is 

suspended

• Service has no user interface, small memory use
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3.3 Process Operations - Creation

▪ Parent process create children processes, which, in 

turn create other processes, forming a tree of processes

▪ Generally, process identified and managed via a

process identifier (pid)

▪ Resource sharing options

• Parent and children share all resources

• Children share subset of parent’s resources

• Parent and child share no resources

▪ Execution options

• Parent and children execute concurrently

• Parent waits until children terminate
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Process Creation (Cont.)

▪ Address space

• Child duplicate of parent

• Child has a program loaded into it

▪ UNIX examples

• fork() system call creates new process

• exec() system call used after a fork() to replace the 

process’ memory space with a new program

• Parent process calls wait()waiting for the child to terminate
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A Tree of Processes in Linux
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C Program Forking Separate Process
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Creating a Separate 

Process via Windows 

API



3.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Operation - Termination

▪ Process executes last statement and then asks the operating system 

to delete it using the exit() system call.

• Returns status data from child to parent (via wait())

• Process’resources are deallocated by operating system

▪ Parent may terminate the execution of children processes  using the 

abort() system call. Some reasons for doing so:

• Child has exceeded allocated resources

• Task assigned to child is no longer required

• The parent is exiting, and the operating systems does not allow a 

child to continue if its parent terminates
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Process Termination

▪ Some operating systems do not allow child to exist if its parent 

has terminated.  If a process terminates, then all its children 

must also be terminated.

• cascading termination.  All children, grandchildren, etc.,  

are terminated.

• The termination is initiated by the operating system.

▪ The parent process may wait for termination of a child process 

by using the wait()system call. The call returns status 

information and the pid of the terminated process

pid = wait(&status); 

▪ If no parent waiting (did not invoke wait()) process is a 

zombie

▪ If parent terminated without invoking wait(), process is an 

orphan
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Android Process Importance Hierarchy

▪ Mobile operating systems often must terminate processes to 

reclaim system resources such as memory. From most to least

important:

• Foreground process

• Visible process

• Service process

• Background process

• Empty process

▪ Android will begin terminating processes that are least 

important.
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Practice Question

▪ Original versions of Apple's mobile iOS operating system provided no 
means of concurrent processing. Discuss three major complications that 
concurrent processing adds to an operating system.
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Multiprocess Architecture – Chrome Browser

▪ Many web browsers ran as single process (some still do)

• If one web site causes trouble, entire browser can hang or crash

▪ Google Chrome Browser is multiprocess with 3 different types of 

processes: 

• Browser process manages user interface, disk and network I/O

• Renderer process renders web pages, deals with HTML, 

JavaScript. A new renderer created for each website opened

Runs in sandbox restricting disk and network I/O, minimizing 

effect of security exploits

• Plug-in process for each type of plug-in
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3.4 Interprocess Communication

▪ Processes within a system may be independent or cooperating

▪ Cooperating process can affect or be affected by other processes, 

including sharing data

▪ Reasons for cooperating processes:

• Information sharing

• Computation speedup

• Modularity

• Convenience

▪ Cooperating processes need interprocess communication (IPC)

▪ Two models of IPC

• Shared memory

• Message passing
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Communications Models 

(a) Shared memory.   (b) Message passing.  
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Producer-Consumer Problem

▪ Paradigm for cooperating processes:

• producer process produces information that is consumed 

by a consumer process

▪ Two variations:

• unbounded-buffer places no practical limit on the size of 

the buffer:

Producer never waits

Consumer waits if there is no buffer to consume

• bounded-buffer assumes that there is a fixed buffer size

Producer must wait if all buffers are full

Consumer waits if there is no buffer to consume
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3.5 IPC – Shared Memory

▪ An area of memory shared among the processes that 
wish to communicate

▪ The communication is under the control of the users 
processes not the operating system.

▪ Major issues are to provide mechanism that will allow the 
user processes to synchronize their actions when they 
access shared memory. 

▪ Synchronization is discussed in great details in Chapters 
6 & 7.
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Bounded-Buffer – Shared-Memory Solution

▪ Shared data

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

▪ Solution is correct, but can only use BUFFER_SIZE-1 elements
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Producer Process – Shared Memory

item next_produced; 

while (true) { 

/* produce an item in next produced */ 

while (((in + 1) % BUFFER_SIZE) == out) 

; /* do nothing */ 

buffer[in] = next_produced; 

in = (in + 1) % BUFFER_SIZE; 

}
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Consumer Process – Shared Memory

item next_consumed; 

while (true) {

while (in == out) 

; /* do nothing */

next_consumed = buffer[out]; 

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed */ 

} 
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3.6 IPC – Message Passing

▪ Processes communicate with each other 
without resorting to shared variables

▪ IPC facility provides two operations:

• send(message)

• receive(message)

▪ The message size is either fixed or 
variable
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Message Passing (Cont.)

▪ If processes P and Q wish to communicate, they need to:

• Establish a communication link between them

• Exchange messages via send/receive

▪ Implementation issues:

• How are links established?

• Can a link be associated with more than two processes?

• How many links can there be between every pair of 

communicating processes?

• What is the capacity of a link?

• Is the size of a message that the link can accommodate fixed 

or variable?

• Is a link unidirectional or bi-directional?
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Implementation of Communication Link

▪ Physical:

• Shared memory

• Hardware bus

• Network

▪ Logical:

• Direct or indirect

• Synchronous or asynchronous

• Automatic or explicit buffering
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Direct Communication

▪ Processes must name each other explicitly:

• send (P, message) – send a message to process P

• receive(Q, message) – receive a message from 

process Q

▪ Properties of communication link

• Links are established automatically

• A link is associated with exactly one pair of 

communicating processes

• Between each pair there exists exactly one link

• The link may be unidirectional, but is usually bi-

directional
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Indirect Communication

▪ Messages are directed and received from mailboxes (also 

referred to as ports)

• Each mailbox has a unique id

• Processes can communicate only if they share a 

mailbox

▪ Properties of communication link

• Link established only if processes share a common 

mailbox

• A link may be associated with many processes

• Each pair of processes may share several 

communication links

• Link may be unidirectional or bi-directional
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▪ Operations

• Create a new mailbox (port)

• Send and receive messages through mailbox

• Delete a mailbox

▪ Primitives are defined as:

• send(A, message) – send a message to mailbox A

• receive(A, message) – receive a message from 

mailbox A

Indirect Communication (Cont.)
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▪ Mailbox sharing

• P1, P2, and P3 share mailbox A

• P1, sends; P2 and P3 receive

• Who gets the message?

▪ Solutions

• Allow a link to be associated with at most two processes

• Allow only one process at a time to execute a receive 

operation

• Allow the system to select arbitrarily the receiver.  Sender is 

notified who the receiver was.

Indirect Communication (Cont.)
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Synchronization

▪ Blocking is considered synchronous

• Blocking send -- the sender is blocked until the message is received

• Blocking receive -- the receiver is  blocked until a message is 

available

▪ Non-blocking is considered asynchronous

• Non-blocking send -- the sender sends the message and continue

• Non-blocking receive -- the receiver receives:

 A valid message,  or 

 Null message

▪ Different combinations possible

• If both send and receive are blocking, we have a rendezvous

Message passing may be either blocking or non-blocking
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▪ Producer
message next_produced;

while (true) {

/* produce an item in next_produced */

send(next_produced); 

}

▪ Consumer
message next_consumed;

while (true) {

receive(next_consumed)

/* consume the item in next_consumed */

}

Producer-Consumer: Message Passing
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Buffering

▪ Queue of messages attached to the link.

▪ Implemented in one of three ways

1. Zero capacity – no messages are queued 

on a link.

Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n

messages

Sender must wait if link full

3. Unbounded capacity – infinite length 

Sender never waits
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3.8 Communications in Client-Server Systems

▪ Sockets

▪ Remote Procedure Calls
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Sockets

▪ A socket is defined as an endpoint for communication

▪ Concatenation of IP address and port – a number included at 

start of message packet to differentiate network services on a 

host

▪ The socket 161.25.19.8:1625 refers to port 1625 on host 

161.25.19.8

▪ Communication consists between a pair of sockets

▪ All ports below 1024 are well known, used for standard 

services

▪ Special IP address 127.0.0.1 (loopback) to refer to system on 

which process is running
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Socket Communication
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Sockets in Java

▪ Three types of sockets

• Connection-oriented

(TCP)

• Connectionless (UDP)

• MulticastSocket

class– data can be sent 

to multiple recipients

▪ Consider this “Date” server 

in Java:
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Sockets in Java

The equivalent Date client
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Remote Procedure Calls

▪ Remote procedure call (RPC) abstracts procedure calls 

between processes on networked systems

• Again, uses ports for service differentiation

▪ Stubs – client-side proxy for the actual procedure on the server

▪ The client-side stub locates the server and marshalls the 

parameters

▪ The server-side stub receives this message, unpacks the 

marshalled parameters, and performs the procedure on the 

server

▪ On Windows, stub code compile from specification written in 

Microsoft Interface Definition Language (MIDL)
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Remote Procedure Calls (Cont.)

▪ Data representation handled via External Data 

Representation (XDL) format to account for 

different architectures

• Big-endian and little-endian

▪ Remote communication has more failure scenarios 

than local

• Messages can be delivered exactly once rather 

than at most once

▪ OS typically provides a rendezvous (or 

matchmaker) service to connect client and server
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Execution of RPC
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Practice Question

Determine the output in LINE A and B?
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Practice Question

Determine how many processes will be created including this 
program process?
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End of Chapter 3
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