Chapter 3: Processes
-] -]

Operating System Concepts — 10t Edition Silberschatz, Galvin and Gagne ©2018

-

-

< Outline

®= Process Concept

" Process Scheduling

= Operations on Processes

" [nterprocess Communication

= |[PC in Shared-Memory Systems

= |[PC in Message-Passing Systems

g "ﬁf\
o7 ‘\,\,-;

A

Operating System Concepts — 10" Edition 3.2 Silberschatz, Galvin and Gagne ©2018

r 4l Objectives

= |dentify the separate components of a process and illustrate how
they are represented and scheduled in an operating system.

= Describe how processes are created and terminated in an
operating system, including developing programs using the
appropriate system calls that perform these operations.

= Describe and contrast interprocess communication using shared
memory and message passing.

= Design programs that use pipes and POSIX shared memory to
perform interprocess communication.

= Describe client-server communication using sockets and remote
procedure calls.

= Design kernel modules that interact with the Linux operating
system.

Operating System Concepts — 10" Edition 3.3 Silberschatz, Galvin and Gagne ©2018

r 4l 3.1 Process Concept

= An operating system executes a variety of programs that run as a
process.

= Process — a program in execution; process execution must

progress in sequential fashion. No parallel execution of instructions
of a single process

= Multiple parts
* The program code, also called text section

* Current activity including program counter, processor
registers

* Stack containing temporary data

» Function parameters, return addresses, local variables
* Data section containing global variables

* Heap containing memory dynamically allocated during run time .,

/54 "v\}

A

Operating System Concepts — 10t Edition 3.4 Silberschatz, Galvin and Gagne ©2018

S Process Concept (Cont.)

= Program is passive entity stored on disk (executable
file); process is active

* Program becomes process when an executable file is
loaded into memory

= Execution of program started via GUI mouse clicks,
command line entry of its name, etc.

= One program can be several processes
* Consider multiple users executing the same program

5
AL

Operating System Concepts — 10" Edition 35 Silberschatz, Galvin and Gagne ©2018

-7 Process in Memory

max

stack
heap

data

text

0
Ve
Operating System Concepts — 10t Edition 3.6 Silberschatz, Galvin and Gagne ©2018

7 Memory Layout of a C Program

#include <stdio.h>

i include <stdlib.h
hlgh argc, agrv #i < >
memory
stack ifE &
b s S e et i [(;inty':lS;
v . o I
i J{.nt main(int argc, char *argv|[])
b e s s = =3 = o I:int *values;
heap - J int 4i;
—
uninitialized [_ _ |
data values = (int *)malloc (sizeof (int) *5) ;
initialized for(i = 0; 1 < 5; i++)
data values [i] = 1i;
low text return 0;
memory }

Operating System Concepts — 10" Edition 3.7 Silberschatz, Galvin and Gagne ©2018

admitted interrupt

scheduler dispatch

I/O or event completion I/O or event wait

New: The process is being Ready: The process is waiting to
created be assigned to a processor
Running: Instructions are being Terminated: The process has
executed finished execution

Waiting: The process is waiting
for some event to occur

S
- ‘i:.\«-‘\g
7 29X

Operating System Concepts — 10" Edition 3.8 Silberschatz, Galvin and Gagne ©2018

&

¥

.
>
> le

\..t >/

Process Control Block (PCB)

Information associated with each process(also called task control
block)

Process state — running, waiting, etc.

Program counter — location of instruction to next
execute

CPU registers — contents of all process-centric
registers

CPU scheduling information- priorities, scheduling
gueue pointers

Memory-management information — memory
allocated to the process

Accounting information — CPU used, clock time
elapsed since start, time limits

I/O status information — I/O devices allocated to
process, list of open files

Operating System Concepts — 10t Edition 3.9

process state

process number

program counter

registers

memory limits

list of open files

- /"3,; S
7

Silberschatz, Galvin and Gagne ©2018

S/ Threads

= So far, process has a single thread of execution

= Consider having multiple program counters per
process

» Multiple threads of control -> threads

= Must then have storage for thread details,
multiple program counters in PCB

= Explore in detall in Chapter 4

Operating System Concepts — 10" Edition 3.10 Silberschatz, Galvin and Gagne ©2018

o
Y,

Process Representation in Linux

Represented by the C structure task struct

/* process identifier */
state of the process */
scheduling information */
this process’ s parent */
this process’s children */
list of open files */

address space of this process */

pid t pid;
long state; /*
unsigned int time slice /*
struct task struct *parent;/*
struct list head children; /*
struct files struct *files;/*
struct mm struct *mm; /*

7\ AR WA
struct task_struct struct task_struct struct task_struct
process information process information P, process information
[] [} []
[] [} []
[] ® L]

!

current

(currently executing proccess)

Operating System Concepts — 10t Edition

3.11

Silberschatz, Galvin and Gagne ©2018

A‘)
w

(g

<57 3.2 Process Scheduling

"= Process scheduler selects among available
processes for next execution on CPU core

= Goal -- Maximize CPU use, quickly switch processes
onto CPU core

= Maintains scheduling queues of processes

* Ready queue — set of all processes residing in
main memory, ready and waiting to execute

* Wait queues — set of processes waiting for an
event (i.e., I/0)

* Processes migrate among the various queues

\

B = ;\1
Oa

<
v

A

Operating System Concepts — 10" Edition 3.12 Silberschatz, Galvin and Gagne ©2018

Ready and Wait Queues

ready
queue

wait
queue

PCB ,

PCB,

registers

PCB,

queue header PCB ,
head 4
tail registers
PCB,
/ i
head 1
3.13

Operating System Concepts — 10t Edition

Silberschatz, Galvin and Gagne ©2018

=

A".”-""'"J) " .
~%»/ Representation of Process Scheduling

| readyqueue CPU

I/O wait queue [—— |/Orequest [
time.slice
expired
. hild
child e i
TS termination [«—— Cre?;i;';;ld RE—
wait queue P
interrupt interrupt wait for an
oCcurs wait queue interrupt

Operating System Concepts — 10" Edition 3.14 Silberschatz, Galvin and Gagne ©2018

4

A"-f}mb..‘“\\ .
"“*"}"f’ CPU Switch From Process to Process

A context switch occurs when the CPU switches from one process
to another.

process P, operating system process P,

interrupt or system call

exeCUting J /
A4 y =
A save state into PCB,
> idle
reload state from PCB, 1
-idle interrupt or system call executing
| \ l .
save state into PCB;
>idle
) reload state from PCB, J
executing | _\
\ 4

Operating System Concepts — 10" Edition 3.15 Silberschatz, Galvin and Gagne ©2018

tv— Context Switch

= When CPU switches to another process, the system
must save the state of the old process and load the
saved state for the new process via a context switch

= Context of a process represented in the PCB

= Context-switch time Is pure overhead; the system
does no useful work while switching

* The more complex the OS and the PCB = the
longer the context switch

= Time dependent on hardware support
* Some hardware provides multiple sets of registers
per CPU = multiple contexts loaded at once

VA,.A.,,/ 7z - :,. _\\;\

Operating System Concepts — 10" Edition 3.16 Silberschatz, Galvin and Gagne ©2018

N
TN
T ‘F-l

«g® Multitasking in Mobile Systems

= Some mobile systems (e.qg., early version of iOS) allow only one
process to run, others suspended

= Due to screen real estate, user interface limits iOS provides for a
* Single foreground process- controlled via user interface

* Multiple background processes— in memory, running, but not
on the display, and with limits

* Limits include single, short task, receiving notification of
events, specific long-running tasks like audio playback

= Android runs foreground and background, with fewer limits
* Background process uses a service to perform tasks

* Service can keep running even if background process is
suspended

* Service has no user interface, small memory use

Operating System Concepts — 10" Edition 3.17 Silberschatz, Galvin and Gagne ©2018

L;;“ﬁ 3.3 Process Operations - Creation

= Parent process create children processes, which, In
turn create other processes, forming a tree of processes

= Generally, process identified and managed via a
process identifier (pid)

= Resource sharing options
* Parent and children share all resources
* Children share subset of parent’ s resources
* Parent and child share no resources
= EXxecution options
* Parent and children execute concurrently
* Parent waits until children terminate /':;\1

5
AL

Operating System Concepts — 10" Edition 3.18 Silberschatz, Galvin and Gagne ©2018

»"Mi:% i
L Process Creation (Cont.)

= Address space

* Child duplicate of parent

* Child has a program loaded into it
= UNIX examples

* fork () system call creates new process

°* exec () system call used after a £ork () to replace the
process’ memory space with a new program

* Parent process calls wait () waiting for the child to terminate

parent (pid > 0)

parent resumes

parent

child (pid = 0) . S\ Y
";) i‘:""’

Operating System Concepts — 10" Edition 3.19 Silberschatz, Galvin and Gagne ©2018

systemd
pid =1

logind
pid = 8415
bash
pid = 8416
vim
pid = 9204

Q

%

Operating System Concepts — 10t Edition 3.20 Silberschatz, Galvin and Gagne ©2018

==\
4%

%r’ C Program Forking Separate Process

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main()

{

pidt pid;

Operating System Concepts — 10t Edition

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
return 1;

}

else if (pid == 0) { /* child process */
execlp("/bin/1s","1s",NULL);

else { /* parent process */
/* parent will wait for the child to complete */
wait (NULL);
printf("Child Complete");

}

return 0;

3.21 Silberschatz,

A DK
Galvin and Gagnhe ©2018

| #include <stdio.h>
#include <windows.h>

int main(VOID)

{

STARTUPINFO si;

‘ ﬁfml
gﬁﬂékyg-)’

Cl’eatlng a Separate PROCESS_INFORMATION pi;
Process via Windows /* allocate memory */

ZeroMemory (&si, sizeof(si));
API si.cb = sizeof(si);

ZeroMemory (&pi, sizeof(pi));

/* create child process */
if (!CreateProcess(NULL, /* use command line */
"C:\\WINDOWS\\system32\\mspaint.exe", /* command */
NULL, /* don’t inherit process handle */
NULL, /* don’t inherit thread handle */
FALSE, /* disable handle inheritance */
0, /* no creation flags */
NULL, /* use parent’s environment block */
NULL, /* use parent’s existing directory */
&si,
&pi))
{
fprintf (stderr, "Create Process Failed");
return -1;
}
/* parent will wait for the child to complete */
WaitForSingleObject (pi.hProcess, INFINITE);
printf("Child Complete");

/* close handles */
CloseHandle(pi.hProcess);
CloseHandle(pi.hThread) ;

f = |
=
¥

Operating System Concepts — 10t Edition 3.22 Silberschatz, Galvin and Gagne ©2018

=

e

."’f"’ W‘Fl
T .‘t r

’ Process Operation - Termination

= Process executes last statement and then asks the operating system
to delete it using the exit () system call.

* Returns status data from child to parent (via wait ())

* Process’ resources are deallocated by operating system

= Parent may terminate the execution of children processes using the
abort () system call. Some reasons for doing so:

* Child has exceeded allocated resources
* Task assigned to child is no longer required

* The parent is exiting, and the operating systems does not allow a
child to continue if its parent terminates

- /"3,; S
7

Operating System Concepts — 10" Edition 3.23 Silberschatz, Galvin and Gagne ©2018

Sy Process Termination

= Some operating systems do not allow child to exist if its parent
has terminated. If a process terminates, then all its children
must also be terminated.

* cascading termination. All children, grandchildren, etc.,
are terminated.

* The termination is initiated by the operating system.

= The parent process may wait for termination of a child process
by using the wait () system call. The call returns status
information and the pid of the terminated process

pid = wait(&status) ;

= |f no parent waiting (did not invoke wait ()) processis a
zombie

= |f parent terminated without invoking wait (), processis an

orphan m
=
7 “"’t 4

Operating System Concepts — 10t Edition 3.24 Silberschatz, Galvin and Gagne ©2018

=

- ﬁm.‘\

«¢%7 Android Process Importance Hierarchy

= Mobile operating systems often must terminate processes to
reclaim system resources such as memory. From most to least
Important:

* Foreground process
* Visible process

* Service process

* Background process
* Empty process

= Android will begin terminating processes that are least
Important.

e —

T\ " " \
3 V‘»f; |
y o
/ (4
U ‘E P

Operating System Concepts — 10" Edition 3.25 Silberschatz, Galvin and Gagne ©2018

(cm - -
 a Practice Question

= Qriginal versions of Apple's mobile iOS operating system provided no
means of concurrent processing. Discuss three major complications that
concurrent processing adds to an operating system.

Operating System Concepts — 10" Edition 3.26 Silberschatz, Galvin and Gagne ©2018

af . .
=47/ Multiprocess Architecture — Chrome Browser

= Many web browsers ran as single process (some still do)
* If one web site causes trouble, entire browser can hang or crash

= Google Chrome Browser is multiprocess with 3 different types of
processes:

* Browser process manages user interface, disk and network I/O

* Renderer process renders web pages, deals with HTML,
JavaScript. A new renderer created for each website opened

» Runs in sandbox restricting disk and network 1/0O, minimizing
effect of security exploits

* Plug-in process for each type of plug-in

& Chrome Browser 0S-BOOK.COM X WI ey: Operating System € X oo BBC - Homepage X

(& https://w oogle.com/chrome/bro r/desktop/
c chrome DOWNLOAD ~ SETUP ~

Each tab represents a separate process.

IEBOOKS ~ CHROMECAST ~

«.‘..’ '-h‘ ‘l
7 W
£ PA o

Operating System Concepts — 10" Edition 3.27 Silberschatz, Galvin and Gagne ©2018

=

g% 3.4 Interprocess Communication

= Processes within a system may be independent or cooperating

= Cooperating process can affect or be affected by other processes,
iIncluding sharing data

= Reasons for cooperating processes:

* Information sharing

* Computation speedup

* Modularity

* Convenience
= Cooperating processes need interprocess communication (IPC)
= Two models of IPC

 Shared memory

* Message passing

e —

T\ " " \
£ V‘»f; |
y o
/ (4
« ‘E P

Operating System Concepts — 10" Edition 3.28 Silberschatz, Galvin and Gagne ©2018

. Communications Models

(a) Shared memory.

I: process A
shared memory

process B

kernel

(a)

Operating System Concepts — 10t Edition

3.29

(b) Message passing.

process A

process B

message queue

Mo

my

m2 m3 coo mn |

kernel

(b)

Silberschatz, Galvin and Gagne ©2018

L N

SO
> le
_
&‘ »

%77 Producer-Consumer Problem

= Paradigm for cooperating processes:

* producer process produces information that is consumed
by a consumer process

= Two variations:

* unbounded-buffer places no practical limit on the size of
the buffer:

» Producer never waits
» Consumer waits if there i1s no buffer to consume
* bounded-buffer assumes that there is a fixed buffer size
» Producer must wait if all buffers are full
» Consumer waits if there is no buffer to consume o

. 3 4 R 3 \
=
o4 ‘?}
L 4%

Operating System Concepts — 10" Edition 3.30 Silberschatz, Galvin and Gagne ©2018

<557 3.5 IPC - Shared Memory

= An area of memory shared among the processes that
wish to communicate

= The communication is under the control of the users
processes not the operating system.

= Major issues are to provide mechanism that will allow the
user processes to synchronize their actions when they
access shared memory.

= Synchronization is discussed in great details in Chapters
6&7.

Operating System Concepts — 10" Edition 3.31 Silberschatz, Galvin and Gagne ©2018

4

‘m,,':—”ﬁ Bounded-Buffer — Shared-Memory Solution

= Shared data
#define BUFFER SIZE 10
typedef struct {

} item;
item buffer [BUFFER_SIZE] ;
int in = 0;

int out = 0;

= Solution is correct, but can only use BUFFER _SIZE-1 elements

Operating System Concepts — 10" Edition 3.32 Silberschatz, Galvin and Gagne ©2018

&» A,..«;‘.»"F'Vbj
~”’$,p—/

=

\Producer Process — Shared Memory

item next_produced;

while (true) ({

/* produce an item in next produced */

while (((in + 1) % BUFFER SIZE) == out)
; /* do nothing */

buffer[in] = next produced;

in = (in + 1) % BUFFER SIZE;

Operating System Concepts — 10t Edition 3.33

Silberschatz, Galvin and Gagne ©2018

4
Y,

g%’ Consumer Process — Shared Memory

item next_consumed;

while (true) {
while (in == out)

; /* do nothing */
next consumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

/* consume the item in next consumed */

Operating System Concepts — 10" Edition 3.34 Silberschatz, Galvin and Gagne ©2018

-
D

57 3.6 IPC — Message Passing

" Processes communicate with each other
without resorting to shared variables

= |PC facility provides two operations:
* send(message)
* receive(message)

= The message size Is either fixed or
variable

A‘~l"~'\.".t“
S D)

A

Operating System Concepts — 10t Edition 3.40 Silberschatz, Galvin and Gagne ©2018

»"Mi:% 1
L Message Passing (Cont.)

= |f processes P and Q wish to communicate, they need to:
* Establish a communication link between them
* Exchange messages via send/receive

= Implementation issues:

* How are links established?
* Can a link be associated with more than two processes?

* How many links can there be between every pair of
communicating processes?

* What is the capacity of a link?

* Is the size of a message that the link can accommodate fixed
or variable?

* |s a link unidirectional or bi-directional?

S
y o

4 <

7 2%

Operating System Concepts — 10t Edition 3.41 Silberschatz, Galvin and Gagne ©2018

N

_—

y

4%’ Implementation of Communication Link

= Physical:
* Shared memory
* Hardware bus
* Network

= Logical:
* Direct or indirect
* Synchronous or asynchronous
* Automatic or explicit buffering

Operating System Concepts — 10t Edition 3.42

Silberschatz, Galvin and Gagne ©2018

N
TN
T ‘F-l

T Direct Communication

= Processes must name each other explicitly:
* send (P, message) — send a message to process P

* receive(Q, message) — receive a message from
process Q

= Properties of communication link
* Links are established automatically

* Alink is associated with exactly one pair of
communicating processes

* Between each pair there exists exactly one link

* The link may be unidirectional, but is usually bi-
directional

Operating System Concepts — 10t Edition 3.43 Silberschatz, Galvin and Gagne ©2018

G Indirect Communication

= Messages are directed and received from mailboxes (also
referred to as ports)

* Each mailbox has a unique id

* Processes can communicate only if they share a
mailbox

= Properties of communication link

* Link established only if processes share a common
mailbox

* A link may be associated with many processes

* Each pair of processes may share several
communication links

* Link may be unidirectional or bi-directional /f;:l‘

Ad

Operating System Concepts — 10t Edition 3.44 Silberschatz, Galvin and Gagne ©2018

<57 Indirect Communication (Cont.)

= Operations
* Create a new mailbox (port)
* Send and receive messages through mailbox
* Delete a mailbox

= Primitives are defined as:
* send(A, message) — send a message to mailbox A

* receive(A, message) — receive a message from
mailbox A

A‘~l"~'\.".t“
S D)

A

Operating System Concepts — 10t Edition 3.45 Silberschatz, Galvin and Gagne ©2018

=
> m-&

G Indirect Communication (Cont.)

= Mailbox sharing
* P,, P,, and P; share mailbox A
* Py, sends; P, and P, receive
* Who gets the message”?

= Solutions

* Allow a link to be associated with at most two processes

* Allow only one process at a time to execute a receive
operation

* Allow the system to select arbitrarily the receiver. Sender is
notified who the receiver was.

e —

X\ ."'.
a:
U 29X

Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10t Edition 3.46

=
= n’;'-“?-l

G Synchronization

Message passing may be either blocking or non-blocking

= Blocking is considered synchronous
* Blocking send -- the sender is blocked until the message is received

* Blocking receive -- the receiver is blocked until a message is
available

= Non-blocking is considered asynchronous
* Non-blocking send -- the sender sends the message and continue
* Non-blocking receive -- the receiver receives:
» Avalid message, or
» Null message
= Different combinations possible
* If both send and receive are blocking, we have a rendezvous

Operating System Concepts — 10t Edition 3.47 Silberschatz, Galvin and Gagne ©2018

&;’;‘i Producer-Consumer: Message Passing

= Producer
message next produced;
while (true) {
/* produce an item in next produced *x /

send (next produced) ;
}

= Consumer
message next consumed;
while (true) {
receive (next consumed)

/* consume the item in next consumed */

}

Operating System Concepts — 10" Edition 3.48 Silberschatz, Galvin and Gagne ©2018

r 4l Buffering

= Queue of messages attached to the link.
= Implemented in one of three ways

1. Zero capacity — no messages are queued
on a link.
Sender must walit for receiver (rendezvous)

2. Bounded capacity — finite length of n
messages
Sender must wait if link full

3. Unbounded capacity — infinite length
Sender never waits

Operating System Concepts — 10t Edition 3.49 Silberschatz, Galvin and Gagne ©2018

| .f'f""'*‘%
~$%73.8 Communications in Client-Server Systems

o

= Sockets
" Remote Procedure Calls

\
=
S SN |
WS
P

A

Operating System Concepts — 10t Edition 3.62 Silberschatz, Galvin and Gagne ©2018

& Sockets

= A socket is defined as an endpoint for communication

= Concatenation of IP address and port —a number included at
start of message packet to differentiate network services on a
host

= The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

= Communication consists between a pair of sockets

= All ports below 1024 are well known, used for standard
services

= Special IP address 127.0.0.1 (loopback) to refer to system on
which process is running

WY

94 "v\}

A

Operating System Concepts — 10" Edition 3.63 Silberschatz, Galvin and Gagne ©2018

o Socket Communication
host X
(146.86.5.20)

socket
(146.86.5.20:1625)

web server
(161.25.19.8)

socket
(161.25.19.8:80)

Operating System Concepts — 10t Edition 3.64 Silberschatz, Galvin and Gagne ©2018

Sockets In Java

= Three types of sockets

e Connection-oriented
(TCP)

* Connectionless (UDP)

°* MulticastSocket
class— data can be sent
to multiple recipients

= Consider this “Date” server
in Java;:

Operating System Concepts — 10t Edition

import java.net.*;
import java.io.*;

public class DateServer
{

public static void main(String[] args) {

try {
ServerSocket sock = new ServerSocket(6013);

/* now listen for connections */
while (true) {
Socket client = sock.accept();

PrintWriter pout = new
PrintWriter(client.getOutputStream(), true);

/* write the Date to the socket */
pout.println(new java.util.Date().toString());

/* close the socket and resume */
/* listening for connections */
client.close();

}

catch (IOException ioe) {
System.err.println(ioe);

}
}
}

3.65 Silberschatz, Galvin and Gagne ©2018

\ (=

‘ ,:v,‘w\\k

‘hff;»)v/ import java.net.x;
¢ / import java.io.x;

o

. public class DateClient
Sockets in Java {

| - blic static void main(Stri
The equivalent Date client public static void main(String[] args) {

try {
/* make connection to server socket */

Socket sock = new Socket("127.0.0.1",6013);

InputStream in = sock.getInputStream();
BufferedReader bin = new
BufferedReader (new InputStreamReader (in));

/* read the date from the socket */

String line;

while ((line = bin.readLine()) != null)
System.out.println(line);

/* close the socket connection*/
sock.close();

}

catch (IOException ioe) {
System.err.println(ioe);
}

}
}

A A
Operating System Concepts — 10t Edition 3.66 Silberschatz, Galvin and Gagne ©2018

A‘)
w

-

r & Remote Procedure Calls

= Remote procedure call (RPC) abstracts procedure calls
between processes on networked systems

* Again, uses ports for service differentiation
= Stubs — client-side proxy for the actual procedure on the server

= The client-side stub locates the server and marshalls the
parameters

= The server-side stub receives this message, unpacks the
marshalled parameters, and performs the procedure on the
server

= On Windows, stub code compile from specification written in
Microsoft Interface Definition Language (MIDL)

\

B = ;\1
Oa

<
v

5

A

Operating System Concepts — 10" Edition 3.67 Silberschatz, Galvin and Gagne ©2018

o Remote Procedure Calls (Cont.)

= Data representation handled via External Data
Representation (XDL) format to account for
different architectures

* Big-endian and little-endian

= Remote communication has more failure scenarios
than local

* Messages can be delivered exactly once rather
than at most once

= OS typically provides a rendezvous (or
matchmaker) service to connect client and server

= ‘..’ '-h‘ ‘l
- /‘);f Q)
7 W
U 29X

Operating System Concepts — 10" Edition 3.68 Silberschatz, Galvin and Gagne ©2018

Execution of RPC

client

user calls kernel
to send RPC
message to
procedure X

kernel sends
message to
matchmaker to
find port number

kernel places
port P in user
RPC message

kernel sends
RPC

kernel receives
reply, passes
it to user

Operating System Concepts — 10t Edition

messages

From: client
To: server
Port: matchmaker
Re: address
for RPC X

From: server
To: client
Port: kernel
Re: RPC X
Port: P

From: client
To: server

Port: port P
<contents>

From: RPC
Port: P
To: client
Port: kernel
<output>

3.69

server

matchmaker
receives
message, looks
up answer

matchmaker
replies to client
with port P

daemon
listening to
port P receives
message

daemon
processes
request and
processes send
output

Silberschatz, Galvin and Gagne ©2018

, ﬁfm»l,\ _]
o et Practice Question

S\

Determine the output in LINE A and B?

#include - <stdio.h>lg
#include . <sys/types.h>ilg
#include- - <sys/wait.h>ila
#include - <unistd.h:la
int-value. .= - ;g
int -main () N3
=] { g
pid t pid;ila
pid-=-fork() ; 3
=l if-(pid-=-0):-{-/*.child-process.-*/ g
value -+=-15 ;i3
printf ("CHILD: -value-=-%d\n", -value) ; /*-LINE-E-*/ilg
retorn - © ;A3
JJLF]
=] else-if- (pid->-0) - {-/* -parent.-process. * /g
wait (NULL) ; g
printf- ("PARENT: -values.-=-%d\n",value) ;- /* - LINE-Z- %/
return - C ;g
= [JLF]
|l

Operating System Concepts — 10t Edition 3.70 Silberschatz, Galvin and Gagne ©2018

g | _
&r‘gg(Practice Question

Determine how many processes will be created including this
program process?
finclude <stdio.h>ilg
#include . <unistd.h>lg
int -main () A
=RLLE

printf("%d* \n" ,getpid()) ;3
fork() ;l3

printf("d**\n" ,getpid()) ; Ny
fork() ;3

printf ("4 **\n" ,getpid()) ; A3
fork() ;i3
printf("sd****\n" getpid()) ;&

return - _ ;ilg

Operating System Concepts — 10" Edition 3.71 Silberschatz, Galvin and Gagne ©2018

End of Chapter 3

Operating System Concepts — 10t Edition Silberschatz, Galvin and Gagne ©2018

	Slide 1: Chapter 3: Processes
	Slide 2: Outline
	Slide 3: Objectives
	Slide 4: 3.1 Process Concept
	Slide 5: Process Concept (Cont.)
	Slide 6: Process in Memory
	Slide 7: Memory Layout of a C Program
	Slide 8: Diagram of Process State
	Slide 9: Process Control Block (PCB)
	Slide 10: Threads
	Slide 11: Process Representation in Linux
	Slide 12: 3.2 Process Scheduling
	Slide 13: Ready and Wait Queues
	Slide 14: Representation of Process Scheduling
	Slide 15: CPU Switch From Process to Process
	Slide 16: Context Switch
	Slide 17: Multitasking in Mobile Systems
	Slide 18: 3.3 Process Operations - Creation
	Slide 19: Process Creation (Cont.)
	Slide 20: A Tree of Processes in Linux
	Slide 21: C Program Forking Separate Process
	Slide 22: Creating a Separate Process via Windows API
	Slide 23: Process Operation - Termination
	Slide 24: Process Termination
	Slide 25: Android Process Importance Hierarchy
	Slide 26: Practice Question
	Slide 27: Multiprocess Architecture – Chrome Browser
	Slide 28: 3.4 Interprocess Communication
	Slide 29: Communications Models
	Slide 30: Producer-Consumer Problem
	Slide 31: 3.5 IPC – Shared Memory
	Slide 32: Bounded-Buffer – Shared-Memory Solution
	Slide 33: Producer Process – Shared Memory
	Slide 34: Consumer Process – Shared Memory
	Slide 40: 3.6 IPC – Message Passing
	Slide 41: Message Passing (Cont.)
	Slide 42: Implementation of Communication Link
	Slide 43: Direct Communication
	Slide 44: Indirect Communication
	Slide 45: Indirect Communication (Cont.)
	Slide 46: Indirect Communication (Cont.)
	Slide 47: Synchronization
	Slide 48: Producer-Consumer: Message Passing
	Slide 49: Buffering
	Slide 62: 3.8 Communications in Client-Server Systems
	Slide 63: Sockets
	Slide 64: Socket Communication
	Slide 65: Sockets in Java
	Slide 66: Sockets in Java
	Slide 67: Remote Procedure Calls
	Slide 68: Remote Procedure Calls (Cont.)
	Slide 69: Execution of RPC
	Slide 70: Practice Question
	Slide 71: Practice Question
	Slide 72: End of Chapter 3

