
Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 3: Processes

Winona State University

CS405 – Operating System

Spring 2024

3.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Outline

▪ Process Concept

▪ Process Scheduling

▪ Operations on Processes

▪ Interprocess Communication

▪ IPC in Shared-Memory Systems

▪ IPC in Message-Passing Systems

3.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Objectives

▪ Identify the separate components of a process and illustrate how

they are represented and scheduled in an operating system.

▪ Describe how processes are created and terminated in an

operating system, including developing programs using the

appropriate system calls that perform these operations.

▪ Describe and contrast interprocess communication using shared

memory and message passing.

▪ Design programs that use pipes and POSIX shared memory to

perform interprocess communication.

▪ Describe client-server communication using sockets and remote

procedure calls.

▪ Design kernel modules that interact with the Linux operating

system.

3.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

3.1 Process Concept

▪ An operating system executes a variety of programs that run as a

process.

▪ Process – a program in execution; process execution must

progress in sequential fashion. No parallel execution of instructions

of a single process

▪ Multiple parts

• The program code, also called text section

• Current activity including program counter, processor

registers

• Stack containing temporary data

Function parameters, return addresses, local variables

• Data section containing global variables

• Heap containing memory dynamically allocated during run time

3.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Concept (Cont.)

▪ Program is passive entity stored on disk (executable

file); process is active

• Program becomes process when an executable file is

loaded into memory

▪ Execution of program started via GUI mouse clicks,

command line entry of its name, etc.

▪ One program can be several processes

• Consider multiple users executing the same program

3.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process in Memory

3.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Memory Layout of a C Program

3.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Diagram of Process State

New: The process is being
created
Running: Instructions are being
executed
Waiting: The process is waiting
for some event to occur

Ready: The process is waiting to
be assigned to a processor
Terminated: The process has
finished execution

3.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Control Block (PCB)

▪ Process state – running, waiting, etc.

▪ Program counter – location of instruction to next

execute

▪ CPU registers – contents of all process-centric

registers

▪ CPU scheduling information- priorities, scheduling

queue pointers

▪ Memory-management information – memory

allocated to the process

▪ Accounting information – CPU used, clock time

elapsed since start, time limits

▪ I/O status information – I/O devices allocated to

process, list of open files

Information associated with each process(also called task control

block)

3.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Threads

▪ So far, process has a single thread of execution

▪ Consider having multiple program counters per

process

• Multiple locations can execute at once

Multiple threads of control -> threads

▪ Must then have storage for thread details,

multiple program counters in PCB

▪ Explore in detail in Chapter 4

3.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Representation in Linux

Represented by the C structure task_struct

pid t_pid; /* process identifier */

long state; /* state of the process */

unsigned int time_slice /* scheduling information */

struct task_struct *parent;/* this process’s parent */
struct list_head children; /* this process’s children */
struct files_struct *files;/* list of open files */

struct mm_struct *mm; /* address space of this process */

3.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

3.2 Process Scheduling

▪ Process scheduler selects among available

processes for next execution on CPU core

▪ Goal -- Maximize CPU use, quickly switch processes

onto CPU core

▪ Maintains scheduling queues of processes

• Ready queue – set of all processes residing in

main memory, ready and waiting to execute

• Wait queues – set of processes waiting for an

event (i.e., I/O)

• Processes migrate among the various queues

3.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Ready and Wait Queues

3.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Representation of Process Scheduling

3.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

CPU Switch From Process to Process

A context switch occurs when the CPU switches from one process
to another.

3.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Context Switch

▪ When CPU switches to another process, the system

must save the state of the old process and load the

saved state for the new process via a context switch

▪ Context of a process represented in the PCB

▪ Context-switch time is pure overhead; the system

does no useful work while switching

• The more complex the OS and the PCB ➔ the

longer the context switch

▪ Time dependent on hardware support

• Some hardware provides multiple sets of registers

per CPU ➔ multiple contexts loaded at once

3.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multitasking in Mobile Systems

▪ Some mobile systems (e.g., early version of iOS) allow only one

process to run, others suspended

▪ Due to screen real estate, user interface limits iOS provides for a

• Single foreground process- controlled via user interface

• Multiple background processes– in memory, running, but not

on the display, and with limits

• Limits include single, short task, receiving notification of

events, specific long-running tasks like audio playback

▪ Android runs foreground and background, with fewer limits

• Background process uses a service to perform tasks

• Service can keep running even if background process is

suspended

• Service has no user interface, small memory use

3.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

3.3 Process Operations - Creation

▪ Parent process create children processes, which, in

turn create other processes, forming a tree of processes

▪ Generally, process identified and managed via a

process identifier (pid)

▪ Resource sharing options

• Parent and children share all resources

• Children share subset of parent’s resources

• Parent and child share no resources

▪ Execution options

• Parent and children execute concurrently

• Parent waits until children terminate

3.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Creation (Cont.)

▪ Address space

• Child duplicate of parent

• Child has a program loaded into it

▪ UNIX examples

• fork() system call creates new process

• exec() system call used after a fork() to replace the

process’ memory space with a new program

• Parent process calls wait()waiting for the child to terminate

3.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

A Tree of Processes in Linux

3.21 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

C Program Forking Separate Process

3.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Creating a Separate

Process via Windows

API

3.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Operation - Termination

▪ Process executes last statement and then asks the operating system

to delete it using the exit() system call.

• Returns status data from child to parent (via wait())

• Process’resources are deallocated by operating system

▪ Parent may terminate the execution of children processes using the

abort() system call. Some reasons for doing so:

• Child has exceeded allocated resources

• Task assigned to child is no longer required

• The parent is exiting, and the operating systems does not allow a

child to continue if its parent terminates

3.24 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Termination

▪ Some operating systems do not allow child to exist if its parent

has terminated. If a process terminates, then all its children

must also be terminated.

• cascading termination. All children, grandchildren, etc.,

are terminated.

• The termination is initiated by the operating system.

▪ The parent process may wait for termination of a child process

by using the wait()system call. The call returns status

information and the pid of the terminated process

pid = wait(&status);

▪ If no parent waiting (did not invoke wait()) process is a

zombie

▪ If parent terminated without invoking wait(), process is an

orphan

3.25 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Android Process Importance Hierarchy

▪ Mobile operating systems often must terminate processes to

reclaim system resources such as memory. From most to least

important:

• Foreground process

• Visible process

• Service process

• Background process

• Empty process

▪ Android will begin terminating processes that are least

important.

3.26 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Practice Question

▪ Original versions of Apple's mobile iOS operating system provided no
means of concurrent processing. Discuss three major complications that
concurrent processing adds to an operating system.

3.27 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multiprocess Architecture – Chrome Browser

▪ Many web browsers ran as single process (some still do)

• If one web site causes trouble, entire browser can hang or crash

▪ Google Chrome Browser is multiprocess with 3 different types of

processes:

• Browser process manages user interface, disk and network I/O

• Renderer process renders web pages, deals with HTML,

JavaScript. A new renderer created for each website opened

Runs in sandbox restricting disk and network I/O, minimizing

effect of security exploits

• Plug-in process for each type of plug-in

3.28 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

3.4 Interprocess Communication

▪ Processes within a system may be independent or cooperating

▪ Cooperating process can affect or be affected by other processes,

including sharing data

▪ Reasons for cooperating processes:

• Information sharing

• Computation speedup

• Modularity

• Convenience

▪ Cooperating processes need interprocess communication (IPC)

▪ Two models of IPC

• Shared memory

• Message passing

3.29 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Communications Models

(a) Shared memory. (b) Message passing.

3.30 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Producer-Consumer Problem

▪ Paradigm for cooperating processes:

• producer process produces information that is consumed

by a consumer process

▪ Two variations:

• unbounded-buffer places no practical limit on the size of

the buffer:

Producer never waits

Consumer waits if there is no buffer to consume

• bounded-buffer assumes that there is a fixed buffer size

Producer must wait if all buffers are full

Consumer waits if there is no buffer to consume

3.31 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

3.5 IPC – Shared Memory

▪ An area of memory shared among the processes that
wish to communicate

▪ The communication is under the control of the users
processes not the operating system.

▪ Major issues are to provide mechanism that will allow the
user processes to synchronize their actions when they
access shared memory.

▪ Synchronization is discussed in great details in Chapters
6 & 7.

3.32 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Bounded-Buffer – Shared-Memory Solution

▪ Shared data

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

▪ Solution is correct, but can only use BUFFER_SIZE-1 elements

3.33 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Producer Process – Shared Memory

item next_produced;

while (true) {

/* produce an item in next produced */

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

}

3.34 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Consumer Process – Shared Memory

item next_consumed;

while (true) {

while (in == out)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed */

}

3.40 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

3.6 IPC – Message Passing

▪ Processes communicate with each other
without resorting to shared variables

▪ IPC facility provides two operations:

• send(message)

• receive(message)

▪ The message size is either fixed or
variable

3.41 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Message Passing (Cont.)

▪ If processes P and Q wish to communicate, they need to:

• Establish a communication link between them

• Exchange messages via send/receive

▪ Implementation issues:

• How are links established?

• Can a link be associated with more than two processes?

• How many links can there be between every pair of

communicating processes?

• What is the capacity of a link?

• Is the size of a message that the link can accommodate fixed

or variable?

• Is a link unidirectional or bi-directional?

3.42 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Implementation of Communication Link

▪ Physical:

• Shared memory

• Hardware bus

• Network

▪ Logical:

• Direct or indirect

• Synchronous or asynchronous

• Automatic or explicit buffering

3.43 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Direct Communication

▪ Processes must name each other explicitly:

• send (P, message) – send a message to process P

• receive(Q, message) – receive a message from

process Q

▪ Properties of communication link

• Links are established automatically

• A link is associated with exactly one pair of

communicating processes

• Between each pair there exists exactly one link

• The link may be unidirectional, but is usually bi-

directional

3.44 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Indirect Communication

▪ Messages are directed and received from mailboxes (also

referred to as ports)

• Each mailbox has a unique id

• Processes can communicate only if they share a

mailbox

▪ Properties of communication link

• Link established only if processes share a common

mailbox

• A link may be associated with many processes

• Each pair of processes may share several

communication links

• Link may be unidirectional or bi-directional

3.45 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

▪ Operations

• Create a new mailbox (port)

• Send and receive messages through mailbox

• Delete a mailbox

▪ Primitives are defined as:

• send(A, message) – send a message to mailbox A

• receive(A, message) – receive a message from

mailbox A

Indirect Communication (Cont.)

3.46 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

▪ Mailbox sharing

• P1, P2, and P3 share mailbox A

• P1, sends; P2 and P3 receive

• Who gets the message?

▪ Solutions

• Allow a link to be associated with at most two processes

• Allow only one process at a time to execute a receive

operation

• Allow the system to select arbitrarily the receiver. Sender is

notified who the receiver was.

Indirect Communication (Cont.)

3.47 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Synchronization

▪ Blocking is considered synchronous

• Blocking send -- the sender is blocked until the message is received

• Blocking receive -- the receiver is blocked until a message is

available

▪ Non-blocking is considered asynchronous

• Non-blocking send -- the sender sends the message and continue

• Non-blocking receive -- the receiver receives:

 A valid message, or

 Null message

▪ Different combinations possible

• If both send and receive are blocking, we have a rendezvous

Message passing may be either blocking or non-blocking

3.48 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

▪ Producer
message next_produced;

while (true) {

/* produce an item in next_produced */

send(next_produced);

}

▪ Consumer
message next_consumed;

while (true) {

receive(next_consumed)

/* consume the item in next_consumed */

}

Producer-Consumer: Message Passing

3.49 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Buffering

▪ Queue of messages attached to the link.

▪ Implemented in one of three ways

1. Zero capacity – no messages are queued

on a link.

Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n

messages

Sender must wait if link full

3. Unbounded capacity – infinite length

Sender never waits

3.62 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

3.8 Communications in Client-Server Systems

▪ Sockets

▪ Remote Procedure Calls

3.63 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Sockets

▪ A socket is defined as an endpoint for communication

▪ Concatenation of IP address and port – a number included at

start of message packet to differentiate network services on a

host

▪ The socket 161.25.19.8:1625 refers to port 1625 on host

161.25.19.8

▪ Communication consists between a pair of sockets

▪ All ports below 1024 are well known, used for standard

services

▪ Special IP address 127.0.0.1 (loopback) to refer to system on

which process is running

3.64 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Socket Communication

3.65 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Sockets in Java

▪ Three types of sockets

• Connection-oriented

(TCP)

• Connectionless (UDP)

• MulticastSocket

class– data can be sent

to multiple recipients

▪ Consider this “Date” server

in Java:

3.66 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Sockets in Java

The equivalent Date client

3.67 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Remote Procedure Calls

▪ Remote procedure call (RPC) abstracts procedure calls

between processes on networked systems

• Again, uses ports for service differentiation

▪ Stubs – client-side proxy for the actual procedure on the server

▪ The client-side stub locates the server and marshalls the

parameters

▪ The server-side stub receives this message, unpacks the

marshalled parameters, and performs the procedure on the

server

▪ On Windows, stub code compile from specification written in

Microsoft Interface Definition Language (MIDL)

3.68 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Remote Procedure Calls (Cont.)

▪ Data representation handled via External Data

Representation (XDL) format to account for

different architectures

• Big-endian and little-endian

▪ Remote communication has more failure scenarios

than local

• Messages can be delivered exactly once rather

than at most once

▪ OS typically provides a rendezvous (or

matchmaker) service to connect client and server

3.69 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Execution of RPC

3.70 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Practice Question

Determine the output in LINE A and B?

3.71 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Practice Question

Determine how many processes will be created including this
program process?

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 3

	Slide 1: Chapter 3: Processes
	Slide 2: Outline
	Slide 3: Objectives
	Slide 4: 3.1 Process Concept
	Slide 5: Process Concept (Cont.)
	Slide 6: Process in Memory
	Slide 7: Memory Layout of a C Program
	Slide 8: Diagram of Process State
	Slide 9: Process Control Block (PCB)
	Slide 10: Threads
	Slide 11: Process Representation in Linux
	Slide 12: 3.2 Process Scheduling
	Slide 13: Ready and Wait Queues
	Slide 14: Representation of Process Scheduling
	Slide 15: CPU Switch From Process to Process
	Slide 16: Context Switch
	Slide 17: Multitasking in Mobile Systems
	Slide 18: 3.3 Process Operations - Creation
	Slide 19: Process Creation (Cont.)
	Slide 20: A Tree of Processes in Linux
	Slide 21: C Program Forking Separate Process
	Slide 22: Creating a Separate Process via Windows API
	Slide 23: Process Operation - Termination
	Slide 24: Process Termination
	Slide 25: Android Process Importance Hierarchy
	Slide 26: Practice Question
	Slide 27: Multiprocess Architecture – Chrome Browser
	Slide 28: 3.4 Interprocess Communication
	Slide 29: Communications Models
	Slide 30: Producer-Consumer Problem
	Slide 31: 3.5 IPC – Shared Memory
	Slide 32: Bounded-Buffer – Shared-Memory Solution
	Slide 33: Producer Process – Shared Memory
	Slide 34: Consumer Process – Shared Memory
	Slide 40: 3.6 IPC – Message Passing
	Slide 41: Message Passing (Cont.)
	Slide 42: Implementation of Communication Link
	Slide 43: Direct Communication
	Slide 44: Indirect Communication
	Slide 45: Indirect Communication (Cont.)
	Slide 46: Indirect Communication (Cont.)
	Slide 47: Synchronization
	Slide 48: Producer-Consumer: Message Passing
	Slide 49: Buffering
	Slide 62: 3.8 Communications in Client-Server Systems
	Slide 63: Sockets
	Slide 64: Socket Communication
	Slide 65: Sockets in Java
	Slide 66: Sockets in Java
	Slide 67: Remote Procedure Calls
	Slide 68: Remote Procedure Calls (Cont.)
	Slide 69: Execution of RPC
	Slide 70: Practice Question
	Slide 71: Practice Question
	Slide 72: End of Chapter 3

