

Proceedings of the 5th Winona Computer Science
Undergraduate Research Symposium

April 20-21, 2005

Table of Contents

Title Author Page No.

Simulation of an Embedded Sniffing Device Greg Bestland
Winona State University

1

Hierarchical Manipulation of Mathematical Expressions

for Visually Impaired Students
M. Fayezur Rahman
Winona State University

6

3D Graphics Then and Now:

From the CPU to the GPU
Joseph M. Mahoney
Winona State University

14

Visible Consistency of Animation Mechanisms Padraic McGee
Saint Mary's University

21

Client-Server versus Peer-to-Peer Architecture:

Comparisons for Streaming Video
Lisa McGarthwaite
Saint Mary's University

28

A Comparison of Firewall Performance

in Distributed Systems
Logan Twedt
Saint Mary's University

33

Initialization Settings of a Force Feedback Device:

Analysis of User Preferences
Michele Clarke
Saint Mary's University

37

 1

Simulation of an Embedded Sniffing Device
Greg Bestland

Student Winona State University
4351 Chester Ct

Webster MN, 55088
507-459-3097

Greg.Bestland@Gmail.com

ABSTRACT
This paper describes the first phase of a two phase project to
implement an IMAP protocol analyzer on an embedded device.
The first phase is the implementation and testing of a simulated
embedded email sniffer, as a proof of concept. The test bed for
the simulated embedded device is modeled after the Digi©
Connectsp platform. The Connectsp will later be used for the final
implementation of the sniffer. We tested the simulated embedded
sniffer’s ability to detect outgoing, and incoming IMAP messages,
in a network environment under various loads ranging from 0Mbs
to 79Mbs. We concluded that such a device would be very
effective and entirely feasible.

General Terms
Algorithms, Measurement, Performance, Reliability,
Experimentation, and Security.

Keywords
IMAP, Embedded, Email, Network Sniffing.

1. INTRODUCTION
The idea of monitoring the activities of people via email is not a
new concept. The FBI’s Carnivore Project was one of the first
that got national attention [5]. Clearly the task of reading
unencrypted email is trivial and not worthy of study. This is of
course given the condition that you have access to the network
traffic carrying the email message. This can be a difficult task if
the network traffic is solely internal.
In the instance of large corporations, or other organizations such
as a university, a large portion of the network traffic can be
internal. This includes email coming from and destined to only
internal users. That makes this traffic very difficult to intercept,
unless you have physical access to the internal network. While
setting up a laptop or desktop computer on a secure internal
network is one solution, it is certainly not ideal if a covert
solution is necessary. This is where an embedded sniffer’s
usefulness becomes apparent.

The goal of this paper was to complete the first phase of a two
phase project. This project’s objective is to develop and test the
effectiveness of an IMAP protocol analyzer implemented in an
embedded device. The embedded sniffer could be a miniature
computer, smaller than a deck of cards, which could be placed on
an internal network between an IMAP client and IMAP server.
Here it would be capable of capturing emails that are sent to the
server from the client and to the client from the server. The first
phase of the project will be covered in this study. It involves the
implementation and testing, of a simulated embedded IMAP
sniffer.
In this paper we will explain the underlying network protocols
relevant to sniffing IMAP traffic and how these protocols build
upon each other to form network traffic. We will present the basic
function and design involved in developing a sniffer and the
additional implementation details and obstacles that had to be
considered when developing a simulated embedded sniffer. We
will discuss how we set up our test bed and tests for the embedded
device. Lastly we will examine the results of these tests and
discuss them.

2. BACKGROUND
In this Section we will go over how network traffic is formed,
how sniffers work, why an embedded sniffer requires a slightly
different approach than is typically taken with most sniffers and a
little bit about the IMAP protocol.

2.1 Network Layers
Network traffic is made up of many different layers. The current
working model for most applications on the Internet today is the
IP model [13]. The IP model is made up of four layers, as follows:
host to network, internet/network, transport and application [1].
The host to network layer is used to transport bits from point to
point [1]. The internet/network layer is used to route information
[13]. The transport layer is used to manage end to end flow and
error control [13]. The application layer is used to turn the bits
one party receives from another party into something useful [13].
Each layer has protocols associated with it. While it is beyond the
scope of this paper to cover even the most common protocols in
their entirety, we will briefly go over the ones we used in our
project.
In the first layer, the host to network layer, there is
overwhelmingly one standard in use today, Ethernet (IEEE 802.3)
[1]. The Ethernet header consists of a source and destination
address (each is 48 bits long), a type code, data, and a CRC
checksum [13]. You can see the layout of the Ethernet header in
Figure 1. Enclosed within this frame’s data section is the protocol
information of the other layers.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Proceedings of the 5thWinona Computer Science Undergraduate
Research Seminar, April 20–21, 2005, Winona, MN, US.

 2

Figure 1: Ethernet Frame [13]

The internet/network layer is dominated today by the IP protocol.
There are two versions of IP currently in use, IPv4, and IPv6.
While IPv6 looks to be the new and upcoming standard, most
people are still using IPv4. The IPv4 header consists of 13
different fields spread over 196 bits. Following the IPv4 header
fields is the data that is encapsulated within the IP packet [1,13].
For the purposes of this paper, only three fields of the header are
relevant. The source and destination addresses (32 bits each), and
a protocol indicator consisting of 8 bits, this field is bolded in
Figure 2 [1, 13]. The addresses on this level are end-to-end, as
opposed to the Ethernet addresses which are point to point.

Figure 2: IPv4 Packet [13]

The next level of abstraction is the transport layer. Unlike the
first two protocols, there are several different transport protocols
in use today. TCP is the only one relevant to our project. The TCP
header consists of 13 fields; these are shown in Figure 3. This
protocol handles end to end flow control of data and error
checking. Its function is to ensure data transmitted from the
source is received in order and error free by the destination [1,
13].

Figure 3: TCP Header [13]

The top level of the IP model is the application layer. The
application layer protocol we will be sniffing is IMAP, or the
Internet Message Access Protocol [7]. The IMAP protocol is used
in conjunction with SMTP. SMTP messages arrive to the IMAP
server, the server then stores those messages for users to retrieve
at a later time. The IMAP server is not responsible for generating
outbound SMTP traffic, that task is left up to the client. IMAP
uses simple plain text messages to communicate and retrieve

email from a central storage server, this process is show in figure
4 [7]. While we will not go into the logistics of exactly what
commands are used, the only pertinent information about this
protocol is that the client and server use a series of command
strings in order to authenticate and exchange plaintext messages.
The two command strings that can contain the body of an email
message are the FETCH, and APPEND messages. The FETCH
method is used to retrieve a specific message from the server [7].
The APPEND message is used to add a message to the server for
storage [7].

Figure 4 : IMAP Protocol

IMAP messages must be encapsulated in TCP, then IP and then
Ethernet in order to transmit the message successfully to its
destination [1, 13, 7]. In Figure 5 an overview of this
encapsulation process is presented, with the highest level
protocol, IMAP, at the center, and the lowest level protocol,
Ethernet, on the outside.

Figure 5: IMAP Encapsulation

2.2 Sniffers
Sniffers, also known as protocol analyzers, come in many
different varieties and serve a multitude of purposes. From the
network administrator trouble shooting network problems, to an
identity thief trying to get your social security number, all
network sniffers share two common components, a tap and a filter
[14].
The tap is a mechanism that allows the sniffer to receive all
traffic. This is most commonly done by setting the NIC (network
interface card) to a promiscuous mode [14]. Promiscuous mode is
a mode in which the card disregards the destination portion of the
Ethernet header and accepts all traffic. In normal operation, a NIC
will only accept traffic that is destined to its particular physical
address. The destination physical address is contained in the
Ethernet header, and is highlighted in Figure 1. In Windows,
Linux and UNIX environments, setting the NIC to promiscuous
mode is commonly accomplished with the use of a packet capture
library (PCAP). PCAP, originally developed for UNIX, was
ported to Windows and its name changed to WINPCAP [11]. This
was further extended to Java with the JPCAP library [12]. We
used a WINPCAP base with JPCAP extensions in order to capture
all frames for our experiments.

 3

Another consideration for the sniffer is it needs to be in a position
such that it is able to intercept the target traffic. A tap does no
good if there is no network traffic to tap into. This is not a trivial
thing on a switched network where a node generally only receives
traffic that is intended for it. This means the sniffer must be
located on a layer one hub between the target and the target’s
destination or on a switch that is mirroring a port carrying the data
between client and server; this can be seen in Figure 5. Once all
of the traffic has been captured, a filter needs to be employed.

Figure 5: Sniffer Location

The filter takes the fire hose of data flowing into a computer and
reduces it to data pertinent to the task that is to be accomplished.
Depending on the application, this data stream can be quite large
or quite small. There are two main approaches to filtering [14].
The first is to collect all the traffic and store it for later
processing. The second is to process everything on the fly and
store only relevant information for later.
The first approach is the most popular. One of the most infamous
sniffers was the FBI’s Carnivore. This was implemented in the
form of a laptop sitting at an ISP (Internet Service Provider)
capturing bit for bit the information destined for and coming from
a subject’s computer. This data was stored for later processing [5].
This method has the advantage of capturing all network traffic,
but the disadvantage of taking up a tremendous amount of space.
 The second approach is much more suitable to sniffing with an
embedded device. Instead of saving all the traffic, all data that is
not relevant to application is filtered out and discarded entirely.
An embedded sniffer requires the second approach. The primary
reason for this is the very limited storage space. The embedded
device that was used for our simulated model has only 2MB of
flash memory [4]. While this is sufficient to store quite a sizeable
amount of plaintext email, it is not enough to store one minute of
the total traffic that a user may generate. This requires the device
to filter out quite a bit of traffic. The filtering process requires far
less processing power than one may think. Most applications
running over TCP have a designated port number associated with
them [13]. Since the headers of all layers are known, and the
destination port of the application is identified, sorting out
relevant traffic becomes trivial. We can look at the protocol
section of the IPv4 header to determine if the upper level protocol
is TCP, bolded in Figure 2, then the destination port in the TCP
protocol header is examined, highlighted in figure 3, to determine
if the traffic is pertinent information to the user. Since the location
of this data is known, the comparisons can be done with bit
masks, making them non-processor intensive [13]. Now that there
is an understanding of how sniffers obtain and filter traffic, the
next step is to examine our evaluation of the simulated embedded
sniffer.

3. METHODS
In order to test the sniffer’s effectiveness, four different elements
are needed, a sniffer, to capture and sift through the traffic, an

IMAP client to send and receive messages from a server, an
IMAP server to serve the messages to a client, and a mechanism
to generate network traffic in a controlled manner. We
implemented a sniffer, and IMAP client. The IMAP server and
network traffic generator are third party applications.

3.1 Experiment Setup
The hardware used during the test consisted of two desktop
computers, one laptop and a layer one hub, or a layer two switch.
The first desktop served as an automated IMAP client and FTP
client. The processor for this computer was an AMD 64 3200+
with 1GB of memory. The second desktop served as an IMAP
server and FTP server. Its processor was an AMD XP 2700 with 1
GB of memory. The laptop was a Pentium 4 clocked at 1.4 Ghz
and contained 768 MB of memory. The layer one hub was 10
base T for the test that involved network speeds between 0 and
10Mbs. A 100 base T switch was used for tests that had network
speeds exceeding 10Mbs.
The testing was set up in such a way that the sniffer would
intercept all traffic which passed between the IMAP client and
server. This was done on an isolated network through the use of a
physical repeater (dumb hub), or at line speeds above 10Mbs
through a switch that was using port mirroring. This simulates a
wiretap tool that would be used to hook the embedded device into
the network. This layout is depicted in Figure 5.
In order to be repeatable, all the elements of the experiment must
be controlled. Obviously simply hooking the sniffer up to a
network segment and having a person fetch and append IMAP
messages via an IMAP client would not only be tedious but also
inconsistent. In order to automate the process we implemented an
IMAP test client. The client was written in Java and utilizes the
JavaMail API [10].
The test client is designed to send and receive IMAP traffic at
fixed timed intervals. Our tests consisted of the sending and
receiving of 100 IMAP paired messages on 5 second intervals.
Each paired messaged was made up of a FETCH message and an
APPEND message [7]. Twenty of these tests were preformed.
Each test was performed at a different level of network saturation.
The first test was performed with no significant extraneous
network traffic and the last with maximum network traffic we
were able to produce 79.2Mbs.
The IMAP server we choose to use was Mailtraq [9]. It is
commercially available and has a freeware version accessible
with a limited number of clients. It fully complies with the IMAP
protocol (RFC, 3501) and was chosen due to ease of configuration
and our funding constraints. The traffic generator we used to
generate the desired line speeds was a simple FTP client and
server combination. The FTP server used was BulletProof FTP,
and the client was Smart FTP [16, 17]. Again these were chosen
due to our funding constraints and its ease of configuration. The
network load generated by the FTP client and server was verified
with a network load utility called Du Meter [15].

3.2 Simulated Embedded Sniffer
Implementation
The simulated embedded sniffer was implemented using Java and
a combination of the JPCAP and WINPCAP libraries [11, 12].
The simulator was based on the development board manufactured
by Digi called the Connectsp. The Connectsp will be used in the

 4

second phase of our project as a test bed on which to implement
the sniffer. This device is very small, about the size of a pack of
cards. It has built-in Ethernet, TCP/IP functionality, a simulated
file system using flash memory, and file input/output capabilities.
Its processor is an ARM7 running at 55.7 MHz. The long-term
storage capacity of the device is very limited, around 2MB of
flash memory. Its main memory capacity is 16mb [4].
In order to effectively simulate the embedded device we started
with a laptop running at 1.4Ghz. In order to make the laptop more
accurately reflect the performance of the embedded device we had
to limit both the memory usage and CPU speed. The CPU speed
was restricted by an application called CPU grabber [18]. This
application utilizes a certain percentage of the available CPU
resources, which can be determined by the user. In order to better
simulate the embedded device we chose to make use of 97% of
the CPU, leaving only 3% free for the simulated embedded
device. This simulated a device running at 42Mhz. We were
unable to get a clock speed closer to that of the actual device,
55.7Mhz, due to the limitations of CPU grabber. We decided to
use the closet setting that was at a performance equal to or less
than that of the device. This clock speed was verified by
monitoring the Windows task manager. After running a few initial
tests we noted that the program itself never consumed over 11Mb
of memory. Due to the fact that the simulator ran well within the
bound of the embedded device, no action was taken to limit its
memory, as none was needed. (CPU Grabber).
As with all sniffers we needed to implement both a tap and filter.
The tap was implemented using the JPCAP library [12]. This
allowed us to choose a NIC, and set it to promiscuous mode. It
also allowed us to set up a filter. Due to its limited processor
power and storage capacity, it is imperative that no unwanted
information be captured by the device. In order to ensure this we
implemented a two stage filter.
The first stage of the filter had to filter out the maximum amount
of traffic as computationally efficient as possible. This was
accomplished through the use of bit masks. Since the headers of
the protocols are fixed, and known ahead of time, a mask can be
applied to all incoming traffic [13]. This allows us to use the non-
computationally intense xor operations to filter out the bulk of the
traffic. In this manner we can separate out all traffic that is not
TCP and destined to or originating from port 143. You can see
that all the fields where we applied bit masks are bolded in
Figures 2 and 3.
The second stage of the filter was applied to all the remaining
IMAP traffic. Since the only IMAP commands that can trigger the
transfer of an email message are FETCH and APPEND it would
make sense to use bit masking to separate out all extraneous
IMAP messages. We attempted this but found that due to
inconstancies in the placement of the FETCH and APPEND
command strings, among various clients and servers, it was not
feasible. We instead used string pattern matching to search for the
initial FETCH and APPEND command strings. If either FETCH
or APPEND was located we then looked for a particular email
address within the body of the message. If the pattern matching
algorithm found the email in the FETCH or APPEND message
the body was saved and written to a text file.
It is important to note that the first stage of the filter must be
given a higher priority than the second stage of the filter or
potential email messages may be lost. This is because the first

stage of the filter deals with a much larger volume of traffic, and
if traffic is not dealt with in a timely manner, some will be
disregarded if the Ethernet queue overflows. This is less important
with the second stage of the filter. While the second stage requires
more computational time per message analyzed, it is less time
sensitive, and can be processed with comparative leisure. We
accomplished this prioritization through the use of threads,
placing the first portion of the filter on a different thread than the
second portion.

4. Results
After running the twenty initial capture tests at different line
speeds we came up with the following results.

IMAP Capture Test from 0 to 10Mbs

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10

Network Saturation in Mbs

P
er

ce
nt

 o
f I

M
A

P
 M

es
sa

ge
s

Ca
pt

ur
ed

Percent of Imap Traffic
Captured

Figure 7: Sniffer Results 0 to 10Mbs

IMAP Capture Tests from 20 to 79Mbs

0

20

40

60

80

100

120

20 30 40 50 60 70 79

Network Saturation in Mbs

P
er

ce
nt

 o
f I

M
A

P
 M

es
sa

ge
s

Ca
pt

ur
ed

Percent of Imap Traffic
Captured

Figure 8: Sniffer Results 20 to 79Mbs

As you can see from the Figures above, the sniffer performed
much better than expected. It managed to capture and store all
IMAP messages regardless of other network traffic. This
exceeded our initial estimates. One thing we did notice however
was that the higher the network saturation the more time it took
the sniffer to process IMAP messages that made it past the initial
bit mask filter.
Although we were satisfied with the results of our tests, we
wanted to see exactly how the sniffer would perform in even less
ideal circumstances. To accomplish this we removed the timing
function of our test client; this caused all email messages to be
sent and received at once.

 5

Non-Time Sniffer Results

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

Network Saturation in mb/s

P
er

ce
nt

 o
f M

es
sa

ge
s

C
ap

ut
re

d

Non-Time Sniffer
Results

Figure 9 Non-time Sniffer Results

As you can see in Figure 9 the results were surprising. The sniffer
managed to capture all relevant messages, even if they were sent
with no time interval between them. We also ran one test with the
full network saturation of 79Mbs and no timing mechanism. This
had the same result as those above. The protocol analyzer
captured all 200 email messages. We noted that the sniffer was
unable to process all the messages as quickly as they were sent;
instead it buffered them and processed them later.

5. CONCLUSION
From these results we have concluded that such a device is
entirely feasible to implement. Through the course of testing we
have also learned much about such a device’s limitations. Our
tests have indicated what environment the embedded sniffer
would perform best in and what situation is less than ideal for
such a device.
While our sniffer managed to capture all traffic in our tests we
noticed one interesting trend. The higher the network saturation
the more time it took for the sniffer to process IMAP messages
that made it past the first stage of the filter. This is because the
first stage of the filter runs in a separate thread and is given higher
priority than the second stage. In order to keep up with the
increased network load the first stage of the filter uses much more
of the processor, leaving less for the second stage, which in turn
causes the second stage of the filter to run slower. If there was a
heavy and consistent stream of IMAP messages in the traffic we
were sniffing, it would be entirely possible to overload the second
stage of filter by providing it with IMAP messages faster than it
could process them. From this we can conclude that the ideal
environment for our sniffer is one where there is not a heavy and
consistent stream of IMAP traffic. A better environment for the
sniffer would be monitoring a limited number of users. This
would result in only bursts of heavy IMAP messages, or less
intensive consistent IMAP traffic.
This observation does not interfere with our initial concept of an
embedded email sniffer. It was never our goal produce a device
that would monitor a large number of users email. The embedded
sniffer simply does not have the storage capacity, and processor
power for such an endeavor. It does however succeed in the task it
was designed for, monitoring a limited number of users on an
internal network. From these tests we have concluded that our
simulated embedded sniffer was a total success and that stage two
of our project is entirely feasible.

6. FUTURE WORK
From the results we see here the next step to follow is clear. With
a basic prototype developed, the next step would be to implement
this application on the Digi ConnectSP platform and see how it
performs. As the Digi ConnectSP currently has no ethernet driver
capable of promiscuity mode, one would need to be developed.

7. REFRENCES
1. Douglas E. Comer, Internetworking with TCP/IP Principles,

Protocols, and Architectures, Alan Apt, 2000.
2. Jonathon B. Postel. RFC 821 Simple Mail Transfer Protocol

[online] 2000; Available from:
http://www.faqs.org/rfcs/rfc821.html. Accessed 2005 Feb 11.

3. T. Socolofsky, C, Cale. RFC 1180 A TCP/IP Tutorial T.
[online] 1991; Available from
http://www.faqs.org/rfcs/rfc1180.html. Accessed 2005 Feb
11.

4. Digi International inc, Digi Connect So Hardware Reference
2003.

5. Matt Blaze, Steven M. Bellovin. Inside risks: Tapping on
my network door. Communications of the ACM Volume 43,
Number 10, Page 136, 2000

6. McClure, Scambray, Kurtz Hacking Exposed, Network
Security Secrets and Solutions, Brandon A. Nordin, 1999.

7. M. Crispin. RFC 3501 Internet Message Access Protocol
[online] 2003; Available from
http://www.faqs.org/rfcs/rfc3501.html. Accessed 2005 Feb
11.

8. J. Myers, M. Rose RFC 1939 Post Office Protocol v3
[online] 1996; Available From
http://www.faqs.org/rfcs/rfc1939.html, Accessed 2005 Feb
12.

9. MailTraq Mail Server Software. MailTraq
http://www.mailtraq.com/. Accessed 2005 Feb 11.

10. JavaMail API. Sun Microsystems
http://java.sun.com/products/javamail/. Accessed 2005 Feb
11.

11. WinPcap Open Source Libaray. WinPcap
http://winpcap.polito.it. Accessed 2005 Feb 11.

12. Java Package for Packet Capture. JPCAP.
http://netresearch.ics.uci.edu/kfujii/jpcap/doc/index.html,
Accessed 2005 Feb 13

13. Gerald Cichanowski, CS 413 course notes, Jan 2005-May
2005.

14. Bob Barr, Sung Yoo, Tom Cheatham. Network Monitoring
System Design. Department of Computer Science, Middle
Tennessee University.

15. DU Meter Software. DU Meter. http://www.dumeter.com/
Accessed 2005 Feb 14.

16. BulletProof Software. BulletProof FTP Server.
http://www.bpftp.com/ Accessed 2005 Feb 17.

17. SmartFTP Software. SmartFTP. http://www.smartftp.com/
Accessed 2005 Feb 17.

18. Microsoft Software. CPU Grabber. www.microsoft.com/
Accessed 2005 Feb 13.

 6

ABSTRACT
Students with visual impairments face unique challenges in
reading, writing, and manipulating mathematics. This paper
describes a tool that lets students organize mathematical
expressions in tree structures and manipulate the tree towards
solving a mathematical problem. This study shows that visually
impaired students can organize mathematical expressions
independently, can easily find mistakes in a previously worked
problem, and are less likely to misinterpret an expression while
solving a problem using this tool.

Categories and Subject Descriptors
G.4 [Mathematical Software]: Documentation, User interface

General Terms
Human Factors, Documentation

Keywords
Math accessibility, visually impaired, navigation, hierarchical
structures

1. INTRODUCTION
Mathematics is an inherently visual form of communication. In
most languages, speech is the preferred from. A message can be
successfully conveyed from one individual to another without the
help of the written form. The written form serves the purpose of
documentation that can later be understood with the knowledge of
pronunciation and prosody. Speech to text and vice versa, quite
often, is a one-to-one mapping [1]. This property of common
languages makes text-to-speech possible and very successful.

Writing is the preferred form for mathematics. Often times, it is
difficult to discuss mathematics in a linear fashion without the
high risk of misinterpretation. A simple example can demonstrate
this. If one says, “x raised to the power p plus one” - this can be
interpreted in two different ways, as shown in Figure 1.

xp+1
 xp+ 1

(a) (b)

Figure 1: Different interpretation of same content.

This confusion can be overcome by saying “x raised to the power
quantity p plus one” for Figure 1a or “quantity x raised to the
power p plus one” for Figure 1b or by changing different
attributes of the audio, for example, pause or pitch. However, this
requires the text-to-speech system to understand the content it is
reading, an attribute not necessary for ordinary text-to-speech
systems.

Over the years many solutions have been imposed on this
problem. A successful attempt to read mathematics non-linearly
was made by T. V. Raman in his doctorate dissertation AsTeR or
Audio System for Technical Reading [2]. AsTeR supports audio
formatting that can speak a mathematical expression (ME) as a
person with math knowledge would read it. It also supports
navigation and abstraction of MEs, which facilitate understanding.
UMA or Universal Mathematics Access [3] enables a reader to
convert a ME in a preferred format such as Nemeth Code. The
difficulty of writing mathematics in word processors was
addressed by Knuth in project TeX [4]. LaTeX [5] (an extension
of TeX) and MathML are used as a required input for AsTeR and
UMA. The developments of these tools have made mathematics
easier to read and understand for the visually impaired
professionals. However, the technologies of manipulating
mathematics for visually impaired students are still primitive.
More often than not, visually impaired students have to rely on
word processors, or word-processor-like tools to work on their
math problems.

Word processors are linear in nature. This makes it difficult for
visually impaired students to write and manipulate mathematics, a
multi-dimensional language. Use of an intelligent text-to-speech
system such as AsTeR requires students to type in or provide the
input in LaTeX. This can be a learning over head. Further, “audio
formatting makes much information accessible, but not
necessarily digestible.” [1]

This study proposes an environment that lets a student input MEs
in a hierarchy, navigate the hierarchy in an efficient and
accessible way, manipulate the content and structure of the
hierarchy that leads towards solving a problem, and record each
step of the process with a facility for fixing errors or changing
strategies. The tool is intended for visually impaired students in
high school and college. But anyone with basic understanding of a
tree structure can be benefited from this. This environment should

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Proceedings of the 5thWinona Computer Science Undergraduate
Research Seminar, April 20–21, 2005, Winona, MN, US.

Hierarchical Manipulation of Mathematical Expressions
for Visually Impaired Students

M. Fayezur Rahman
Department of Computer Science

Winona State University
Winona, MN 55987

webplots@yahoo.com

 7

help students in dealing with mathematics in their academic and
professional life.

For this research, visually impaired students taking math courses
were interviewed to learn about current techniques and tools in
use. Based on this, a list of functional requirements for the tool
was made. Two mathematics professors assessed the desired
functional requirements for fairness in a learning environment.
Following the edited list, a prototype was developed for the
hierarchical manipulation of mathematics. The prototype was then
tested by high school and college students for applicability. Two
visually impaired college students participated in a later study. A
first version of the tool has been developed based on these studies.
The following is an elaborate description of prior research,
functional requirements, implementation, usability studies, study
results, and future works.

2. PRIOR RESEARCH
Hierarchical architectures to present ME have been considered
and used in many different tools. One such tool is AsTeR.
“AsTeR is a comprehensive speech synthesis system for higher
mathematics.” [14] It uses “attributed tree structure” “to represent
mathematical content.” [2] Therefore a user can navigate and read
different logical parts of the content by moving among sibling
nodes, parent node to child node, and vice versa. These operations
offer the user a choice of abstraction and control of information
flow. AsTeR requires input to be in “TeX family of markup
languages, i.e., TeX, LaTeX, and AMSTeX.” [15] TeX is
primarily intended for the printing end. Visually impaired students
often use different coding schemes, such as Nemeth Code, for
working on mathematics problems. Learning TeX family
languages for better accessibility or for producing more visually
appealing output can be a learning overhead. This issue was
addressed by Universal Mathematics Access project in their
program Math Genie. [3]

Math Genie is capable of conversion among different formats,
such as LaTeX to Nemeth Code or vice versa. It also takes
advantage of the hierarchical structure of an ME to give the user a
more interactive listening experience. The reading experience is
further enhanced by different levels of abstraction and color coded
visual output “to accommodate forms of Dyslexia.” [3] It has an
audio rendering module that supports more natural reading. It
allows a student to convert the output of his/her work in a visually
appealing format. Therefore, it neither requires a sighted
instructor to learn Nemeth Code, nor requires a visually impaired
student to learn LaTeX.

Manipulation of mathematical content, as it is required from a
student’s perspective, was addressed by Win-Triangle [16]. Win-
Triangle eliminates the need for the user to know LaTeX or
Nemeth Code. It allows a user to give the input in standard
Windows Symbols font, including MathType and MT Extra. [16]
Some special symbols (e.g. is used to indicate beginning of a
fraction) are used to markup contents. It supports printing both in
visual format and Braille, therefore eliminating any need of
conversion. However, the navigation of the content is limited to a
linear structure.

Giving a high level view or “glance” of the complex information
using “algebra earcons” was attempted by MathTalk project. [9]

MathTalk also offers different levels of abstraction. “Any object
that groups more than one term together, by either a parsing mark
or spatial location is folded-up and referred to only by its name
during browsing.” [8] Therefore the system creates different
levels of abstraction by predefined rules and the user has to
explicitly explore each level for details. The attempt is to present
the benefits of a hierarchical structure in a simpler linear structure
without requiring user to learn tree structure.

The hierarchical presentation of information has become more
popular over the years. It has become an integral part of using
computers. For basic need such as file management in Windows
to communication or entertainment such as managing “buddy
lists” in instant messenger, the tree representation is becoming a
natural choice. The tree structure is also used in Integrated
Development Environments (IDEs) to represent program
structure. The Computer Science Curriculum Accessibility
Program (CSCAP) investigated accessibility issues in such
representation of data. Functional requirements for a tool to
navigate hierarchical structures were laid out in “Nonvisual Tool
for Navigating Hierarchical Structure.” [7] In making an
accessible tool for manipulating mathematical expressions, this
project chose a hierarchical structure and follows research done at
CSCAP to make navigating hierarchical structures accessible.

3. FUNCTIONAL REQUIREMENTS
The fundamental requirement for an accessible mathematics
manipulation tool for visually impaired students is that a ME can
be entered and edited to a desirable form with the use of a
keyboard and screen reader only. However a good accessible tool
should support working on a wide range of problems effectively
and efficiently, reduce memorizing, and minimize third party
dependence, whether human or software. Moreover a learning tool
should also avoid massive automation such as computation, auto
error correction, etc. In other words, it should allow users to make
any mistakes that their sighted peers can make using paper and
pencil.

Visually impaired students currently taking mathematics classes
were interviewed for existing difficulties and desired features in a
Math tool. Two mathematics instructors with prior experience in
teaching visually impaired students have also contributed to the
list. The following section describes the list of requirements for an
accessible Math tool and some possible solutions.

1. Learning Environment

The tool should allow the user to manipulate contents in any
way the user intends, whether right or wrong. It should
minimize automation and maximize calculation facilities
required for learning. It should also provide a common
platform for sighted and non-sighted students to share work
simultaneously.

2. Active Reading
Sighted students play an active role while reading printed
material. The browsing capabilities of the human eyes allow
readers to move to any part of a ME very quickly. These
movements are not random and often not linear [10]. On the
contrary, a screen reader user plays a passive role in reading,
as the system speaks and the user listens with very little
facility to move among different part of the expression in any

 8

order but linear. However, the facility to control the content
to be spoken and to move among different parts of the
problem can help the screen reader user to have a more
active rule.

3. Beginning and ending of expressions and sub-expressions
recognition
Most often written or printed mathematics works are
spatially formatted for ease of reading and understanding.
The spatial formatting helps sighted students to visually
parse the expression into sub-expressions. However,
collapsing multidimensional spatial formatting into linear
format results in many extra parenthesis and braces. Given
no error took place in transcribing, it is still significantly hard
to pair up braces and parentheses. A similar problem in
writing computer programs is addressed by some popular
IDEs, such as Eclipse [11] and NetBeans [12] by
highlighting the corresponding pair of a selected one.
Mathematica [13], a popular math computation software,
provides feedback on missing braces or parenthesis by
changing the color of its possible pair. This technique can be
mimicked in an auditory interface to help non-sighted
students to find the beginning and ending of a sub-expression
contained inside braces or parentheses in initial linear format
and provide feedback on missing brackets.

4. Complex structure and contents can be parsed and
documented into smaller or preferred logical pieces.
Breaking complex problems into smaller tasks or modularity
is a well used strategy in mathematics. Sighted students can
do this by reorganizing an expression or breaking down an
expression into sub-expressions. The process is also
documented on paper, which reduces pressure on the user’s
memory and the risk of error. These reorganizations and
rewritings enable visual students to see and read a problem in
the way they want to. Non sighted students often do reading
by listening. In a linear format, the listening reader’s role is
passive and they have very little to no control over how they
want to listen to it. This may cause frustrating re-listening to
the same content over and over to get the structure and

details of the expression. Moreover a structurally complex
expression may exhaust the listener’s mental resources [9].
This is due to the fact that linear format has very little
facilities for navigation and reorganization. The tool should
provide an environment where the listener can reorganize the
structure for a preferred way of listening and use the
reorganized phase of the expression as an external memory
for a reference at any time.

5. Association
The tool should allow the user to associate logical pieces of a
problem easily and efficiently. This is particularly important
to aid Requirement 4 and while solving for two or more
variables.

6. Abstraction
Often times, complex information is easier to comprehend
with the help of abstraction. The user should be allowed to
create different levels of abstraction for a problem in a
preferred way.

7. All intermediate steps towards the solution should be
recordable.
Sighted students record steps towards the solution using a
paper and pencil. This allows them to get partial credit on
their work in case of an error. This also works well for future
references while doing a similar problem or as a review
before an exam. However non-sighted students often miss
these advantages if much of the problem was worked on
mentally and intermediate steps were not recorded as part of
the solution.

8. Any intermediate steps should be accessible at anytime to
change strategy or fix an error.

Sighted students can do so by reviewing previously written
steps and correcting them by erasing or overwriting. Due to
the advantage of visual parsing and multidimensional
documentation on paper, it takes less effort for sighted
students than it does for non sighted students. If the steps

Figure 2: BMT user interface

 9

were not documented, a non-sighted student will have to start
all over. If the steps were documented linearly, they would
have to create a mental image of those steps over again
which may consume time, frustrate the student, and yield
more errors. So, non-sighted students should have
corresponding parsed pieces of the steps when reviewing.

9. Multiple Work book
Solving some math problems requires working on multiple
expressions or equations at the same time. Sighted students
can do so by dividing the paper spatially or using multiple
pages. This gives them the opportunity to compare. Non-
sighted students should be able to have multiple problems
open at the same time and seamlessly move among them.

10. Exporting work for submission

The tool should be able to provide all the work done into a
printable format.

4. IMPLEMENTATION
Following the standards set in Section 3, a tool was implemented
in Java. The tool has been named Bulbul Math Tree (BMT). The
tool has a user interface accessible through the keyboard and an
external screen reader, such as JAWS® [6]. As shown in Figure 2,
the tool has two trees, a text box between the trees, and a table.
The trees are used to input and manipulate mathematical
expressions. For an equation, the left-hand-side of the equation is
entered into the left tree and right hand part of the equation is
entered in the right tree. The text box between the trees contains
the relation. The table is used for recording desired steps of the
process. Since it’s a learning tool, it has very limited automation
and computation facilities. The tool also provides support for
exporting results and the steps taken in deriving the results in a
printable format that can be used to submit homeworks and
exams.

Students can enter a mathematical expression using plain text.
Then they can create the architecture of the expression in
successive steps by breaking the expression into smaller logical
pieces. For example, (-b + sqrt(b^2 - 4ac))/(2a) [Exp 1] can be
arranged in the picture of the tree Figure 2.1a. This is very similar
to that of a parsing tree.

(a) (b)

Figure 3: Entering and Expanding an ME.

Going from figure 3a to 3b can be done through the “Expand”
operation. In this operation, students select a segment of the
expression, and then select an operator. After the operation, the
operator becomes a new parent node, and the operands become its
children nodes. This operation can be done repeatedly on an

expression for logical simplification and abstraction. Four
“Expand” operations were performed in the process of converting
the linear text in Figure 3a to the hierarchical expression in Figure
3b. We hypothesize that this allows students to arrange the
mathematical expression in a preferred structure for better
understanding, making subsequent operations easier and lowering
the chances of misinterpretation.

The tool allows students to substitute the value of a variable. For
example, in Exp 1, if a = 2, b = 3, and c = 1, the variables in the
tree can be substituted using “substitute” operation. For the sake
of learning, the substitution process is limited to one node at a
time, and not “substitute all the b in the tree by 3”. “Substitute”
operation can be used for either to substitute a variable or to
simplify an expression. For example, a node containing 4*2*1 can
be substituted for 8. In Figure 4a and 4b, we show the result of
substitution of the mentioned variable on Figure 2.1b. We
hypothesize that substitution and simplification in a tree structure
is easier and has lower risk of error than that of a linear structure.

(a) (b)

Figure 4: Substituting variables

The tool allows students to put logical pieces together through the
“Collapse” operation. As in Figure 4b, the child nodes containing
9 and 8 with a parent node containing minus can be collapsed in a
single node containing “9 - 8”. It can be simplified then using the
“Substitute” operation. The resulting node can be collapsed again
to form the node sqrt (1) and such. Successive application of the
“Collapse” and “Substitute” operations can be used to simplify the
expression in 4b and therefore solve the problem in Exp 1. The
result is shown in Figure 5a and 5b. We hypothesize that this will
help students in working on smaller part of the problem towards
solving a big and complex problem.

 (a) (b)

Figure 5: Simplifying Expression

The tool allows documentation of each step of the problem
solving, frequently a requirement for the students when
submitting their work as homework or exam. This can be done
using the “Record step” operation after any change made in the

 10

tree, if desired by the student. Figure 6 shows a table of recorded
steps for the previous problem. This helps students in two ways.
First, it helps student document their work and secondly, it helps
them to go back to a step if a mistake was made. Going back to a
step can be done using the “Revert” operation. In this operation,
visually impaired students can check all the steps they have done
towards solving the problem, correct a mistake in a step, and
continue the work from there again, just like sighted students can
do using paper, pencil and eraser. Going back a step reconstructs
the corresponding phase of the tree at that step. This allows
students not to start all over, rather continue from where they left
off or where an error took place. We hypothesize that this will
increase efficiency in working error prone problems by finding
the error in the process of solving problems faster and fixing the
problem easier than linear architecture in use.

Figure 6: Recorded steps of a problem.

The navigation strategies of the tool closely adapt earlier research
on navigating hierarchical structures. [7] The navigation rules for
BMT are as follows:

1. All the branches in the tree are open at all times.
2. The spatial orientation of the tree is standard side ways

rather than top-down. All the child nodes are located to
the right of the parent node.

3. An error sound is generated if a user tries to make an
illogical move.

4. The list of siblings is presented as a non-circular list
(i.e., an attempt to move to the next sibling from the
bottom most sibling is considered illogical.)

5. Bookmarks can be set to a node and later can be visited
by the most recent first.

The tool also supports saving a problem which gives students the
flexibility of saving a problem to work on later. It allows students
to export a printable version of their work containing all steps.
Other standard operations include, opening an existing file,
cutting, copying, and pasting of nodes, deleting a node, and undo
and redo operations. More operations are being evaluated for
“fairness in learning environment” by a study group of
mathematics instructors for the project. This includes, finding a
variable in the tree, automatic substitution, applying distributive
law through a template, etc.

5. USABILITY STUDY
The usability study of the BMT was done in two different phases:
Applicability Test and Accessibility Test. In the first phase, to
assess the applicability of the test, 18 undergraduate students and
2 high school PSO (Post Secondary Option) students were
recruited by asking for volunteers in 7 different classes. All the
students were fully sighted. Sighted students were primarily
recruited for availability and the fact that the applicability and not

accessibility of the tool was in question. Among the 20 students,
14 were male and 6 were female. The survey subjects were
composed of many different majors: 3 computer science, 1
physics, 1 chemistry, 3 engineering, 6 mathematics, 3 nursing and
3 others. The survey subjects varied in age from 16 to 24. The
length of the study was one hour and was done in six different
sessions with 3-4 students each session. Students were thanked
with candies for their contribution.

Students had no prior exposure to the software. For the first part
of the survey, they were handed a tutorial. The tutorial contained a
sample problem and step-by-step instructions on what operation
they needed to perform to solve the problem. The first occurrence
of an operation was given in detail and in the subsequent ones
they had to remember how they did it before. The students were
allowed to ask questions, think aloud, and talk among themselves
about strategies. The average time to go through the tutorial was
30 minutes.

For Test 1, to check students’ understanding of a mathematical
expression laid out in hierarchy, students were given pictures of
problems expanded in BMT with an average of 4 levels height
and 4 levels depths and asked to write down the expression on
paper.

For Test 2, they were give an expression of higher complexities
and two pictures of that expression expanded in BMT, with one of
them being correct and the other one with right content but wrong
structure of logic. Their first job was to decide which picture
correctly represented the expression in question. After that they
were asked to use BMT to expand the expression in the similar
manner to support their answer and comment on why the other
picture was wrong.

For Test 3, students were asked to solve a problem by showing
every step of the problem solving process. The problems assigned
varied from pre-calculus, calculus, and discrete math depending
on the highest level of math class they had taken. The problems
were suggested by mathematics instructors as representative of
homework or test questions. Sample problems are given in the
Appendix. The students were allowed to ask questions and
comment while working on their individual problem.

Ten participants were assigned problems from pre-calculus. The
problems were simplifying expressions or solving equations that
had a moderately large structure. Six participants were assigned
calculus problem. The problems were either taking the derivative
using the product rule or integration. Since the problems in this
section were much harder than the one demonstrated in the
tutorial, participants were given some problem specific tips in the
beginning of the problem. Four students were assigned problems
from discrete math. Problems in this section were in general larger
than the others and involved verifying arguments. The tool does
not yet support special symbols used in mathematics such as,
√ (square root), ∫ (integrate), subscript, superscript, etc. Therefore,
students were asked to type in the name of any such symbol.

A smaller usability test was conducted afterwards to assess the
accessibility, usefulness and efficiency of the tool as well as
applicability. Two visually impaired students participated in the
usability test. They are both experienced JAWS user, and had
limited exposure to the tool before testing.

 11

Both visually impaired student participants were male. Participant
one (P1) is a senior and participant two (P2) is a freshman. They
are both computer science majors. P1 had prior experience with
tree structures. He was enrolled in Calculus II at the time of the
study. P2 had limited experience with tree structure. Pre-calculus
was the highest level of mathematics class he had finished and
was enrolled in Discrete Mathematics at the time of the survey.
Both participants took the same tutorial as sighted students. P2
was briefed about the tree structure prior and during the tutorial.

P1 did two pre-calculus, two differentiations, and one integration
problem. P2 did two pre-calculus problems.

6. STUDY RESULTS
The hierarchical representations of the MEs were found to be very
intuitive by sighted participants. 17 out of 20 students wrote down
MEs from their hierarchical layout correctly in the first attempt.
The other three students had a common mistake of flipping the
numerator and denominator of a fraction. When asked about it,
their general response was that they were not aware of the fact
that order of siblings would matter. Participants also demonstrated
understanding of the layout through identifying errors in a
hierarchical layout of MEs. The results are given in Table 1.

Participants’ Answer Number of
participants

Identified correctly 16
Expanded correctly 17
Changed answer after expansion 2
Justified correctly 18
Total correct answer 18

Table 1: Cross matching MEs to hierarchical layout

Category Total number

of participants
Participants with
correct answer

Pre-cal 10 9
Calculus 6 5
Discrete 4 4

Table 2: Number of participants with correct answer

Statements P1 P2

The tool gives more control over
information flow.

8 9

The tool helps to break down problems into
manageable pieces.

9 8

Abstraction achieved by the tool helped to
understand the structure of a problem.

7 8

The tool is easy to learn. 7 7.5
The numbers of steps in solving a problem
is manageable.

8 7.5

I would use this tool in future. 9 9

Table 3: Non-sighted students survey results
Most of the students successfully completed the task of solving
individual problem in Test 3. Table 2 shows the result of the test.

Both non-sighted student participants completed their tasks
correctly. Table 3 shows some of their responses after test. The
participants answered questions in a scale from 1 to 9 with 1 being
negative, 5 neutral, and 9 being positive.

Observations:
1. BMT is Accessible
Both visually impaired student participants were able to use the
tool with a keyboard and screen reader only. Both users were able
to learn the hot-keys after a very short period. Users were able to
work on each part of their individual problem independently
without getting lost.

2. BMT is easy to learn.
All the participants finished reading the tutorial including doing a
sample problem in under half an hour. After that, they worked on
their individual problem. Most participants were able to work on
the individual problem without any help. Few students referred
back to the tutorial when not sure how to do something. In
general, participants were able to learn the commands and patterns
in a relatively short time. Figure 7 shows the “learning
experience” ratings by the participants.

 Figure 7: Overall user rating of BMT

 Figure 8: Overall user ratings of particular issues.

3. Hierarchical representation of mathematics is intuitive.

 12

Most of the participants didn’t need any help in reading a ME
from the tree. When participants were asked to write down a ME
represented in the hierarchy, 17 out of 20 students were able to
write down the expression correctly. The other three students had
a problem understanding the order of sibling nodes and had
related errors in the expression such as flipping a numerator and
denominator or flipping the operands of a subtract operation. One
of them commented that “I didn’t know the order of these [nodes]
would matter.” The others said that the layout of the problem was
different but they figured it out after few minutes looking at it.

4. The “Expand” operations is effective for organizing MEs.
The “Expand” operation was the most liked and often used
operation by the participants. One participants said, “I liked the
expand most of all because it breaks the problem down into
components.” Another participant commented, “All the steps of
solving a problem are easily visible [by expanding]”. The
instructors in general predicted that it will help student better
organize their problems.

5. BMT requires more support for “undo” and “redo”.
Participants used “undo” and “redo” to fix an immediate error
while “Revert” was used to go back to a previous state.
Participants disliked the fact that the tool would allow them to
“undo” and “redo” a step only once. Many participants suggested
that the tool should allow them to “undo” until the very first step.
“Revert” was used only by a few participants and was much
praised.

6. Auto resizing of windows are necessary for sighted students.
User complained that they had to frequently resize the panels in
order to have a full view of the trees. This is due to the fact that,
whenever any branch of the tree grew out of the panel size
allocated for it, either the user would have to use the scrollbars or
resize the panels. Auto resize of the panels were expected by most
users. This is particularly important in a group study environment
where sighted and non-sighted students may use the tool as a
common platform.

7. Voluntary recording of steps found to be insufficient.
Most of the participants didn’t record the process as often as they
should. When asked about it, most of the participants answered
that they forgot, followed by they thought the program would
record for them automatically. Some participants suggested that
an automatic record or a reminder for record would have been
helpful.

8. Spacing between operator and operands are considered
overhead.
The tutorial suggested participants to put a space between an
operator and operands. Participants in general didn’t like this.
Often times they forgot, to put spaces. When asked about it, the
most common answer was they forgot followed by it was
awkward and didn’t make sense.

9. Feedback messages.
The tool provides immediate feedback with specific messages if
the user skips a required step of the process instead of simply
disabling the “Ok” or “Next” button. Data in Figure 8 shows that
this feature was much appreciated by the participants.
10. Steps per operation.

Participants in general had very mixed reactions on the number of
steps it took to perform an operation. The absence of the use of
right-click on mouse and icons upset many participants. However
participants taking the calculus part of the survey were showed
how to reduce the number of operations and steps, such as doing
“substitution” and “expand” in a single “expand” operation. Few
of them also found the hot-keys very useful. Two participants
from the calculus group significantly used less steps and
operations just by expanding the expression differently.

6. CONCLUSION AND FUTURE WORK
BMT is a mathematics learning tool that is easy to learn yet
efficient in managing large MEs. It does not require a user to type
in any special coding or markup languages, such as Nemeth Code
or LaTeX. The tool is applicable to problems that involve
algebraic and numeric manipulation. It also provides a common
platform to discuss mathematics for sighted and non-sighted
students.

The development of BMT is far from complete. Future work will
include a mechanism for entering special symbols in an efficient
yet accessible way. Some popular mathematics tools are currently
being investigated for such mechanisms. This will be useful
particularly when letters from alphabets other than Roman-
English are used. The tool will also use MathML to present a
more visually appealing form for recorded steps and printing.

7. ACKNOWLEDGEMENTS
I would like to thank Joan Francioni for making this project
possible with her help, support and guidance in every step of the
process. My deepest gratitude to Ann Smith, Gary Bunce, and
Felino Pascual for giving me time in their busy schedules. Thanks
to all the students who volunteered for the usability testing, in
particular Denny Schwab and Mohamed Abdel-Magid. Last but
not the least, thanks to my family for their continuous support and
encouragement.

REFERENCES
[1] Hayes, B. 1996. “Speaking of Mathematics”, American

Scientist

[2] Raman, T. V. 1996. “AsTeR – Towards Modality-

Independent Electronic Documents.” Available at
http://www.research.digital.com/CRL/personal/raman/home.
html

[3] Karshmer, A. I., Gupta, G., Pontelli, E., Miesenberger, K.,

Ammalai, N., Gopal, D., Batusic, M., Stöger, B., Palmer, B.,
Guo, H-F. 2004. “UMA: A System for Universal
Mathematics Accessibility.” In Proceedings of ASSETS
2004, Atlanta, Georgia, October 2004, 55 - 62.

[4] Knuth, D. E. 1984. The TeXbook. Reading. Addison-Wesley,

Mass.

[5] Lamport, L. 1986. LaTeX: A Document Preparation System.

Reading. Addison-Wesley, Mass.

[6] JAWS for Windows, Freedom Scientific,

http://www.freedomscientific.com

 13

[7] Smith, A., Cook, J., Francioni, J., Hossain, A., Anwar, M.,
Rahman, M. 2004. “Nonvisual Tool for Navigating
Hierarchical Structures.” In Proceedings of ASSETS 2004,
Atlanta, Georgia, October 2004, 133 - 139.

[8] Stevens, R. D., Edwards, A. D. N., Harling, P.A. 1997.

“Access to Mathematics for Visually Disabled Students
through Multi-Modal Interaction.” Human-Computer
Interaction (Special issue on Multimodal Interfaces). 47 – 92

[9] Stevens, R. D., Wright, P. C., Edwards, A. D. N., Brewster,

S. A. 1996. “An Audio Glance at Syntactic Structure Based
on Spoken Form.” ICCHP ’1996: Interdisciplinary Aspects
on Computers Helping People with Special Needs,
Oldenbough Wien Munchen, 1996, 627 – 635.

[10] Raman, T. V., Gries, D. 1994. “Interactive Audio

Documents.” In Proceeding of the First Annual ACM
Conference on Assistive Technology, 1994, 62-68.

[11] Eclipse, Eclipse Foundation. http://www.eclipse.org

[12] NetBeans, Sun Microsystems. http://www.netbeans.org

[13] Mathematica, Wolfram Research. http://www.wolfram.com.

[14] Jones, R. 1994. “Math and Science Symposium At

Recording for The Blind”, Available at
http://www.rit.edu/~easi/itd/itdv01n4/article1.htm

[15] Raman, T. V. 1994. “AsTeR: Audio System for Technical

Readings”. Available at
http://www.informotions.com/serials/itd/itd-v-1n04-raman-
aster.txt

[16] Gardner, J. A., Stewart, R., Francioni, J., Smith, A. 2002.

“Tiger, AGC, and Win-Triangle, Removing the Barrier to
Sem Education.” In Proceedings of the 2002 CSUN
International Conference on Technology and Persons with
Disabilities, Los Angeles, CA, March 2002.

Appendix:

Sample problems from usability test:

Pre-calculus:

Simplify the expressions
1. (x + 2) / (x - 1) – x^2 / (x - 1)^2
2. a / (a + b) – b/ (a - b)

Calculus:

Find the derivative
3. r^2 / (2*r + 1)
4. x^2 * Sin (x) + 2 * x * Cos(x) – 2 * Sin (x)

Find the integrals
5. Integrate (x^2 + 5x + 8) dt
6. Integrate (4 / x^2 – 3 / x^3)

Discrete Math:

Represent the following expression in a binary tree
7. A * ((B + (C / (D^2))) - E)

Assuming that p and r are false and that q and s are true, find the truth value of the following proposition.
8. (s -> (p & ~r)) & ((p -> (r or q)) & s)

 14

3D Graphics Then and Now:
From the CPU to the GPU

Joseph M. Mahoney
Computer Science Department

Winona State University
Winona, MN

mahoneyxp@gmail.com

ABSTRACT
Since the late 1990s, developers have been pushing graphics
hardware to its limits, trying to create photorealistic environments
in their games similar to those seen in recent blockbuster movies
such as The Incredibles™. The need for graphics accelerators is
becoming more apparent every day, as millions of calculations
need to be done to render the complex scenes within games.
There have been four generations of graphics accelerators, with
the prospect of many more in the future. We found that the latest
two generations of graphics accelerators speed performance are
more dependant on the CPU speed of the system they are
operating on than the previous two generations. Furthermore,
newer versions of Direct3D offload more work to the Graphics
Accelerator, leading to increased performance with Direct3D
software on slower systems.

General Terms
Performance; Experimentation.

Keywords
Direct3D, DirectX, Graphics Accelerators, Graphics Processing
Unit, Shaders, Vertex, Video Cards.

1. INTRODUCTION
In a time where video gaming is a billion dollar industry, it is no
wonder that there is a large demand for high performance graphic
accelerator technologies. Developers are continually trying to
make an immersive world that is more beautiful and photorealistic
[1]. While these graphics can be accomplished by large graphic
“render-farms,” as seen in motion pictures such as Lord of the
Rings™, currently it is not feasible in real-time using current
consumer graphic accelerator technology [1]. Each scene in a
game takes millions of floating point calculations and matrix
manipulations, and to become more immersive and realistic
requires even more calculations. Video game developers are
pushing the hardware more and more every day and, because of
this, there have been leaps and bounds in graphic card
performance and features.
Since the mid 1990’s, there have been four generations [2] of

consumer level video cards available, each generation having
significant improvements over the last. One of the main
improvements has been an increase of speed, shown mainly by
the frames per second achieved in games. Each generation carries
faster memory and graphics processing units (GPU). Some of the
GPUs on the market today actually perform operations at speeds
higher than today’s fastest CPUs [2]. This is a good trend since
the CPU can only do so many calculations per second. If the
CPU had to deal with graphics as well as general computations,
performance would lag and the game would be unrealistic.
Besides speed increases, successive versions of Microsoft’s API
for graphics development, Direct3D, provide developers new
ways to interact with the GPU so they can create a more realistic
and complete graphic experience for gamers [4]. It is also known
that the system you operate on has a large impact on the graphics
card you are running. Newer versions of Direct3D allow the GPU
to do more computation itself with its own local memory and
information streams, which frees up many of the old performance
bottlenecks. Since it is clear that video card technology is crucial
to the future of game development, there is an ever-present need
to know what the next big thing in graphic hardware will be. A
review of the history and current trends in graphic accelerators is
needed in order to predict where the technology will go next.
With each generation of hardware, the GPU seemed to do more
work independent from the CPU. While this appeared to be the
trend, we wanted to find out if this was actually the case by
comparing the four generations of cards in varying CPU speed
environments. It was predicted that the performance of the first
and second generations of GPUs would have a strong correlation
to the power of the CPU that they ran on. We predicted
performance would increase linearly, proportional to the speed of
the CPU. Furthermore, while we predicted that the performance
of the newer generations of GPUs would have some correlation to
the power of the CPU they ran on, we did not predict it would be
as much as the older ones, leading to a slower degradation of
performance on slower CPUs and leveled performance on faster
CPUs. More formally, when analyzing 3D benchmark and
frames-per-second tests, CPU speeds affect speed performance of
third and fourth generation graphics accelerators less than the
previous generation cards.
We also tested the performance differences on the machines with
varying Direct3D versions. The Direct3D versions tested in our
study were 7.0, 8.1, and 9.0. Direct3D versions 8.1 and 9.0 allow
programmers to take better advantage of the GPU compared to
older versions. Developers can write advanced shader programs
and manipulate the GPU more than ever before, reducing the
amount of work the CPU must perform [3]. Because of this, we
predicted that the software using newer Direct3D instructions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Proceedings of the 5thWinona Computer Science Undergraduate
Research Seminar, April 20–21, 2005, Winona, MN, US.

 15

would depend more readily on the GPU than the CPU, leading to
less performance degradation with the new graphics cards on the
older CPU computers.

2. BACKGROUND
2.1 Graphics Hardware
On the timeline of computer history, 3D graphics have been
around for a relatively short period of time. There have been four
generations of consumer-level video cards since the mid 1990’s.
Each generation brought about a unique feature or advancement
that constituted the leap to a new generation.

2.1.1 First Generation
Graphics accelerators in the first generation were developed in the
mid to late 1990’s. The most notable graphics cards in this
generation were the 3dfx Voodoo Series, Rendition Verité,
NVIDIA Riva TNT2, and the ATI Rage. These cards provided a
way for the programmers to do simple manipulations such as
blending of textures, but the cards still required the CPU to do
most of the rendering work. There was an average of 10 million
transistors on this generation of cards [2]. As shown in Figure 1,
this was the first step from 2D environments to 3D environments.
The figure shows a scene in the game Quake II rendered using
two different methods, one using software to draw the scene (no
3D hardware used) and the other utilizing the 3D hardware. As
you can see, the left side of the image is drawn using software,
relying on simple shapes. The textures are very jagged, especially
on the wall in the distance. The right side of the scene was
rendered using 3D hardware. The image is smoother and more
detailed. Also, the software rendered scene lacks dynamic
lighting and coloring effects, as shown by the green light at the
top of the picture not casting color on the left side.

2.1.2 Second Generation
In 1999, the second generation video cards came to the market.
Representing this generation were NVIDIA’s GeForce256 and
GeForce 2, ATI Radeon 7500, and the S3 Savage3D, carrying an
average of over 25 million transistors [2]. The main improvement
in this generation was the inclusion of the transformation and
lighting feature (T&L) [2]. T&L makes it so the GPU handles the
transformation of matrices and lighting calculations that the CPU
used to be responsible for. These calculations are done many
times per scene, resulting in a reduction of transfers between the
graphics card and the CPU that greatly increases overall
performance capability. [2]

2.1.3 Third Generation
In the 2001 and 2002, the third generation of video cards were
developed, mainly by the two competing companies: NVIDIA
and ATI. The cards in this generation are the GeForce3-4 and the
ATI Radeon 8500, averaging around 60 million transistors. This
generation also made the first significant step towards
programming directly for the GPU. Developers could now do
vertex computations [3] and other operations at the GPU level.
The programs written for the GPUs were very simple and limited
in the scope of what they could perform, but it was a vast

improvement over the previous generation, as now the GPU could
run the programs independent of the CPU. [2,3] At this time,
graphics cards were also beginning to show the characteristics of
parallel processing. Before this, rendering was handled by serial
processing managed by the CPU. Furthermore, “rendering
primitives were handed off to a GPU, the CPU went off and did a
little work, then fed the GPU a bit more.” [1] This advancement
allowed for faster performance and less redundant communication
between the CPU and the GPU.

2.1.4 Fourth Generation
First released in 2003, the fourth generation of video cards
represents the current state of graphics technology. The main
cards in this generation are the ATI Radeon 9700-x800 series, and
the NVIDIA GeForce FX and GeForce 6 series, both carrying
around 100 million transistors [2]. Cards in this generation can
perform 370 vertices calculations per second and allow for
multiple calculations per pixel for each rendering pass. This
allows for highly complex and realistic scenes to be generated
with fewer passes and memory accesses. Like the third
generation of cards, these are also programmable. However, the
instruction sets for these cards were improved and now programs
can be thousands of instructions long compared to hundreds of
instructions long in the second generation. GPU programming
languages such as Cg were developed for the purpose of
developing complex shaders for the chipset, allowing
programmers to create scenes unimaginable in the late 1990’s [4].
Furthermore, each pixel now has floating point precision,
allowing for more accurate calculations and precision of the
rendered scene.

Figure 1: Step from 2D to 3D

 16

Figure2: Rendering Using D3D 7 Figure 4: Rendering Using D3D 8.1 Figure 5: Rendering Using D3D 9

2.2 DirectX Overview
DirectX is a set of APIs that “act as a kind of bridge for the
hardware and the software to ‘talk’ to each other.” [6] The main
function of DirectX is to allow programs to access the advanced
features of the hardware on a system. Direct3D (D3D), in
particular, allows programs to interact with the advanced features
of graphics cards. DirectX simplifies development by controlling
the low-level functions so that programmers do not have to
develop different code for each set of hardware. [6] D3D slowly
has been gaining support from developers, and there have been
many versions throughout its history. The versions whose
features we will be discussing are Direct3D 7, 8.1, and 9.

2.2.1 Direct3D 7
This version of D3D is often referred to as the first legitimate
contender to the OpenGL API, and was the first D3D version
accepted by game developers. It was released by Microsoft in
1999. One of the main features that D3D 7 provided was the
enhancement of transformation and lighting support through the
3D hardware, which removed much of the computation burden
off the CPU so it could do other tasks such as game physics or
artificial intelligence [7]. This was a big step in real-time
realistic game scenes. D3D 7 also allowed for more sophisticated
reflection and lighting effects and realistic texture
transformations. Figure 2 shows what a current game, Half-Life
2, looks like rendered using D3D 7. As you can see, the water is
rendered very blue and you can see right through it. There are no
reflections in the water, and the water’s edge is harsh and easily
visible. To render more complex reflections in this version of
DirectX would require many passes, and often is not a viable
option because of the performance hit it would create.

2.2.2 Direct3D 8.1
Released in 2000, DirectX version 8.1 brought about many new
features to the D3D API. It provided programmable shaders for
vertex and pixel operations, which “provides the framework for
real-time programmable effects that rival movie quality.” [8]
D3D 8.1 shaders are pieces of code written in assembly language
that execute on every vertex calculation that occurs in a scene.
These shaders are used instead of the T&L pipeline for vertex
calculations,[9] as shown in Figure 3. With this new ability,
developers could implement new and innovative effects that were
never imaginable before because they could program exactly how
they want their calculations to be handled. For example, a shader
could be used to calculate the correct way that light should reflect

off different surfaces. It would run these calculations and the
results would be part of the scene [1]. These programs were
written in assembly language and limited to 128 lines in length [9].
In addition to this, D3D 8.1 brought about the concept of point
sprites that allow for more detailed particle effects such as
explosions or sparks [8]. These and many more features were
added to D3D 8.1, which was a large step in bringing the
cinematic experience to our computer screens. Figure 4 shows the
enhancements this version of D3D brought over D3D 7. The
textures are much larger, sharper, and the overall scene looks more
realistic. In addition, the shader technology enhances the scene,
allowing for more realistic water effects. The water now has
ripples on it and is no longer blue and transparent. It now provides
some reflection and looks more realistic.

Figure 3: DirectX 8 Geometry Pipeline [9]

2.2.3 Direct3D 9
The latest version of Direct3D, completed in 2002, brings realistic
gaming worlds to life. D3D 9 is very similar to D3D 8.1, but it
provides many enhancements that improve performance and
quality. One of the major enhancements was the improvement of
the pixel and vertex shader technology [10]. Programmers are
now able to develop shaders using a high-level shader language,
DirectX 9 High Level Shading Language [1]. Because of this,
more people can develop custom shaders, creating a wider variety
of rendering techniques and effects in games. This is a vast
improvement over the assembly-based shaders in D3D 8.1[3], as
few people were able to develop them. Some of the other
improvements in this version were the increase to 32-bit texture
formats and improved support by the development community. As
shown in Figure 5, the scenes rendered in D3D 9 are leaps and
bounds ahead of the previous generations of D3D. The scene
shows drastic improvements in the water effects. The advanced

 17

pixel shaders allow for the water to accurately reflect the
building. Furthermore, you can see some improvement of
shading, reflections, and crispness of the rendered scene between
the two, particularly in the details in the background of the
screenshot. Between D3D 9 and D3D 7, the difference can be
seen like night and day. Games are finally becoming
photorealistic like their cinematic siblings.

3. METHODS
3.1 Systems’ Setup
To see the difference between the four generations of cards and
their performance correlation to processor speed, we set up a
number of test systems. First of all, we collected one graphics
card from each of the four generations of graphics accelerators.
From the first generation, we chose a NVIDIA Riva TNT2 32mB.
For the second generation, we chose a NVIDIA GeForce 2 MX
64mB. In the third generation, we chose a NVIDIA GeForce
ti4200 128mB. Finally, in the fourth generation, we chose a
NVIDIA GeForce 6600GT 128mB. We chose to use NVIDIA
cards because NVIDIA still supports all of their video cards and
current drivers are available. As shown in Table 1, we tested
these cards on two PCs of varying speeds from 900mhz to
2100mhz. To achieve the differing CPU clock speeds on a single
PC we used the system bios to change the CPU clock settings.
We could set the clock incrementally from 1200mhz to 2100mhz.
This ensured that other factors in the systems such as memory
and architecture did not affect that particular set of scores. The
processor on Computer 1 is an AMD AthlonXP, thus it uses a
different numbering scheme for its CPUs. In attempts to compete
with Intel, AMD uses numbers that represent what their CPU is
comparable to in the Intel line. For example, if the AMD CPU is
a 2600XP, it is comparable to an Intel 2.6ghz processor, even if it
is running at only 2100mhz. In Table 1 we show both the actual
speed and the “marketing” speed of the processor. We will use
the XP number throughout the rest of this paper. All systems are
running Windows XP Service Pack 2 with the latest video card
drivers available for each of the boards, specifically the NVIDIA
ForceWare version 71.84.

Computer Name CPU Speed RAM

Computer 1 1600XP (1200 mhz) 512mB

2100XP (1600 mhz) 512mB
2600XP (2100 mhz) 512mB

Computer 2 900 mhz 256mB

1200 mhz 256mB

Table 1: Test Systems’ Configuration

3.2 Test Suite
To perform our tests we used various 3D benchmarking programs
and multiple gaming tests to calculate metrics such as frames per
second (FPS), and overall benchmark numbers. We used two
main types of benchmarks for our analysis, real-game tests and
synthetic benchmarks. The main difference between the two is
that the real-game tests are measured by taking average frames
per second (fps) in games that are on the market today, while the
synthetic benchmarks are software programs developed to create

stress tests for the different features in video cards [5]. Halo, Half-
Life, and Half-Life 2 are the real-game performance benchmarks
we ran. The synthetic benchmarks we ran are 3dMark2000 and
3dMark2001SE. The benchmarks were performed on all
supporting hardware and the results recorded. We needed at least
one software title for benchmarking that every generation would
be able to run and we chose Half-Life and Half-Life 2 running
Direct3D 7. Each test was performed three times and we recorded
the average score.
We also tested to see if the new Direct3D versions, which give
programmers the ability to utilize advanced shader instructions [4]
on the GPU, had an impact on the performance of the newer cards
on the slower CPU speeds. We used the latest two generations of
video cards and tried the different Direct3D versions of Half-Life
2. We then analyzed the results to see if there was any correlation
between the speed of the system and the performance with the
different Direct3D software. [5]

4. RESULTS
4.1 Generations’ Performance
To test the correlation between CPU speed and the four
generations of graphics cards we ran a multitude of tests. We used
both gaming and synthetic tests to show the correlation between
the generations.

4.1.1 Gaming Performance
We used the original Half-Life and also Half-Life 2 running
Direct3D 7 for a test that every video card could perform. In Half-
Life we ran the blowup1104 benchmark at a resolution of
1028X768. In Half-Life 2 each card ran the HardwareOC Coast
benchmark at a resolution of 1028X768 with all the details turned
up [5]. In this scene, a fight between aliens and the main character
is played out, producing many scenes that require shading and
water effects. We chose this scene because it should thoroughly
stress the cards. Besides Half-Life 2, we also tested each card
using the video game Halo running Direct3D 8.1.

4.1.1.1 Half-Life
When testing the original Half-Life we found some interesting
results. First of all, every video card scored very similar to each
other card, regardless of generation. We believe that this occurred
because of how simple the rendering was to draw this game.
There was no shading and the calculations were so simple that
every card was limited to what the CPU could send to the card.
All the graphics card had to do was convert what the CPU gave it
to output for the screen.

4.1.1.2 Half-Life 2
Half-Life 2 created more interesting results, as this game is newer
and more stressful on the cards. Rendering this scene involves
more computations than the original Half-Life, as every aspect of
the scene is shaded and drawn in greater detail. As shown in
Figure 7, this stress is depicted in the benchmark results. The
latest two generations of cards, the 6600GT and ti4200 performed
equally well, increasing at a rate of around 20% with each
increment of CPU speed. On the other hand, the performance of
the first two generations of video cards, the Riva TNT2 and
Geforce2, leveled off in both cases. The cards’ performance did
not increase significantly even with a great increase of CPU speed.
This could mean they reached a point where they could not
calculate any more information, creating a bottleneck in

 18

performance. The latest two generations were not maxed out in
this set of tests and the performance was tied closely to the CPU
speed.

0

20

40

60

80

900mhz 1200mhz 1600XP 2100XP 2600XP

Processor Speed

FP
S

Riva TNT2 GeForce2 MX ti4200 6600GT

Figure 7: Half-Life D3D7 Generations Performance

4.1.1.3 Halo
To see if this trend would hold across other games, we tried the
Halo benchmark. This test rendered using Direct3D 8.1 and was
even more visually demanding. We could not run this test on the
Riva TNT2 for it is unable to render Direct3D 8.1 applications.
As you can see from Figure 8, the trend shown in section 4.1.1.2
continues here; the lower the generation of video card, the less
increase of speed with each increment of CPU speed. This test
even shows the 6600GT pull away from the ti4200 at a higher
rate with each jump in CPU speed.

0

10

20

30

40

50

60

900mhz 1200mhz 1600XP 2100XP 2600XP

CPU Speed

FP
S

Riva TNT2 (N/A) GeForce2 MX ti4200 6600GT

Figure 8: Halo DirectX 8.1 Benchmark

4.1.2 Synthetic Performance
Synthetic tests produce scenes to render that are not in any
particular game. They are a suite of tests that are meant to use
the latest 3D features available at its release time. The scores that
the benchmarks output are a compilation of frames per second
averages between four simulations multiplied by a common
number which depicts how “important” that test is in the grand
scheme of the test. For example, in 3DMark2001, a test which
calculates the frames per second average for a DirectX 7 feature
is “less important” than the tests for DirectX 8 features, thus
would be multiplied by a lower number.
We used 3DMark 2000 and 3DMark2001SE for this test because
they test Direct3D 7 and 8.1, which most of the cards support.
As with many benchmark suites, these numbers are fairly

arbitrary, but are meaningful if we are looking for trends, not raw
number performance.

4.1.2.1 3DMark2000
As discussed earlier, 3DMark2000 tests the features available in
Direct3D 7. Rendering these scenes is fairly simple by today’s
standards. As shown in Figure 9, the performance of the top two
generations, the 6600GT and the ti4200, are again related closely
to each other. An increase of CPU speed creates higher
performance. The GeForce2 MX and the Riva TNT2 level off
quickly and do not gain any significant performance increases
even with the CPU speed doubling over the tests. These results
seem very closely related to the Half-Life 2 tests from Section
4.1.1.1.

0

2000

4000

6000

8000

10000

12000

14000

900mhz 1200mhz 1600XP 2100XP 2600XP

Processor Speed

B
en

ch
m

ar
k

Sc
or

e

Riva TNT2 GeForce2 MX ti4200 6600GT

Figure 9: 3DMark2000 Benchmark Results

4.1.2.2 3DMark2001
3DMark2001 calculated a benchmark number based on three tests
of Direct3D 8.1 functionality along with one test of Direct3D 7.
Figure 10 shows the results from this test run. The Riva TNT2 and
Geforce2 MX performance leveled off again at the higher speeds,
showing only slight improvements as the CPU speeds increase.
The latest two generations again showed great performance
increases with each increment of CPU speed similar to that of the
Halo test from Section 4.1.1.3.

0

2000
4000

6000

8000

10000
12000

14000

90
0m

hz

12
00

mhz

16
00

XP

21
00

XP

26
00

XP

Processor Speed

B
en

ch
m

ar
k

Sc
or

e

GeForce 6600GT GeForce ti4200 GeForce2 MX Riva TNT2

 19

Figure 10: 3DMark2001 Benchmark Results

4.1.3 Analysis
The results found went against what our original hypotheses
predicted. We hypothesized that the older graphics cards frames-
per-second performance would increase at a greater rate with
each increase of CPU speed. Furthermore, we predicted that
newer video cards would peak out at their best performance and
level off sooner. What we found suggests the opposite is the
case. The newer graphics cards jumped in speed performance
with the slightest increase of CPU speed while the older cards
stayed at the same score regardless of the CPU speed. This could
be a factor of the older cards reaching their limits and the newer
cards performing well within their limits. It is hard to say what
the exact reason is, but both gaming and synthetic tests produced
similar results. Given slightly more CPU input, the newer
generations of video cards can perform and render many more
frames compared to their older siblings.
On another note, while the results may have shown some cards
performing equally well in speed, one thing that increased greatly
between the generations was image quality. This was the case
even on the same game with the same graphical settings between
the cards. For example, in the Halo tests both the GeForce2 MX
and the GeForce ti4200 scored similar scores, only off by around
10 frames per second. While this may not have been a huge jump
in speed performance, the jump in image quality and rendering
was huge. The GeForce2 MX drew many textures plain white,
and many characters were not drawn in the large battle scenes at
all. The GeForce ti4200 rendered the scene as it was meant to be
played, without rendering anomalies.

4.2 Direct3D Performance
4.2.1 Gaming Performance
In this set of tests we will be using the latest two video cards
running Half-Life 2 benchmarks. We chose this game because
Half-Life 2 provides the ability to choose the Direct3D version
used for rendering. Both cards ran the HardwareOC Coast Half-
Life 2 benchmark as mentioned in Section 4.1.1. Our GeForce
6600GT ran all three versions of Direct3D, but we could only test
D3D 7 and 8.1 on our GeForce ti4200 because D3D 9 is not
supported by the card.
Our results for the two tests are depicted in Figure 11 and 12.
DirectX 7 provided the best frames-per-second performance on
both cards. It increased at a high rate with the increase of CPU
speed, scoring the same on both of the graphics cards. The
frames-per-second speed of DirectX 8.1 moved up at almost the
same rate as DirectX 7 on the 6600GT, but increased more
slowly on the ti4200. DirectX 9 showed the least increase of
frames-per-second performance throughout the different CPU
speeds, increasing at a rate around 10-20% compared to the 20-
30% increase shown while rendering D3D 7.

4.2.2 Synthetic Performance
We did not do a synthetic performance analysis on the differing
DirectX versions, for the benchmark numbers are not
recommended to be compared between versions of the tests. In
other words, 3dMark2000 scores do not correlate to
3dMark2001SE scores and vice-versa. [5]

0
10
20
30
40
50
60
70
80

900 1200 1600XP 2100XP 2600XP

CPU Speed

FP
S

DirectX 7 DirectX 8.1 DirectX 9

Figure 11: Half-Life 2 Direct3D comparison on 6600GT

0

20

40

60

80

900 1200 1600XP 2100XP 2600XP

CPU Speed

FP
S

DirectX 7 DirectX 8.1 DirectX 9 (N/A)

Figure 12: Half-Life 2 Direct3D comparison on ti4200

4.2.3 Analysis
The results found in this test tie in closely to what we believed the
expected results would be. First of all, compared to the other
versions of Direct3D, D3D 9’s speed performance decreased at the
slowest rate. This also meant that D3D 9’s speed performance
increased at the slowest rate as well, and it never exceeded the
speed that its predecessors could achieve. However, speed is not
everything in the realistic rendering of games. The human eye can
only see around 32 frames-per-second, so everything above that
just leaves room for frame rate fluctuation in the game. To make a
scene realistic, it has to be able to draw scenes efficiently using
real-time lighting effects and shadows. Direct3D 7 and 8.1 have
limited abilities to do this, leading to the fast performance but
simple images. This is why the performance curve increases
greatly with each increase of CPU speed. Most of the calculations
are done in the CPU, leaving the graphics card to do simple
calculations and drawing. Direct3D 9 takes the route of increasing
overall image quality while relying more on the graphics card.
The speed performance of D3D 9 grows slower with each CPU
speed increase, meaning that the CPU is handing more work to the
GPU and it must do all the transformations and shader effects
before the scene is drawn.

5. CONCLUSION
We addressed two major issues in 3D graphics in our research, the
speed and quality of rendering. First of all, we found the trend that
the latest two generations of video cards’ performance has a much

 20

higher correlation to the speed of the CPU than the previous
generations. A slight increase of speed provided a major increase
in performance. Although it went against our hypothesis, it is a
good trend to see. Newer video cards are generating greater
speed performances with the same amount of CPU speed. This
needs to be a major trend if we are ever to reach cinema quality
rendering in games.

Addressing the quality of rendering, our second hypothesis held
true. Compared to Direct3D 7 and 8.1, Direct3D 9’s performance
was not closely related to the speed of the CPU. Direct3D 9
increased and decreased at the slowest rate, which could mean
that the GPU was doing more work independently of the CPU
than the other D3D versions. As discussed earlier, the fact that
its speed performance increased the slowest is not necessarily a
problem. Once graphics reach a speed of 32 frames-per-second,
the rest is wasted since the human eye cannot perceive anything
faster than this. What the human eye can perceive using
Direct3D 9 is a greatly enhanced visual experience.

With each generation’s increased ability to render images faster
and with more quality, real-time 3D worlds are well within our
grasp. We predict that future generations of video cards will
continue the trends we found here. Graphics cards will gain
significant speed performance increases with each generation and
will be able to perform many more of calculations with each
increase of CPU speed. Furthermore, future DirectX versions
will make the speed of your system less of an issue for overall
image quality. If we have made this much progress towards it in
just ten years, imagine what ten more could bring.

6. ACKNOWLEDGMENTS
I would like to thank all my colleagues that helped me in
developing my research and my paper, especially Dr. Gerald
Cichanowski who guided me through the process and offered a
lot of helpful advice. I would also like to thank my Dad for
lending me his computers, and my roommates for putting up with
all my equipment in the living room for the whole semester.

7. REFERENCES
[1] Nick Porcino. Gaming Graphics: The Road to Revolution.

Queue. 2, 2. April 2004.
[2] J. L. D. Comba, Carlos A Dietrich, Christian A Pagot and

Carlos E Scheidegger. Computation on GPUs: from a
programmable pipeline to an efficient stream processor.
Revista de Informatica Teórica e Aplicada. Porto Alegre:
v.10, n.3, 2003.

[3] Erik Lindholm, Mark J. Kligard, Henry Moreton. A User-
Programmable Vertex Engine. International Conference on
Computer Graphics and Interactive Techniques. 149-158,
2001.

[4] William Mark, R. Steven Glanville, Kurt Akely, Mark Kilgard.
Cg: a system for programming graphics hardware in a C-like
language. ACM Transactions on Graphics (TOG). v.22, n.1.
July 2003.

[5] Robert Richmond. “3D Benchmark Guide.”
http://www.sysopt.com/articles/3dbench/ July 4, 2001.
Accessed on February 9, 2005.

[6] Microsoft Corporation. “DirectX Technology Overview.”
http://www.microsoft.com/windows/directx/default.aspx?url=
/windows/directx/productinfo/overview/default.htm 18
March 2002. Accessed on March 2, 2005.

[7] Microsoft Corporation. “DirectX 7.0 Fact Sheet.”
http://www.microsoft.com/presspass/features/1999/09-
22directx2.asp 1999. Accessed on March 2, 2005.

[8] Microsoft Corporation. “What’s New in DirectX Graphics.”
http://msdn.microsoft.com/archive/default.asp?url=/archive/e
n-us/dx81_c/directx_cpp/Graphics/WhatsNew.asp 2001.
Accessed on March 2, 2005.

[9] Chris Maughan, Matthias Wloka, NVIDIA Corporation.
“Vertex Shader Introduction.”
http://developer.nvidia.com/attach/6543 NVIDIA White paper.
May 2001. Accessed on March 2, 2005.

[10] Microsoft Corporation. “What’s New in DirectX Graphics.”
http://msdn.microsoft.com/archive/default.asp?url=/archive/en-
us/directx9_c/directx/graphics/whatsnew.asp 2004. Accessed
on March 2, 2005.

 21

Visible Consistency of Animation Mechanisms
 Padraic McGee

Student
 Winona State University

(920)-231-8630
padraicmcgee@gmail.com

ABSTRACT
Computer animation is the task of continuously and rapidly
drawing a scene to simulate the movement of objects. The
number of times per second the scene is drawn is known as the
frame rate. For motion to appear consistent regardless of
computer rendering speed, the animation must be driven by a
frame rate independent mechanism. Different animation control
mechanisms will drive an animation to update or render at
different times, based on how they interact with the underlying
hardware. Temporal consistency, or smoothness of the animation,
is an objective for some kinds of presentation. In this paper we
compare the visible consistency of four animation mechanisms.

General Terms
Performance, Experimentation, Human Factors.

Keywords
Live Animation, Visual Consistency, Multithreading, Frame Rate
Independence, OpenGL.

1.INTRODUCTION
Animation at its most basic level is the generation of successive
images and their eventual playback in order. In this paper we
consider live animation, where one image (known as a frame) is
generated before the previous one is consumed (unlike a movie
where the entire production is prerecorded prior to viewing). Live
animation is required if there are dynamic elements to the
animation such as user input. However, it requires a sustainable
level of performance to meet the needs of the human visual
system.

Animation applications written for personal computers have a
significant challenge in taking full advantage of the available
hardware while working with its limitations. The process can be
simplified by using an algorithm that takes advantage of the CPU
(central processing unit) and GPU (graphical processing unit) at
different times by instructing the animation application when to
render and when to update. In this paper we report on a study that
compared four pre-existing animation algorithms that drive the
underlying hardware in different ways while maintaining a
consistent interface for the animation application.

We have certain expectations for each of these algorithms, such as
a visually acceptable frame rate. It is also expected that rendering
should be correct and perform any tasks necessary to ensure visual
artifacts such as flashing will not be present. We also expect
playback predictability, such that animations should not run at
different rates on different computers.

After meeting these expectations, we tested each animation
mechanism for the consistency of its visible updates, which we
define to be the state of the animation each time it is rendered.
The more consistent the visible updates are, the smoother the
animation appears. By determining how these animation
mechanisms compare with respect to visible update consistency,
we can identify which will animate an arbitrary scene the
smoothest. We expect an animation mechanism that employs
both multithreading and fixed interval updating will provide the
most stable animation foundation with respect to rendering and
updating consistency as compared to their single threaded and
variable interval update counterparts. A complete description of
these methods is given in section 3.

2. BACKGROUND RESEARCH

2.1 Frame Rates
Animation is an illusion that seeks to trick the human eye into
apprehending a set of disparate frames as the continuous visual
flow of information we normally see. The more frames rendered
per second, the easier it is to maintain this illusion. Animation
begins to appear as motion at around 10 frames per second. There
is no accepted limit to what frame rates the human eye can
perceive, although it is generally accepted that there are limited
returns beyond 60 frames per second under normal viewing
circumstances. Some current mediums use significantly less.
Movies shown in theaters are usually shown at a rate of 24 frames
per second, but employ heavy use of motion blur and are shown
under controlled lighting. Motion blur can be used to give the
appearance of motion on a single frame. Televisions display
around 30 frames of two interlaced images, which is a motion
enhancing technique [1, 2].

When working on computer monitors it is more important to
present sharp images correctly than give the illusion of motion.
For this reason, current LCD and CRT monitors are capable of
displaying at least 60 frames per second (also referred to as a
refresh rate of 60 Hz). Significantly more expensive devices
advertise frame rates of around 250. Animation frame rate is
limited by monitor refresh frequency because it’s impossible to
see more frames than the monitor is capable of displaying. This
limitation has a significant impact in defining the animation
environment. If the animation does not use motion blurring

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Proceedings of the 5th Winona Computer Science Undergraduate
Research Seminar, April 20–21, 2005, Winona, MN, US.

 22

techniques, it is highly desirable to achieve frame rates that
approach the upper bound of a monitor’s capabilities [3].

It is entirely possible to simulate motion blur in computer
animation [4]. It is usually done through a process called
accumulation, where multiple renders are accumulated over time
to form one frame. This is disadvantageous in a computationally
critical activity such as live animation because it requires at least
twice as much time for each frame (for N accumulations after the
Nth frame). Because motion blurring is often impractical,
computer animation generally relies on higher frame rates for
smoother animation as compared to movies and television, where
lower frame rate standards don’t leave any choice. For this reason
we did not consider motion blurring techniques when examining
visual consistency [3].

2.2 Visual Anomalies
An important part of animation is the prevention of visual
anomalies that may occur, especially those that may only appear
under certain circumstances. Single buffering is when one
memory buffer is used simultaneously to render to and display on
the screen. Visual anomies such as flashing or partially rendered
scenes can appear if single buffering is used. This occurs if the
single display memory buffer is written to while the video device
refreshes. This should always be prevented using a technique
called double buffering, where all drawing is done to a back
buffer and swapped with a front buffer which is then displayed
[5]. This is done in a windowing system specific manner and will
be represented generically as the term SwapBuffers().

Double buffering is necessary, but not sufficient in the prevention
of visual anomalies. If the buffers are swapped while a screen
refresh takes place then you will see frame tearing, where parts of
two or more frames will be visible at once. You can avoid this
problem by synchronizing buffer swaps to the time when the
screen is preparing for the next refresh (which is known as
VSYNC). In fact there is another reason for doing so. If two
frames are drawn and the buffers are swapped twice on a single
refresh, there will still be only one visible frame. This is guided
by the simple fact that you can never see more frames than the
physical refresh rate of your monitor. Spending computational
time generating frames that will never been seen is a wasted effort
[6].

2.3 Frame Rate Independence
You would not expect a movie to play faster on one television set
than another. Likewise you wouldn’t want live computer
animation to run faster on a more capable machine. This is where
the need for frame rate independence comes into play.
Synchronizing to monitor refresh rates is a good start because it
puts an upper bound on the frame rate, which is usually user
defined to be of acceptable quality. However, since monitor
refresh rates are configurable and there is no guarantee your
simulation will always run fast enough to generate a frame for
each monitor refresh, there is a definite need for a more
sophisticated mechanism.

3. Animation Mechanisms
For each animation frame there are two tasks to accomplish:
updating and rendering [10]. When the mechanism tells the
application to update, it specifies the number of milliseconds that
have passed since the last update. The application would then use
this value to adjust all the scene objects. For example, in a

physics simulation all objects would be moved according to their
velocities and accelerations. When the application is instructed to
render, it takes the current state of all scene objects and sends
them to the graphics layer (which is OpenGL in our case) where
they are transformed into an image in a process called
rasterization. At the end of the render phase, the application calls
a windowing system specific method to swap the display buffers,
which ensures the newly created image will be displayed on
screen as soon as the next refresh cycle begins. It’s easiest to
understand this by seeing an example.
The simplest animation mechanism is a single loop. In each cycle
there is one update and one render followed by a SwapBuffers()
call, as depicted by Figure 1. In this case, there will be a one to
one correspondence of updates to renders. Each update is variable
depending on how much time has passed since the last update. At
the beginning of each update phase a timestamp is compared to a
timestamp from the start of the previous update phase. This time
will vary for each frame cycle. We will refer to this method as
single threaded variable interval [8].

Error!
Figure 1. A sample animation loop

We depict a hypothetical timeline in Figure 2, which shows the
execution of our single threaded variable interval animation.
Blue regions still represent when updates occur and for how long.
Green regions correspond to rendering periods and pink triangles
show when the buffers are swapped. After each SwapBuffers()
call there is a white area where the program idles while it waits
for the next monitor refresh interval. Observe that each update
time is of a different duration, which is based on the amount of
time since the previous frame. These times will be relatively
constant because a significant amount of time is spent waiting at
the swap buffers call until the next screen refresh.

Figure 2. Single threaded variable interval animation

 23

A variation on this method gives the illusion of regular updates to
the animation layer. A fixed time increment is chosen and used
for all updates. During the update phase a dynamic number of
fixed duration updates are triggered based on the amount of time
that has passed since the last cycle [8]. This means that if a large
amount of time has passed since the previous cycle, multiple
updates are triggered sequentially. For example, if we are using
an update interval of 8 milliseconds and 17 milliseconds have
passed since the last cycle, then two updates would be triggered.
This would leave one millisecond unaccounted for, which would
be added to the next update cycle’s update duration. By
comparison, the variable interval update mechanism would trigger
a single update of 17 milliseconds.
Regulating the size of updates prevents a number of animation
problems. Abnormally large updates could cause scene objects
that would have collided to skip past each other. Abnormally
small updates can introduce precision errors that accumulate over
thousands of frames. This method is called single threaded fixed
interval [8].

Figure 3. Single Threaded fixed interval animation

Figure 3 depicts an example of single threaded fixed interval
animation. If a larger duration of time passes since the previous
frame then multiple updates are triggered sequentially. If the
fixed interval time is configured to be quite large it is entirely
possible that some frames will not update. Since execution is still
on a single thread there continue to be periods where the CPU
idles waiting for the swap interval.
For performance reasons it is often undesirable to spend any
percentage of computation time waiting for the graphics card to
finish rendering [6]. This can be avoided by decoupling the
rendering and updating tasks, which is commonly accomplished
through multithreading. We will do this by using two threads,
where all updates will occur in one thread and all rendering will
be controlled from the second. By putting them each in their own
thread we can continue to calculate updates even when rendering
is blocked by the video system, as is depicted in Figure 4. Since
both threads will be using the same object state information, use
of a memory protection method such as semaphores is necessary.
We must protect against an update and a render being triggered
simultaneously. Once the SwapBuffers() call occurs we are free
to update since the graphics card is working with its own copy of
state information [3,6].

Figure 4. Variable interval multithreaded animation

Just as we could use fixed or variable interval updates with a
single thread, either are applicable to multithreading. The
differences between the two methods are more exaggerated
because previously VSYNC (synchronizing to the monitor’s
frame rate) put an upper limit on the number of updates each
second. Now that all updating is done in its own thread, it is no
longer limited by any part of the system and will trigger variable
updates at a much increased rate. This means the time intervals
in-between updates will also decrease. Multithreaded variable
interval updating, depicted in Figure 4, was observed to increase
the number of updates per second by several orders of magnitude
over its single threaded counterpart.
Finally we considered multithreaded fixed interval. Similarly to
when it was used with a single threaded model, the fixed interval
updating checks if sufficient time has passed before triggering an
update. Since this is happening in a loop on its own thread there
will often be nothing to do since very little time has elapsed since
the last iteration. However, as is shown in Figure 5, updates can
still be triggered as needed during the swap interval.

Figure 5. Fixed interval multithreaded animation

 24

4. METHODOLOGY
Each of the four animation mechanisms described in the previous
section was implemented and used to drive our test animations.
The pseudo-code of the implementations follows.

A. Single threaded variable interval

Repeat:

Compute number of milliseconds between now and the
start of the last cycle

Tell animation to update for computed number of
milliseconds

Tell animation to render

Swap the buffers

B. Single threaded fixed interval

Fixed interval methods were configured to use a fixed interval of
8 milliseconds per update, which corresponds to 125 updates per
second. This value was chosen because it is approximately twice
the monitor frame rate of 60 frames per second.

Initialize working time to zero milliseconds.

Repeat:

Compute number of milliseconds between now and the
start of the last cycle

Add this number to our working time

Repeat while working time is greater than fixed interval
duration of 8 milliseconds:

Tell animation to update for 8 milliseconds

Subtract 8 milliseconds from working time

Tell animation to render

Swap the buffers

C. Multithreaded variable interval

Initialize Semaphore to one

In our update thread:

Repeat:

Wait on Semaphore

Compute number of milliseconds between now and the
start of the last cycle

Tell animation to update for computed number of
milliseconds

Post Semaphore

In our render thread:

Repeat:

Wait on Semaphore

Tell animation to render

Post Semaphore

Swap the buffers

D. Multithreaded fixed interval

We used the same fixed interval time of 8 milliseconds per
update, which corresponds to 125 updates per second. Note that
even though there are multiple updates per cycle, they are still all
run in the same thread.

Initialize Semaphore to one.

In our update thread:

Initialize working time to zero milliseconds.

Repeat:

Wait on Semaphore

Compute number of milliseconds between now and the
start of the last cycle

Add this number to our working time

Repeat while working time is greater than fixed interval
duration of 8 milliseconds:

Tell animation to update for 8 milliseconds

Subtract 8 milliseconds from working time

Post Semaphore

In our render thread:

Repeat:

Wait on Semaphore

Tell animation to render

Post Semaphore

Swap the buffers

Profiling information was embedded into each mechanism to
record when update and render events were triggered. Double
buffering was used and VSYNC was enabled for all methods in
order to prevent visual anomalies.
By recording when updates and renders occur relative to each
other in a real environment, we can better understand how each
theory on animation actually performs. Our main objective is the
consistency of visible updates because these are what are actually
seen. Doing so discards any rendering or updating that doesn’t
contribute to the visible output, such as duplicate renders or
updates that aren’t rendered. Visible updates depend on when
rendering actually occurs and also the most recent corresponding
update. The secondary metric is that consistently shorter visible
update times are better than consistently longer visible update
times because these will contribute to a higher frame rate.

Since we are recording when all updates and renders occur,
computing visible updates is simply a matter of recording how
much update time has passed at each render. For variable interval
methods, this will closely resemble the amount of real time that
has actually passed while for fixed interval methods this will
always be a multiple of the fixed interval duration.

Tests were run against three animation data sets, which were
designed to stress different parts of the hardware, as follows:

 25

1. Render a single spinning sphere in OpenGL immediate
mode, which consistently ran at the maximum frame rate of
60 frames per second.

2. Render four spinning spheres in OpenGL immediate mode,
which consistently ran below the maximum frame rate.

3. Render four spinning spheres using OpenGL’s optimized
display list mode.

All of the animation data sets were designed to have the same
computational needs throughout the entire test, such that any
inconsistencies recorded could be attributed solely to the
underlying animation mechanisms. Graphical computational
consistency is addressed in other research such as [7].

Since all simulations reported exceptionally large times while
loading, the first ten cycles were thrown out for all tests. Tests
were run for a ten second period which generated approximately
one thousand data points. The test computer was an Apple iBook
single processor 900 MHz G3 with a 32MB ATI Mobility Radeon
7500 and an LCD running at 60 frames per second.

5. RESULTS AND ANALYSIS
The four charts of Figure 6a–d show the visible update times of
Data Set 1 for the four animation models we tested. The x-axis is
frame number and the y-axis shows the number of milliseconds in
update time that passed since the previous render. Consistent
times are best and shorter times are preferred. Initial spikes that
occurred during loading were disregarded.

Error!

Figure 6a. Single threaded variable interval (Data Set 1)

 Figure 6b. Single threaded fixed interval (Data Set 1)

 Figure 6c. Multithreaded variable interval (Data Set 1)

 Figure 6d. Multithreaded fixed interval (Data Set 1)

It is obvious that the first two graphs have far fewer spikes, and
the last two have multiple visible update times over the 33
millisecond range. This number is important because 33
millisecond frames correspond to animating at 30 frames per
second. The multithreaded methods are therefore much more
likely to have moments when the animation appears to stutter.

Single threaded variable interval

0

5

10

15

20

25

30

35

40

45

50

1 60 119 178 237 296 355 414 473 532 591 650 709 768 827 886 945 1004 1063 1122 1181 1240

Single threaded fixed interval

0

5

10

15

20

25

30

35

40

45

50

1 60 119 178 237 296 355 414 473 532 591 650 709 768 827 886 945 1004 1063 1122 1181 1240

Multithreaded variable interval

0

5

10

15

20

25

30

35

40

45

50

1 60 119 178 237 296 355 414 473 532 591 650 709 768 827 886 945 1004 1063 1122 1181 1240

Multithreaded fixed interval

0

5

10

15

20

25

30

35

40

45

50

1 60 119 178 237 296 355 414 473 532 591 650 709 768 827 886 945 1004 1063 1122 1181 1240

 26

Table 7 shows the standard deviations for our four animation
methods over the three data sets. The letters correspond to the
methods as previously described at section 3.

Method Test Run Visible Update Standard Deviation

A

1

2

3

1.18084034

3.90778201

2.75414964

B

1

2

3

2.21053741

3.56331835

4.02149695

C

1

2

3

9.99542299

13.946042

25.0276482

D

1

2

3

9.38461892

13.8106081

24.4218264

Table 7. Visible Update Standard Deviation

The mean squared error for each method, which can be used to
compare the relative durations of a visible update times is given in
Table 8. The times are in milliseconds and were generated from
the first test run. The results are given in the following chart.

Method Mean Squared Error (ms)

A 57.98

B 61.05

C 182.4

D 168.5

Table 8. Visible Update Mean Squared Error

The mean squared error results show which method had the
shortest visible update times on average. We can clearly see that
the shorter times were for the single threaded methods, with the
variable interval method edging out the fixed interval method.
The multithreaded methods had average visible update times of
almost three times longer.

6. CONCLUSIONS
The differences between the fixed interval updating and variable
interval updating is much less than the differences between single
threading and multithreading. Since neither variable nor interval
updating was a clear winner in the visible update test, it follows
that fixed interval methods are better since they guarantee a
constant update time.
The effects of threading are fairly clear. Multithreaded examples
had standard deviations around eight to nine times larger than
their single threaded counterparts. Thread scheduling
mechanisms at work clearly disadvantaged the consistency of
updates. This may also be affected by running on a single
processor machine. The lower mean squared error for single
threaded models means overall time intervals were smaller, which
is also desirable.
From these facts we can conclude that an animation system that
uses single threaded fixed interval updating will have more
consistent or roughly equivalent visual updates than one that uses
any of the other three methods.

7. REFERENCES
[1] Amanatides, J. Mitchell, D. “Antialiasing of Interlaced

Video Animation.” ACM Computer Graphics, Vol. 24, No.
4, August 1990.

[2] Ware, C. Balakrishnan, R. “Reaching for Objects in VR
Displays: Lag and Frame Rate.” ACM Transactions on
Computer-Human Interaction, Vol. 1, No. 4, pp 331-356
December 1994.

[3] McReynolds, T. Blythe, D. Programming with OpenGL:
Advanced Rendering. SIGGRAPH 1997 Course.
http://www.opengl.org/resources/tutorials/advanced/advance
d97/notes/ (16.7 Tuning Animation)

[4] Korein, J. Badler, N. “Temporal Anti-Aliasing in Computer
Generated Animation.” ACM Computer Graphics, Vol. 17,
No. 3, July 1983.

[5] Fernando, R. Harris, M. Wloka, M. Zeller, C. Programming
Graphics Hardware. EUROGRAPHICS 2004.

[6] Apple Computer, OpenGL Performance Optimization: The
Basics.
http://developer.apple.com/technotes/tn2004/tn2093.html
(Understanding VSYNCH)

[7] Funkhouser, T. Séquin, C. Adaptive Display Algorithm for
Interactive Frame Rates During Visualization of Complex
Virtual Environments. Proceedings of SIGGRAPH 93. pp.
247-254. August 1993.

[8] Diener, A. Time-based animation.
http://sacredsoftware.net/tutorials/Animation/TimeBasedAni
mation.xhtml.

 27

[9] Brostow, G. Essa, I. “Image-Based Motion Blur for Stop
Motion Animation.” ACM SIGGRAPH 2001. pp 561-566.
August 2001.

[10] Lipscomb, J. “Reversed Apparent Movement and Erratic
Motion with many Refreshes per Update.” Computer
Graphics, Vol. 14, No. 4, pp. 113-118, March 1981

[11] Brostow, G. Essa, I. “Image-Based Motion Blur for Stop
Motion Animation.” ACM SIGGRAPH 2001. pp 561-566.
August 2001.

 28

Client-Server versus Peer-to-Peer Architecture:
Comparisons for Streaming Video

Lisa McGarthwaite
Saint Mary’s University of Minnesota

700 Terrace Heights
Winona MN 55987

lcmcga01@smumn.edu

ABSTRACT
Today streaming media is gaining importance as a way to
efficiently deliver real-time news and events. Currently the
client-server architecture is chiefly used to stream data to end-
users. This network design leads to performance impediments for
the client when the server becomes overwhelmed with requests.
A degradation of quality can also occur if the server is on a lossy
network. Because of the transfer protocols used machines are not
able to recover the packets that were lost. Recently Peer-to-Peer
(P2P) networks have been proposed as an alternative solution.
P2P applications allow multiple clients to send desired data to the
requester. We hypothesized that the P2P network architecture
would use less bandwidth and increase the frame rate of the media
streamed. While network Transfer Control Protocol (TCP) traffic
did increase for P2P topology, this architecture proved to afford
the user with a better frame rate. Most importantly, bandwidth
usage for P2P on average was less than client-server architecture.

Categories and Subject Descriptors
C.2.2 [Network Protocols]:Application; C.2.5[Computer-
Communication Networks]: Local and Wide-Area Networks –
Internet

General Terms
Measurements, Performance

Keywords
Peer-to-Peer, Client-Server, Streaming media, Networks

1. INTRODUCTION
Streaming media is a recent technology with its earliest usage
beginning in 1998 for Internet radio. Today large news
corporations, such as MSN, and even local businesses use
streaming media to broadcast news and events. Even the ordinary
user is beginning to take advantage of this technology by
broadcasting radio and video to the world.

While streaming media is becoming a very popular way to share
information, there are limitations to this technology. If a data
source is highly requested, the server becomes overwhelmed with
the request load and is unable to deliver or only poorly deliver the
streamed media [9]. To overcome this obstacle, corporations are
using distributed servers. When requests are made, they are
directed to the closest available server. This solution is costly in
terms of overhead and machinery needed. To avoid this
complication, recent focus has shifted to Peer-to-Peer (P2P)
networks. Growing from the increasingly popular file sharing
technology, P2P networks allow streamed media to be broadcast
from multiple nodes to a requester. This topology would be
useful when a media file is in high demand. Once a client
receives a stream, it can then broadcast the stream to other clients
in the network requesting the same media. Although controversy
involving the sharing of copyrighted material is a concern using
this type of system, there are definite legal and desirable uses.
While research has been conducted to create P2P streamed media
applications, performance comparisons of traditional client-server
versus P2P network topologies are scarce.

We believe that a P2P network will utilize less bandwidth and
provide better quality for streaming video. To test the
effectiveness of client-server and P2P networks, the two
topologies were tested with 5 machines across three networks.
Network monitoring tools were used to keep track of available
bandwidth and video information. Comparisons of network
traffic were also recorded and analyzed.

2. BACKGROUND
In order to understand the nature of our experiment, some
important concepts must be known. These areas include
background information on streaming media, network protocols,
client-server networks, and P2P networks.

2.1 Streaming Media
Streaming media allows users to broadcast media files in real-
time or on-demand to the Internet. The actual size of video and
audio files is quite large, impeding the use of the file on the
Internet. Using lossy compression algorithms, the file size is
compressed, which results in a degradation of audio and visual
quality. To stream a media file, each compressed video or audio
clip is divided into packets, and each packet is sent in sequence to
the client. The client is responsible for decompressing the packets
and playing the pieces in order as soon as the packets are
received. The rate at which each packet is played is called frame
rate or frames per second (fps). Since the clip is not sent all at
once, file size becomes less of an issue. One concern is the loss

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

Proceedings of the 5thWinona Computer Science
Undergraduate Research Seminar, April 20–21, 2005,

Winona, MN, US.

 29

of packets in transit on a network. The more packets that are
dropped results in the file suffering a loss in visual or audio
quality. Some streaming media broadcasters have tried to
overcome this problem with progressive streaming. Packets are
placed in a buffer before being played. Once the buffer reaches
certain fullness, the clip begins to play. As the file begins to play,
the buffer continues to collect packets. Many of the interruptions
in service are then not as noticeable.

2.1 Network Protocols
To stream media over the Internet, certain protocols must be
followed. Two transport protocols are Transfer Control Protocol
(TCP) and User Datagram Protocol (UDP). If a packet is dropped
in TCP, the server tries to resend the lost packet before sending
the client any further packets, which can cause a lengthy delay in
the stream. This protocol emphasizes maximum reliability and
data integrity rather than timeliness. This focus has made it more
appropriate for sending files and critical information than
streamed media [3].
While TCP allows files to be transmitted over IP, it is not
generally the best option for streaming media. The adoption of
the Internet protocol User Datagram Protocol (UDP) and Real
Time Streaming Protocol (RTSP) has made the transmission of
data even more efficient. RTSP is a transport protocol layer that
provides mechanisms for sending and receiving applications to
support streaming media. While RTSP can be carried by either
TCP or UDP, it typically runs on top of UDP. In contrast to TCP,
when a UDP or RTSP packet is dropped, the server continues
sending information and does not try to resend the lost packet.
This drop causes only a brief interruption in the stream. These
protocols are focused on the timeliness of delivery rather than the
reliability of sending packets. However, some streaming media
broadcasters choose not to use RTSP or UDP since some firewalls
block these protocols, and other protocols offer a more reliable
connection.

2.2 Network Architectures
Traditionally client-server architectures have been used to stream
media. Figure 1 illustrates this network topology. The server
holds the content that users wish to see. When a request is made
for a file, the server looks up the file in its directories and begins
to stream the media to the client. The stream only goes to one
client, and clients do not share the stream with each other.

In contrast to client-server, true P2P networks require no central
server to provide content or look-up services. Each member of
the network can act as client or server (see Figure 2). When a
client makes a request for a file, the machines on the network
perform a distributed query to find the file. For example, in
Gnutell, a file sharing P2P, the client knows of at least one other

IP address. It queries this machine, and that same machine then
queries other computers on the network, thus performing a ripple
effect to locate the desired content. Those nodes that are willing
to share content respond by sending the content to the requester.
Using this network topology, more than one peer is able to send
data to the requester. This is known as parallel streaming.

Another version of P2P networks includes server-mediated
networks. A central server is used to keep track of all peers in the
network. This provides a more efficient way of determining what
peers and content are available in the network. Recent studies
have been conducted to find the most efficient means of creating a
peer network [2, 4, 7, 8, 9, 11]. These studies are concerned with
the underlying architecture of the P2P system. In addition, it has
been proven that the more altruistic, e.g. the more willing peers
are to share resources the more efficient a P2P system becomes
[12].

3. SOFTWARE
To conduct our research, we located two software tools to provide
a P2P and a client-server network. PeerCast and Apple’s
QuickTime server were chosen [5]. PeerCast is an open source
P2P application that supports streaming audio and video. A
server-mediated P2P, this application allows users to broadcast
streams to other peers running a PeerCast client. A PeerCast
client can act as both server and client. The user is able to set the
number of channels that he/she would like to stream out. Other
users can look up the various peer broadcasts on the yellow pages,
the application’s directory of peers. PeerCast also supports
private channels, in which the peer is not directly listed on the
yellow pages. Other peers must know the IP address of the
streaming peer to be able to access the content. By limiting the
number of direct streams, the application forces requesting peers
to act as the streamer to other peers (see Figure 3). Once the
direct stream limit is reached, two in the case of Figure 3, further
requesting nodes receive the stream from the peers receiving the
direct stream. When a client receives a stream, the client is put in
RECEIVE mode. This mode allows other users to connect to the
client and listen to the same stream. When the user is done with
the file, the PeerCast stream is put into IDLE mode. Other users
are still able to use the client as a streamer. To view the file,
Windows Media Player was used [10]. This program offers the
ability to view the bandwidth, measured in kilobits per second
(kbps), and frame per second (fps) of the streamed video.

Figure 3. PeerCast streaming structure.

Server

Clients

Request

Sent

Contains
content

Request

Sent
Requester

Peer nodes

Contains
content

Figure 1. Client-Server structure.

Figure 2. P2P structure.

 30

For the client-server network, we used Apple’s QuickTime Server
to hold our video content. A Sorenson 108 kilobit per second
(kbps) encoded file was placed on the server. Apple’s QuickTime
Player was used to access the file [6]. This program also offers
the ability to view fps, kbps, and packet drops of the file while it
is being played.
In order to capture the network traffic occurring during the
experiment, we used the network monitor tool CommView [1].
By configuring filters for capture and display, we were able to
view the various IP protocol traffic specific to our machines and
generate graphs of the output.

4. METHODS
Our research methodology was broken up into three phases:
preliminary research, experiment mock-up, and experimentation.

4.1 Environment Set-up
Because of the nature of this experiment, the environment ranged
across three networks. For a listing of the machines used in this
experiment, please refer to Appendix A. The same machines
were used for both the client-server and P2P clients. To ensure a
correct measurement, services and protocols not needed in the
experiment were disabled on the machines whenever possible. For
the client-server portion of our experiment, we used a 5.1 MB
Sorensen 108 kilobit per second (kbps) encoded video file. To
accurately test the P2P structure against this file, we chose a 108
kbps encoded stream already found on PeerCast’s yellow pages.
We recorded measurements of frame rate and bandwidth of each
stream for five minutes, which we felt would give us an accurate
idea of the performance of each stream.

4.2 Experiment Mock-Up
Before beginning the actual experiment, a mock-up was
performed on both architectures. This test proved that each
system was operational and provided the sequence of events that
must be followed to conduct each trial. To provide a starting
ground for comparison, the video file was played from the
desktop of one machine using QuickTime and measurements were
taken of the frame rate, bit rate, and packet count. Using the
client-server architecture, the file was requested from each
machine. The P2P architecture test also used each machine to
request the file from PeerCast and play it.

4.3 Experimentation
Two types of tests were performed: access and stress. To conduct
the actual experiment, we followed a strict pattern. First we
accessed the file and recorded the bit rate, frame rate and number
of packets received and dropped. Once all the results were in, we
analyzed the results and did comparisons of the two types of
architectures.
The first test was concerned with accessing the file from a single
machine at different locations on three different networks. These
networks included Saint Mary’s University of Minnesota, the
Computer Science Department of Saint Mary’s University, and
Winona State University. The goal of this test was to view how
performance was affected when the stream was viewed on
different networks. During the client-server portion of our testing,
the file was accessed on through QuickTime Player by using
File> Open URL and entering the address of the file. Using

Window> Show Movie Info and Movie> Get Movie
Properties options we were able to attain the frame rate, bit
rate, and the number of packets dropped.
 The P2P stream was viewed with Windows Media Player. The
stream’s statistics were accessed by
File>Statistics>Advanced. During the streaming, the
highest and lowest bit rates were recorded as well as the highest
and lowest frame rates. By recording these highs and lows we
would be able to compare which architecture afforded the most
benefits to the user. After the file completed streaming, statistics
were taken of the TCP and UPD traffic.
The second test was the stress test and concerned with the
outcome of multiple machines accessing the same file at the same
time. To test this part of the experiment, the same file was
accessed simultaneously from four machines. Again, the bit rate,
packets received/dropped, and frame rate were recorded using the
same methods previously stated.

5. RESULTS
The experimentation of our client-server and P2P networks were
quite successful. By examining the amount of generated packets,
we were able to determine the impact of the two types of
streaming. The statistics of the average number of TCP and UDP
packets received were calculated (See Table 1). Because the P2P
used http protocol to stream, this topology generated more TCP
packets while the average UPD packets were less. A P2P network
would experience a greater number of TCP packets than a client-
server topology.

Architecture TCP packets UDP packets

client-server 272 15,277

P2P 5, 961 14, 056

As we predicted, P2P streaming afforded a higher frame rate than
client-server (See Figure 4). The P2P streaming was able to
achieve an average high of 15.85 fps compared to 10.302 fps for
the client-server. However, P2P also was more prone to stream
interruptions and access problems.

0

2

4

6

8

10

12

14

16

FPS

FPS: Max FPS:Min

Frame Per Second Average

client-server

P2P

 Figure 4. Average Frame Per Second (fps)

Table 1: Average TCP and UDP Traffic

 31

The main focus of our interest was the comparisons of bandwidth.
As we suspected, P2P on average used less bandwidth than the
client-server (P2P maximum/minimum 119/74 kbps versus client-
server’s maximum/minimum 224/107 kbps). Even during the
stress test, P2P on average demanded less bandwidth than the
client-server (See Figure 6). Aside from the technical
measurements, we observed that the overall quality of the
streamed video was greater on the P2P network. This
improvement can be attributed the higher frame rate that was
attained.

0

50

100

150

200

250

kbps

Bit rate: Max Bit rate: Min

Maximum and Minimum values

Average Bandwidth Comparison for
Access Tests

Client Server
P2P

0

50

100

150

200

250

kbps

kbps: Max kbps: Min

Average Bandwidth: Stress Test

client-server

P2P

6. CONCLUSTIONS
As stated previously, streaming media is becoming an industrial
standard way to deliver real-time media to the public. Because of
the server’s limitations, P2P networks have become a viable
alternative to the traditional client-server topology. We believed,
and our research has shown that P2P networks offer an increase in
frame rate and decrease bandwidth usage. The client-server
architecture did, however, prove to provide a more reliable
stream.
Future research will attempt the same experiments on a much
larger scale. First, we would collect and compare statistics from
multiple streams. Next we would recommend using a grid
simulator or an available test bed such as PlanetLab to test the
streams on a larger network. Other studies will focus on finding
the optimal types of machines that would afford the greatest
quality of streaming media.

7. ACKNOWLEDGMENTS
I would like to thank my advisor Dr. Cichanowski for all his help
during the process of this paper. Also, I would like to thank Dave
Hajaglou for letting me pick his brain whenever I had questions.
Finally, I have to give a huge thank you to Eric Heukeshoven for
allowing me to use the SMU streaming server and providing me
with the file that I used to stream.

8. REFERENCES
[1] CommView. Available from

http://www.tamos.com/download/main/. Accessed
2005 March 20

[2] Dejan Kosti´c, Adolfo Rodriguez, Jeannine Albrecht,
and Amin Vahdat. Bullet: High Bandwidth Data
Dissemination Using an Overlay Mesh. In Proceedings
of SOSP 2003

[3] Josh Beggs and Dylan Thede. Designing Web Audio.
“Chapter 5 Introduction to Streaming Media” January
2001. Available from:
http://www.oreilly.com/catalog/sound/chapter/ch05.ht
ml. Accessed 2005 February 9

[4] Miguel Castro, Peter Druschel, Anne-Marie
Kermarrec, Animesh Nandi, Antony Rowstron, and
Atul Singh. SplitStream: High-Bandwidth Multicast in
Cooperative Environments. In Proceedings of SOSP
2003

[5] PeerCast. Available from http://www.peercast.org.
Accessed 2005 January 30

[6] QuickTime Available from
http://www.apple.com/quicktime. Accessed 2005
February 8

[7] Reza Rejaie and Antonio Ortega. PALS: Peer-to-Peer
Adaptive Layered Streaming. From NOSSDAV 2003

[8] Song Ye and Fillia Makedon. Collaboration-Aware
Peer-to-Peer Media Streaming. October 16th, 2004

[9] Venkata Padmanabhan, Helen Wang, Philip Chou and
Kunwadee Sripanidkulchai. Distributing streaming
media content using cooperative networking. In
Workshop on Network and Operating System Support
for Digital Audio and Video, Miami Beach, Florida,
2002.

[10] Windows Media Player. Available from
http://www.microsoft.com/windows/windowsmedia/9s
eries/player.aspx. Accessed 2005 February 8

[11] Yang Guo, Kyoungwon Suh, Jim Kurose, and Don
Towsley. P2Pcast: Peer-to-Peer Patching Scheme for
VoD Service. WWW2003 May 20-24, 2003

[12] [Yang-hua Chu and Hui Zhang. Considering Altruism
in Peer-to-Peer Internet Streaming Broadcast. From
NOSSDAV’04, June 16-18th, 2004

Figure 5. Average Bandwidth for Access tests

Figure 6. Average Bandwidth during Stress test

 32

Appendix A

Computers used:

Computer type OS Processor RAM

Laptop Windows XP 1.4 GHz Intel Pentium M
Processor

512 MB

Desktop Windows 2000 (NT) X86 Family 6 Model 8
Stepping

254.5 MB

Desktop Windows 2000 (NT) X86 Family 6 Model 8
Stepping

254.5 MB

Desktop Windows 2000 (NT) X86 Family 6 Model 8
Stepping

254.5 MB

Desktop Windows 2000 (NT) 2.53 GHz Intel (R)
Pentium

510 MB

 33

A Comparison of Firewall Performance
in Distributed Systems

Logan Twedt
Saint Mary’s University of Minnesota

700 Terrace Heights #955
Winona, MN 55987
1- (507) 494-6042

Latwed01@smumn.edu

ABSTRACT
As the amount of data being transferred over networks
increases, the firewalls used to protect private networks must
process traffic both faster and with greater reliability. A
distributed firewall is a firewall that enforces each hosts policy
from the host itself. In this paper, we show that distributed
firewalls may provide faster access and higher data throughput
than conventional firewalls, which only reside on the entry
points of networks. We conclude that this can, to a certain
extent, be attributed to its separation of policy enforcement to
each network endpoint.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General –
security and protection, firewalls.

K.6.5 [Management of Computer and Information Systems]:
Security and Protection – authentication, unauthorized access

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design – distributed networks

C.2.2 [Computer-Communication Networks]: Network
Protocols – applications (FTP).

General Terms
Measurement, Performance, Design, Reliability,
Experimentation, Security.

Keywords
Distributed Firewall, Netfilter, FTP, Network Security

1. INTRODUCTION
A firewall is traditionally thought of as a system residing
between a public and private network (Figure 1) that controls
access to that private network. A conventional firewall, also
known as a Single Entry Point (SEP) firewall, consists of a
machine enforcing a policy from the edge, or entry point, of a
network. For example, a private network containing two servers,
one web server and one mail server, would have a firewall at the
network’s entry point letting through only the mail traffic
destined for the mail server and HTTP traffic destined only to
the web server. The policy is enforced at the entry point node,
by the SEP firewall. Contrast this with a distributed firewall,
where the policy enforcement process is separated so that each
server’s individual policy is “enforced at each individual
network endpoint” [3], or at the server itself. Any policy
enforced for all nodes is still enforced by the entry point node.
Conventional firewalls require more CPU usage than distributed
firewalls for equal amounts of traffic, because all of the policies
for all nodes are enforced by one machine, instead of splitting
the time to process traffic over the network’s nodes. This
difference in processing power is more evident at higher
volumes of network traffic.

Figure 1. A Firewall residing between two networks

In networks having multiple entry points (i.e. networks with
wireless access points), use of a conventional firewall would

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Proceedings of the 5thWinona Computer Science Undergraduate
Research Seminar, April 20–21, 2005, Winona, MN, US.

 34

require another firewall (enforcing all of the individual policies
for the entire network) to be inserted at each point of entry. The
network employing the distributed firewall does not need
another complex firewall at each point of entry. The firewall at
that point of entry would enforce a much smaller set of rules,
providing connected hosts greater throughput to and from the
private network. Showing that a distributed firewall performs
better gives system and network administrators a reason to
switch to the distributed firewall scheme, trading the money it
takes to switch for faster and more reliable connections to their
servers.
The goal of this research was to show that the average file
download time through a network utilizing a distributed firewall
was faster compared to the same downloads from the same
servers with a conventional firewall. In addition, the network
with the distributed firewall is able to process a larger number of
downloads, meaning there is a higher data transfer throughput.
At higher transfer rates the number of packets resent will
increase with a greater momentum, due to the firewall node’s
inability to process traffic at those rates of transfer. Greater
CPU usage needs to be dedicated to traffic processing from the
servers with the distributed firewall, but ultimately there is less
network congestion and greater throughput due to the lack of a
bottleneck at the entry point.

2. METHODOLOGY

2.1 Test Bed
Figure 2 shows the test bed that was set up for comparing a
conventional firewall versus a distributed firewall. One
physical network was constructed with flexible software
configurations at each node. The test bed contained four
“client” nodes ranging from 550 MHz to 1.2 GHz, six “server”
nodes all rated near 266 MHz, and one entry point (SEP)
firewall node, also rated at 266 MHz. The server nodes were
connected to one of the firewall node’s two network interfaces
through a layer 2 switch. The client nodes were connected to
the firewall node’s other network interface through a different
layer 2 switch (Figure 2).
All nodes, both client and server, ran a stripped down (telnetd,
X, etc., removed) version of Linux [4], called Linux From
Scratch [6]. The servers had the FTP server Vsftpd [7] installed
for serving a 5 MB test file during testing. The clients had the
FTP client Wget [8] installed on them for requesting files from
server nodes.
All firewalls fall into either the stateful inspection or filtering
(stateless) categories. Stateless firewalls treat all packets as
individual packets in deciding whether or not to accept, deny, or
reject the packet. In contrast, stateful inspection firewalls track
existing connections (such as TCP streams) [2]. The use of a
stateful firewall amplifies the firewall’s need for processing
power. Using Netfilter/IPTABLES [9], a stateful firewall was
constructed on the firewall node and on each server node.
During testing of the conventional firewall, the firewall software
on each server node was set to accept all traffic, as was the
firewall node’s software during control tests. During testing of
the distributed firewall the configuration previously enforced by

the firewall node was split based on each individual server’s
policy. A general firewall still existed on the firewall node.
A set of scripts ran the automated FTP client, Wget, a given
number of times in the background in order to simulate
downloads as concurrently as possible. The head client used
SSH to communicate with the other clients, notifying them of
the proper time to execute their scripts. The traffic was scaled
up in an attempt to saturate, or overload, the firewall.

Figure 2. Test Bed Setup

2.2 Test Plan
Each test set increased in size by a multiple of the first test set.
In the first test set, each client downloads the file 10 times from
each server, for a total of 60 files downloaded per client. With
four clients, this makes 240 downloads across the four clients
for the first test set. The second test set doubled the first, having
each client download the file 20 times from each server, for a
total of 480 downloads. The third test set tripled the first test
set, and the fourth test set quadrupled the first test set. The
point at which the firewall became overloaded was easier to
determine using sequential increases in the number of
downloads. The number of packets resent was monitored on a
test set-to-test set basis to gauge system load behavior. As
firewalls are challenged to handle higher traffic loads, resending
due to lost packets increases. Therefore, we monitored packet
resends in order to get a sense of overload threshold for our
conventional firewall configuration.

Both authorized and unauthorized access attempts were
generated so that the firewall had traffic that was, to some
extent, similar to a real world network. The server nodes accept
anonymous local requests, authenticated local requests,
anonymous remote requests, and authenticated remote requests.
Some server nodes had different policies about accepting some
of these types of connections, thus some traffic was rejected at
the server’s level, and some at the firewall’s level. Because
both Vsftpd and IPTABLES reject different types of
unauthorized connections, any traffic that passed through the
firewall that should be blocked was logged by the FTP server,
with all other blocked traffic logged by the firewall. The log

 35

files generated by Wget showed an average download speed in
KB/sec for each download that took place. Dividing total file
size by these speeds gave a download time accurate to within
0.1 seconds. During each test set, the CPU usage was logged
through the use of the UNIX command, ‘top’. Comparison of
CPU usage for the firewall node and server nodes showed the
load level at which the nodes became overloaded. Usage was
observed for all test sets for both firewall configurations.
Deciding whether or not the distributed firewall has a
performance advantage over the conventional firewall is
straightforward given these metrics.

3. RESULTS AND ANALYSIS
From the graphed results in Figure 3, it is apparent that both the
conventional and distributed firewall became somewhat
overloaded during testing, in particular test set 4, having 960
simultaneous downloads. However, this is at least partially due
to hardware constraints, as is shown through comparison with
the control group (no firewall). All systems had an average
download time of 40 seconds in the first test set, with only 60
downloads initiated by each of the four clients. Both firewalls
download times increased significantly between the second and
third test sets and leveled out at 131.68 seconds (Distributed)
and 134.43 seconds (Conventional) in the fourth test set. From
these results it can be inferred that the hardware was reaching a
maximum rate of data transfer.
Figure 4 shows the amounts of resent packets during each of the
four test sets. If the firewall was being overrun, the graph
would show a sudden increase, signifying the point at which the
firewall becomes overloaded with traffic – the point at which it
would stop letting traffic through (thus forcing it to be resent).
Instead, there is little difference across the graph, only a slight
increase in resent packets. The conventional firewall showed a
gradual increase from 167 to 283 packets resent, where the
distributed firewall showed a gradual increase from 147 to 240.
The client and server nodes simply could not generate enough
traffic to overwhelm the firewall node.
Figure 5 shows CPU usage statistics for the firewall node.
Results from averaging server node CPU usage proved
inconclusive, as the results spanned a very broad range, and did
not hold a particular pattern during any tests. Simply using the
firewall node as a bridge between networks used an average of
56% of available CPU time for the first test set. Adding the
distributed firewall to the network gave the firewall node a more
difficult time and boosted the usage to 67%, while the
conventional firewall made the firewall node process even
harder, at 70% of its capacity CPU usage. The conventional
firewall’s firewall node rose to 82% CPU usage by the fourth
test set, showing that it was becoming fairly overloaded
(although not completely) with the traffic it was processing.
The distributed firewall’s firewall node showed only 76% CPU
usage during the fourth test set. It would be better to rate the
distributed firewall’s CPU usage using statistics from all nodes
running firewall software, but results from this were fairly
skewed.

4. CONCLUSIONS
Our results show that the hardware we used was not able to
saturate the network enough to overload the firewall. Even

though this overload did not occur, our results indicate that the
distributed firewall configuration can handle more traffic than
the conventional firewall. The distributed firewall nearly
always outperformed the conventional firewall, on most test
sets, and in all metrics recorded. Our observations are qualified
by two things. First, FTP was the only protocol tested. It is
possible that a group of servers offering different services would
not saturate the firewall in the same way that FTP requests did
in these tests. Second, the firewall was configured to track
connections. Packet filtering firewalls, as opposed to the
stateful firewall used, may not be saturated as easily because of
the connection tracking employed by the Netfilter/IPTABLES
[9] firewall. This may prevent the firewall from becoming
saturated at relatively low connection amounts, but it could be
assumed that if the traffic was scaled up to levels that our
hardware could not reach in these tests the results would be
relatively similar to the ideas put forth by Bellovin [1].

5. FUTURE WORK
As prescribed in concluding remarks, testing must now be done
with other services, and possibly multiple services on each
machine within the server side of the network. As the authors of
[1] and [2] suggest, the use of IPSec in the firewall for public
key authentication forces greater CPU usage in the firewall,
making the effects of an overloaded firewall easier to see. Also,
different FTP server and firewall software should be tested,
along with different operating systems, to eliminate the variable
of software capabilities. Larger network topologies should be
tested, with faster machines, to test the affects of firewalls on
more modern and widely used hardware.

6. ACKNOWLEDGMENTS
Many thanks to the faculty and staff that aided in the design,
development, and execution of this research, including Gerald
W. Cichanowski, Ann C. Smith, Joan M. Francioni, Chris M.
Johnson, and David E. Hajoglou.

7. REFERENCES
[1] S. M. Bellovin. Distributed Firewalls. ;login: magazine,

special issue on security, November, 1999.

[2] C. P. Pfleeger & S. L. Pfleeger. Security in Computing,
Third Edition. Prentice Hall, 2003.

[3] S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and J. M.
Smith. Implementing a distributed firewall. Proceedings of
the 7th ACM conference on Computer and Communications
Security, 2000.

[4] M. Miller and J. Morris. Centralized administration of
Distributed Firewalls. Proceedings of the Tenth USENIX
System Administration Conference, September, 1996.

[5] W. R. Cheswick & S. M. Bellovin. Firewalls and Internet
Security: Repelling the Wily Hacker. Addison-Wesley,
1994.

[6] Linux From Scratch.
http://www.linuxfromscratch.org/

[7] Vsftpd. http://vsftpd.beasts.org/

 36

[8] GNU wget.
http://www.gnu.org/software/wget/wget.html

[9] The Netfilter/IPTABLES project.
http://www.netfilter.org

8. APPENDIX

0
20
40
60
80

100
120
140

D
ow

nl
oa

d
Ti

m
e

1 2 3 4

Test Set Number

Figure 3. Download Times

Control
Distributed
Conventional

0
50

100
150
200
250
300

R
es

en
ds

1 2 3 4

Test Set Number

Figure 4. Resends per Download for each Session

Control
Distributed
Conventional

Figure 5. Firewall Node CPU Usage

0
20
40
60
80

100

1 2 3 4
Test Set Number

Pe
rc

en
t Control

Distributed

Conventiona

 37

Initialization Settings of a Force Feedback Device:
Analysis of User Preferences

Michele Clarke
Saint Mary’s University of Minnesota

700 Terrace Heights #413
Winona, MN 55987

1-563-581-1157
meclarke@gmail.com

ABSTRACT
Blind and visually impaired users often find themselves limited by
the availability and accessibility of usable maps. A digital 3D
software environment designed for spatial exploration with a force
feedback device will enhance map usage for such users. One such
device, the Logitech Force Feedback Mouse, can be programmed
to provide a user with different levels of navigational guidance.
This paper explores the effects of different initialization settings
for navigational forces. Since such programmed settings are
subject to the needs of individual users, usability tests were
designed to determine the average force settings preferred by a set
of tested users. Results are based on both the analysis of the
usability tests and reaction surveys. The complied results define a
default standard that is recommended for the initialization settings
of forces programmed specifically for Logitech Force Feedback
Mouse.
General Terms
Documentation, Design, Human Factors

Keywords
Orientation aids, blind users, force feedback devices, usability

1. INTRODUCTION
Most people do not think twice when reading a map. However,
traditional maps require the ability of its users to see and thus are
unusable for the blind and visually impaired. Currently the blind
and visually impaired rely on audio and tactile aids for map
reading.

A tactile aid by definition is an aid perceptible to the sense of
touch. Blind people wishing to have a paper-based map may
utilize a Braille printer to print a map from a computer. The
printer will convert the lines of the map into a set of raised dots
that can then be traced with a finger to feel the lines of the tactile
map. This method of map production limits the ability to apply
additional information to maps, such as directional and
geographic labels. For this reason, researchers have been working
on the production of a more digitized map environment that

utilizes the computer to express map information.

Research has led to a new trend that is emerging for audio tactile
aids. A remarkable example of this trend is the Talking Tactile
Atlas series [5], currently composed of 44 maps embossed on
tactile sheets. Each sheet contains raised lines and textures that
express map information. Once the embossed sheets are placed
on the T3, a peripheral desktop computer device with a touch
screen, user-computer interaction is possible. When various
symbols, icons, and regions on the tactile surface are pressed,
audio information on what the user is feeling comes from a
connected computer (see Figure 1).

Figure 1: Talking Tactile Tablet [5]

Unfortunately these two map reading methods, like almost all
currently employed maps for the blind and visually impaired, have
one major limitation. These maps for the blind are not readily
available due to the fact that they are made by hand and thus
accrue higher costs and less accessibility. There is no database
like Mapquest that blind users can access. Rather they must
request the production of each individual map for the method they
employ as the need arises. Additionally, there is no way for a user
to enlarge or shrink a map without producing a completely new
one. For these reasons and numerous others, it is obvious that a
new computer based navigation aid for tactile maps for the blind
is currently needed [4].

Our proposed solution to this problem is to create an interactive
digital 3D environment that simulates currently used static maps.
We intend to determine how to apply a layer of forces on top of a
digital map, thus making it interactive when it is explored using a
force feedback device. The aim of the interaction is to create an
experience of being in a computer-generated environment that
feels realistic [7] and thus provide the user the ability to fully
understand the environment or map.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Proceedings of the 5thWinona Computer Science Undergraduate
Research Seminar, April 20–21, 2005, Winona, MN, US.

 38

Figure 2: GUI with underlying forces visible

1.1 The 3D Digital Environment
The currently employed environment we developed is composed
of a grid system of squares equally spaced far enough apart to
provide room for the traversal of a mouse pointer (see Figure 2).
These squares are then programmed to be semi-impenetrable by a
force feedback device (meaning the user moving the mouse will
feel as if they are passing through mud when moving the mouse
pointer across a square). At each intersection there are small
boxes that are programmed to feel like attraction points, thus
alerting the user of their position at such intersections. In order to
ensure that the user remains within the designated area, a
boundary box surrounds the grid. The mouse pointer can only
cross over this boundary box once substantial force is applied.
Finally, there can be a grid system of raised lines placed on a layer
below the previously mentioned objects. These lines are equally
spaced to provide a sense of distance traveled as the pointer
crosses a set of lines.

Users navigating this environment with a force feedback device
will thus feel restricted to move along the line spaces (grooves)
created between the squares and around the grid of squares. In
terms of a map environment, these grooves represent the
traversable roads upon which a user travels. Further information
specific to the programming tools used to create this environment
will be explored later in this paper.

1.2 The Force Feedback Device
Many computer users today are familiar with modern gaming
equipment and the new controllers (i.e., force joysticks and
rumble pads) used to provide force sensations that mimic the
actions occurring in the game. The forces give the impression of
recoil, vibration, impact, and many other sensations. These
function under the direction of a computer, which instructs the
force feedback device to transfer forces to a user's hand or fingers.
The availability of various tactile effects depends on the device
hardware in combination with software that directs what kinds of
effects the device should play. [7] For example, the Logitech
Force Feedback Mouse (see figure 3) used in this study can be
programmed to emit the following forces: periodic, texture,
enclosure, ellipse, spring, grid, constant, ramp, damper, friction,
and inertia. The way in which the forces are initiated in the
software determines the strength and intensity in which device
will emit the various forces. Different force initialization settings
affect the amount of information available to the user.

Figure 3: Logitech Wingman Force Feedback Mouse

Proper settings are vital for the correct portrayal of information.
For example, forces that are too weak may not be noticeable to the
user, whereas strong forces may distract or overwhelm the user
from correctly identifying the environment. This paper tests the
various strength settings by applying a variety of force settings to
environments implemented as the controls. While users each have
personal preferences, the usability tests of this paper aim to
determine the average force settings that provide a user with the
greatest understanding upon exploration of the spatial
environment with the Logitech WingMan Force Feedback Mouse.
This paper describes the implementation of the graphical user
interface and the capabilities it provides. It then goes on to
outline the usability tests implemented and concludes with the
analysis, results, and future work.

2. PROGRAMMING TOOLS
The Immersion Corporation develops tactile feedback technology
that its licensing partners, including Logitech, can integrate into
their products to gain market adoption [3]. Specific to this
research, the Logitech Force Feedback Mouse utilizes Immersion
TouchSense technology to create a software development kit
(SDK) for program developers. The SDK library includes the
Immersion Foundation Classes (IFC) that define the effects
available for C++ programming, previously listed in section 1.2.
Our software implements numerous methods of the IFC to
program the mouse to recognize and perform the necessary forces.

3. PRE-TESTING ANALYSIS
Pretests were performed to refine the testing session and to ensure
user understanding, comfort, and productivity. Two subjects were
tested and asked to provide feedback throughout the pre-testing
session.
In comparison with traditional mice, the additional features of the
Logitech WingMan Force Feedback Mouse often require a period
of orientation for users to become accustomed to using the device.
Users traditionally navigate by either sight or sound and thus have
not been trained to interpret Graphical User Interface (GUI)
navigation with only the sense of touch. The orientation session is
especially necessary for blind and visually impaired users who
might have little to no experience using a mouse in any situation.
Thus both users during pre-testing completed an orientation
session followed by nine tests and a set of reaction survey
questions.

 39

During the orientation period in which the users were provided
time to become comfortable with the mouse and environment,
both users said that a thorough explanation of the environment
beforehand would increase their understanding of what they felt.
They wanted to know the different forces they would encounter,
the general layout of the environment, and the possible errors that
could occur and how to correct them. We utilized these
recommendations to create a set of orientation tasks and
instructions, which we present later in this paper.
In order to narrow the field of possible force settings to test, the
two users were asked to explore the digital environment and to
provide feedback on a set of force settings varying from 100% to
25%. These sessions were timed in order to determine a
reasonable number of tests to administer during a testing session.
Both users responded by saying that forces must be set to at least
50% in order to receive enough feedback from the mouse to
navigate the environment. Based on this recommendation and the
average time required to explore the environment, we decided to
perform a series of nine tests divided into three force settings of
100%, 75%, and 50%.
Finally, the two users were asked to provide feedback on the
initialization settings of one additional force. This force is a grid
system of ‘raised lines’ spaced at equal intervals both vertically
and horizontally. The grid is intended to help the user determine
distance traveled. Provided with a set of force settings, the two
users determined that values between 20% and 30% were the
easiest to feel without being obtrusive.

4. METHODS
4.1 ORIENTATION SESSION
The orientation session utilized in this study consists of a series of
instructions the user is required to complete. These instructions
are a composite of all the skills that could possibly be utilized
during the official usability testing sessions. They ensure
knowledge of the fundamental forces users may encounter as well
as the fundamental actions users may perform. The session has a
maximum time constraint of ten minutes, but users will be
allowed to proceed at their own pace. Throughout the orientation
session there is an experienced user present observing progress
and available for questions. The user is informed that they can
ask whatever questions they need to understand the device and the
environment at anytime during the orientation, but will not be
allowed to ask questions during the official testing. Users are
alerted to the possible problems they may encounter and provided
with advice on what to do should they encounter these errors.
Users will also be informed of what they are to expect during the
official testing session. The forces throughout the orientation
session are programmed at 100% to help beginners become
familiar and comfortable using the mouse.
Orientation Session Instructions for a 1x1 Grid:
1) Note the groove between the outside boundary box and the
impenetrable square.
2) Trace the square felt through the force feedback device.
3) Note that the mouse can move across the square, yet only when
sufficient force is applied.
4) Note occasional shaking of the mouse. This is normal and
occurs occasionally because of the placement of competing forces
close together.

5) Note that the mouse can move outside of the boundary box.
Try to return to the box and re-outline it.
Orientation Session Instructions for a 2x2 Grid:
1) Trace the perimeter of the square felt through the force
feedback device.
2) Note the boundary box and the force it takes to jump over it.
3) Note the attraction points at each corner or intersection to alert
the user to a possibility for a direction change. These attraction
points feel like a divot in the surface of the environment.

4.2 USABILITY TESTS: PART I
These tests determine the force initialization settings programmed
into the force feedback device that provide the user with the
highest percentage of proper environment identification and the
highest comfort level. Proper environment identification is based
on the user’s ability to define the grid dimensions of a set of
squares, all equal in size. Comfort levels are determined by user
ratings upon completion of each test. During testing the length of
time and screenshots are recorded from the start time and position
until users successfully determine the grid dimensions. The
screen shots are made possible with the Supreme Spy computer
monitoring software [8].
The subjects tested comprised a group of six college students with
at least minimal computer experience. This software is designed
to be very simple to use and subjects were able to gain additional
skills needed during the orientation session. While the software is
intended for visually impaired users, sighted users frequently have
more experience using mice. Additionally, previous studies have
shown success utilizing both blind and sighted users to fully test
software. [2] Thus the group consisted of and equal number of
both visually impaired and sighted students in order to fully
examine the force settings felt with the mouse.
The subjects were each asked to complete a series of nine tests.
The order of the tests was statistically randomized for each user to
ensure that users could not predict the dimension settings. Also,
the monitor was not visible by the user during testing to mimic the
feeling of being blind. Upon completion of each test, subjects
were told whether or not they correctly identified the dimensions
and were asked to rate their reaction to the preset force setting.
After all testing was completed, subjects were asked to complete a
survey to gauge their reaction to the use of the Logitech Force
Feedback Mouse in the spatial environment.

Test Dimensions Strength
Percentage

1 3 x 1 50%
2 3 x 1 75%
3 3 x 1 100%
4 2 x 2 50%
5 2 x 2 75%
6 2 x 2 100%
7 2 x 3 50%
8 2 x 3 75%
9 2 x 3 100%

Table 1: Individual Test Information

 40

4.2.1 Tests1-9
The user tests assess user ability to use the force feedback mouse
to determine the grid dimensions in the 3D digital environment
(see Section 1.1). The forces were programmed at 50%, 75%, or
100% strength. Nothing below 50% strength is utilized because
pretests revealed that such a setting is too low for navigation.
Table 1 reveals the setting values of the nine tests.

4.2.2 Grid System Testing
Upon completion of the nine tests, users were asked to explore
one additional environment and provide feedback of their opinion
of the additional force programmed into the mouse. This force is
an underlying grid system of ‘raised lines’ intended to help alert
the user to distance traveled. These grid lines are placed at
intervals of 50 pixels and are programmed to two strengths: 20%
and 30%, which were determined during pre-testing (see Section
3). The underlying grid was applied to a 2x2 grid of squares
initialized to 75% strength.

5. ANALYSIS AND RESULTS
5.1 Test Results
Our analysis was comprised of both quantified and qualified tests
relating to the ability of each subject to successfully identify the
environment, the time needed to complete the test, user ratings of
the various force settings, and a set of user reaction survey
questions.

Force Percentage: Time

0
0.2
0.4
0.6
0.8

1

50% 75% 100%

Time: Blind Users

Time: Sighted Users

Figure 4: Force Percentage Results - Time

Force Percentage: Rating

0.4

0.45

0.5

0.55

0.6

50% 75% 100%

Rat i ng: B l i nd User s

Rat i ng: Si ghted User s

Figure 5: Force Percentage Results – Rating

The tests were analyzed in two ways. First, the results were
grouped together according to the strength of the forces to
determine which setting (100%, 75%, or 50%) the users rate
highest.
According to the calculated results, both blind and sighted users
on average required the longest amount of time to respond when
the forces were set at 50%. When the forces were set at 75% and

100%, users on average took the same amount of time (see
Figures 4 and 5).
The user ratings were based on a scale of 0.1 to 0.7, 0.1 meaning
they did not like the settings and 0.7 meaning they really liked the
settings. The results for the user ratings are close, however blind
users foremost preferred the forces at 75%, then 50%, and finally
at 100%. Sighted users liked both 50% and 75% about the same,
and again ranked 100% as the least favorite. As the majority of
the users verbally expressed, they preferred the settings at 100%
when they first began, but as they became comfortable with the
mouse and software environment, they actually preferred lighter
settings. After testing, users felt they were at an intermediate
level and thus preferred the forces at 75%. The majority then
expressed that with a little more time and practice they would
prefer the settings closer to 50%. They reasoned that forces which
were too strong impeded their ability to move out of the
attractions boxes.
The results were then grouped according to the number of squares
programmed for each test. This grouping is important when
analyzing the time taken for users to respond since a larger
number of squares implies a larger surface area to navigate.
According to the calculated results for the size of the grid, the
number of squares correlates to the amount of time users, both
blind and sighted, needed to determine the correct dimensions.
Users, again both blind and sighted rated each grid size at
approximately the same value since all three grid sizes were
implemented at all three force percentage settings (see Figures 6
and 7).

Grid Size: Time

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1x3 2x2 3x2

Time: Blind Users

Time: Sighted Users

Figure 6: Grid Size Results – Time

Grid Size: Rating

0.4

0.45

0.5

0.55

0.6

1x3 2x2 3x2

Rating: Blind Users

Rating: Sighted Users

Figure 7: Grid Size Results – Rating

User reactions to the addition of the grid system of ‘raised lines’,
or tick marks, equally spaced to indicate distance traveled was
very informative. All users agreed that they could feel the tick
marks, but struggled to count how many they crossed with the
mouse. Additionally, users noted that they were less able to
distinguish between the tick marks and attraction points since the
two forces felt very similar.

 41

For this reason, we proposed a new solution to the users. Since
our studies show that attraction points are easy to count, we
proposed that instead of the tick marks, we would place attraction
points at equal intervals along the paths. Then in order to alert the
user of an intersection, we would implement a new force such as a
small vibration in the mouse. All users agreed that they would
prefer the use of attraction points over tick marks.

6. USABILITY TESTS: PART II
Upon completion of Part I testing and analysis, we decided that
the results would improve if we adjusted our testing strategy.
Instead of randomizing the force settings for the nine tests, we
chose to organize the tests in groups based on their initialization
percentages. This second round of testing employed the same
orientation session, however during testing the nine tests were
given in order, beginning with 100% and working down to 50%
strength. Since there are three grid dimensions at each
percentage, the order of these three tests was randomized. Users
were alerted when the force setting changed.
Since the results for both the blind and sighted correlate very
closely, we decided that further testing on sighted users is
sufficient to determine the proper settings for user by blind users.
The users tested include two college students and two middle age
adults. Again, all users had at least minimal computer experience.

6.1 Analysis and Results
As users became acquainted with the mouse and their sense of
touch increased, they preferred to use weaker force settings. Our
new testing approach implements this pattern. Three of the four
testers rated the 50% setting as their preferred, then 75%, and
lastly 100%, which they stated was too strong to manipulate the
mouse with (see Figure 9). User 3 preferred the stronger forces
during testing, however clearly stated that as they became more
comfortable with the mouse, they too would prefer a force setting
lighter than 100%.
No conclusions can be determined concerning the correlation
between grid size and time since the results show no pattern (see
Figure 10).

Force Rating

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

50% 75% 100%

User1 User2

User3 User4

Figure 9: Force Percentage Results – Rating

As in the first usability tests, users informed us that they did not
find the tick marks very useful and felt they made the
environment more confusing to navigate. However, all four users
again agreed that the implementation of attraction points at equal
intervals along the paths would help them determine distance
traveled. Additionally they agreed that a new force should be
used at the intersections to alert the user.

Grid Size - Time

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1x3 2x2 3x2

User1
User2
User3
User4

Figure 10: Grid Size Results – Time

7. USER SURVEY RESULTS
Based on the reactions of the users, this Logitech Force Feedback
Mouse and the accompanying software have a very small learning
curve (see Figure 11). Testing on average took only 30 minutes.
Within this time period, every user went from no experience with
a force feedback mouse to an extremely high comfort level. In
discussions with each user upon completion of the tests, all users
confirmed the tested fact that they preferred the force settings at
75%, but with more practice, would probably not need the forces
to remain as strong. When the blind users were asked if they
would use the Logitech Force Feedback Mouse again, all three
confirmed that they would if the software they were using would
be enhanced by the use of the mouse.

Survey Results

0

1

2

3

4

5

6

7

Ease of Use Comfort Level
After Orientation

Comfort Level
Upon Completion

Performance of
Defined Tasks

Ability to
Distinguish

Forces

Figure 11: Survey Results

8. CONCLUSION
Usability testing affirmed that the Logitech Force Feedback
Mouse can successfully provide a blind user with information
about a spatial environment. As expected, users each had
personal preferences for the initialization values of the forces, yet
as a whole, these preferences have a strong correlation.
Beginning users prefer to start with the forces set at 100% and
work towards lighter force settings as they become more
comfortable with the device and software. We recommend that
future developers do not initialize force levels to values less than
50% of their full strength in order to provide enough feedback for
users to navigate the environment. Further, we recommend that
program developers implement the ability for users to decrease
the strength levels of the forces as they become more comfortable
with the force feedback mouse.

 42

In order to implement a guide for the distance traveled along
paths, we recommend that developers utilize attraction points that
are equally spaced since such forces are easy for users to feel and
count. Developers must then implement a new force such as a
vibration at intersections to alert the user.
Survey results confirm a small learning curve for users and a
strong ability to distinguish between the programmed forces.
Those tested with visual impairments confirmed that they would
use the Logitech Force Feedback Mouse if they were provided
with software that implements this force feedback device.

9. FUTURE WORK
The next stage in this project is to implement vector forces that
can pull and guide a user between two defined paths. Further
usability testing should determine initialization values of the
vector forces that provide the user with the greatest amount of
guidance.
Long-term goals are to create a program that can layer these
forces on top of a digital map in order to make the map interactive
with a force feedback device.

10. ACKNOWLEDGMENTS
Thanks to Robert Manduchi at the University of Santa Cruz,
California for his imagination to get this project underway during
the summer of 2004. To all my friends, family and classmates
that willingly took the time to be subjects in my studies. Finally
to my roommates who graciously put up with my conversion of
our living room into a testing center.

11. REFERENCES

[1] Gardner, J. and Bulatov, V., Smart Figures, SVG, And
Accessible Web Graphics, In Center On Disabilities
Technology And Persons With Disabilities Conference.
2001.

[2] Hwang, F., Keates, S., Langdon, P., and Clarkson J. Mouse
Movements of Motion-Impaired Users: A Submovement
Analysis. In Assets 2004: The Sixth International ACM
SIGACCESS Conference on Computers and Accessibility.
October 18-20, 2004. 102-109.

[3] Immersion Corporation. Technology: TouchSense Devices.
http://www.immersion.com/developer/technology/devi
ces/index.php 2003. 22 January 2005

[4] Kurze, M., Polxfub, J. and Krauss, M. TGuide: A Guidance
System for Tactile Image Exploration, In Proceedings of the
Third International ACM Conference on Assistive
Technologies, Marina del Rey, California, United States,
1998, 85 – 91.

[5] Royal National College for the Blind.
http://www.talktab.org/ 26 March 2005

[7] Sallnas, E., Rassmus-Grohn, K. and Sjostrom, C. Supporting
presence in collaborative environments by haptic force
feedback. In ACM Transactions on Computer-Human
Interaction (TOCHI). December 2000. 461 – 476

[8] Supreme Spy Software. Freeware demo download.
http://www.downloadjunction.com/product/software/65977/
2 March 2005

	FirstPage
	Table of Contents
	greg
	rahman
	joe
	padraic
	lisa
	logan
	michele

