

Proceedings of the 7th Winona Computer Science
Undergraduate Research Symposium

April 19, 2007

Table of Contents

 Title Author Page

Network File Distribution with the Lincoln Scully 1
BitTorrent Protocol Saint Mary’s University

Analysis of Microsoft Office 2007 Catherine Beel 5
User Interface Design Saint Mary’s University

PerfiTrak – A Web-based Personal Finance Matthew Lieder 16
System with Broad I/O Features Winona State University

Cheating Detection and Prevention in Kevin Warns 26
Massive Multiplayer Online Role Playing Games Saint Mary’s University

Network Throughput Analysis with Christopher Popp 31
Electromagnetic Interference Winona State University

 1

Network File Distribution with the

BitTorrent Protocol
Lincoln Scully

Saint Mary's University of Minnesota
700 Terrace Heights #1605

Winona, MN 55987

lascul02@smumn.edu

ABSTRACT
The peer-to-peer BitTorrent protocol is presented as a means for
distributing content internally over a network, rather than relying
on the traditional client-server protocols. Instead of establishing a
single one-way stream of information, BitTorrent makes several
connections to other clients that contain at least part of the desired
information. This information is then simultaneously downloaded
from and uploaded to the other clients in pieces. Using a server
and several clients on a network, BitTorrent is clocked alongside
two traditional protocols to determine which takes the least
amount of time. Analysis of the various protocols’ performance
suggests that only three or four clients are needed for BitTorrent
to complete the file transfers more quickly, the trend being that
the time saved increases with the number of clients and the size of
the content being transferred.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Applications; C.2.5 [Computer-
Communication Networks]: Local and Wide-Area Networks –
Internet

General Terms
Measurement, Performance

Keywords
Peer-to-peer, Client-Server, Networks, BitTorrent, Content
mirroring, File backup

1. INTRODUCTION
BitTorrent is a peer-to-peer networking protocol based on the idea
of several sources downloading and uploading to and from each
other concurrently [1]. Coded in 2001 by Bram Cohen, it was

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

Proceedings of the 7th Winona Computer Science Undergraduate
Research Seminar, April 19, 2007, Winona, MN, US.

originally intended and utilized for distributing large files among
end users, namely Linux images [1, 2]. Since then it has become
a popular method for sharing illegal digital copies of movies [1, 2]
and is reportedly responsible for one-third of all Internet traffic
today [3]. Because of this, the creator has formed BitTorrent Inc.
and negotiated with the Motion Picture Association of America
and raised capital to make www.bittorrent.com into a store that
sells online video content [3].
The BitTorrent protocol is of unique design in that it employs
both a “choking” algorithm and a “rarest first” algorithm. The
choking algorithm promotes uploading by curbing the download
speed when not sharing to encourage the communal experience of
peer-to-peer file sharing. Being that BitTorrent breaks files up
into several pieces to optimize downloading [4], the rarest first
algorithm looks for the rarest piece of the volume to be transferred
among all the uploaders and downloads it first. These are two of
the reasons why BitTorrent is so efficient and reliable [5].
The great majority of BitTorrent use has been among home users,
exchanging legal Linux distributions and illegal media files.
Besides Bram Cohen’s venture that is attempting to build a
business on the technology he created, the only business entity
outside of the Linux community to utilize BitTorrent is Blizzard
Entertainment. They incorporated a client in their gaming
software to facilitate the downloading of updates to their World of
Warcraft game [6].
A potential use for BitTorrent in addition to file sharing and
software/update distribution would be internal file transfers of
commercial and non-profit organizations; examples of which are
website/content mirroring and data backup. Perhaps the fact that
BitTorrent has taken off as a piracy tool has discouraged
legitimate organizations from experimenting and seeing how they
might benefit from this technology. This idea of utilizing
BitTorrent for internal file transfers is unexplored and is the
purpose for this research.
Traditionally, files are transferred using either File Transfer
Protocol (FTP) or HyperText Transfer Protocol (HTTP). FTP is
the oldest, having originated in 1985 and was intended for
transferring files over a network. HTTP was initially developed
as a means of retrieving web pages but has since become a
general purpose protocol for Internet and network
communications. Both of these protocols are based on a 1-to-1
client-server ratio.
Because of the single source characteristic of HTTP and FTP, it
was hypothesized that BitTorrent would take less time when
mirroring content to several other machines simultaneously
because of the sharing amongst all the clients. In this situation,
the other protocols cannot compete with BitTorrent’s “near-

 2

optimal performance” [9] in terms of uplink bandwidth utilization
and download time [10]. As the number of servers receiving the
content increases, so would BitTorrent’s efficiency relative to
HTTP and FTP.
Recently a network simulator was developed called the General
Peer-to-Peer Simulator (GPS) that can quite accurately model
BitTorrent network activity [7]. However, since real network
tests were possible and feasible they were performed because they
are tangible and more acceptable, even to the BitTorrent creator
[8].

2. METHODOLOGY
2.1 Test Bed
Comparing the performance of the BitTorrent protocol versus the
standard Hypertext (HTTP) and File (FTP) transfer protocols
involved setting up several client PCs on different subnets of the
Saint Mary’s University (SMU) network. These included two on
SMU’s residential subnet, two on the academic subnet, four in the
Computer Science laboratory, and four in the GeoSpatial Services
cubicles, as well as one cable modem connection off campus at
Valley Computer Solutions (VCS), from Saint Mary’s’ service
provider, HBC. The PCs were desktops that varied from 333Mhz
Pentium 2 machines to 1Ghz Pentium 4 machines with anywhere
from 192MB up to 1GB of RAM, as system bottlenecks would
affect each test equally. All of these clients had 10Mb ethernet
connections or were on switches that had a 10Mb feed.
The tests were performed during an academic break while
university was officially closed with almost all students off
campus. This provided a low-traffic network for which repetitive
tests could be run with no significant anomalies or inconsistent
data.

Figure 1. Test Bed Diagram.

2.2 Software Utilized

All PCs involved in the tests had legal copies of Windows 2000
Professional or Windows XP Professional installed, with all the
latest service packs and updates, as well as the Java 2 Platform
Standard Edition Runtime Environment 6.0 (JRE 1.6.0). For the
BitTorrent tests the host server utilized the free and open-source
Java-based Azureus 2.5.0.4 program running on port 4950 which
served as both the initial server and kept track of the torrents. For
the HTTP and FTP tests the server was running Microsoft’s
Internet Information Services 6.0, the website running on port
4951 and the FTP site on 4952. The clients all used the official
BitTorrent client as well as Java HTTP and FTP download classes
to initiate and transfer the test files utilizing URLConnections and
binary BufferedInputStreams. Automation was achieved by
means of a Java socket listener, running on port 4953, that
instantiated DOS batch files that called the desired test program
with the right parameters. After several tests it was determined
that the HTTP and FTP transfers would be performed one at a

time to simplify timing because the difference between that and
simultaneous transfers offered no statistically significant
difference in performance. Whereas, the BitTorrent tests were
fully automated by sending a command to the Java sockets of
several machines at once to initiate the file transfers
simultaneously and then Azureus log files were analyzed to
determine the time it took to successfully transfer the content to
all machines, from the start of the first incoming connection to the
last end of stream socket exception. Great care was taken in
setting up both the BitTorrent clients and the Azureus
seeder/tracker to ensure that the exchanges among them would not
be hindered by transfer rate limits nor unnecessary traffic, such as
Azureus’ default Distributed Database tracker or multi-Azureus
client connectivity.

2.3 Test Plan
The tests were performed incrementally, the first test starting out
as the host server transferring to one other machine. Each
subsequent test then added another server as time and resources
allowed with the end result being that every server contained a
copy of the files being transferred to all the servers.
The transfer times would then indicate in which situations each
protocol works best, and also provide a metric for comparison,
either supporting or disproving the hypothesis.
The tests consisted of transferring random zip files of
approximately 10MB, 100MB, and 1GB. This was to illustrate
whether or not this made a difference in the protocols’
performance.

3. RESULTS AND ANALYSIS
As hypothesized and predicted, BitTorrent took longer than HTTP
in the first couple of tests, but BitTorrent overcame that difference
and gradually widened the gap in performance as the testing went
on with more and more machines being added. The biggest gap in
results came from the 1GB test as is shown in Table 1. The
complete results are shown in Appendix 8.3.

Table 1. The 1GB tests (ms).

Ratio 1GB BT 1GB HTTP 1GB FTP

1-to-1 1073493 999343 1018997

1-to-2 2029849 1988906 2011463

1-to-3 2689217 2968875 3003322

1-to-4 2908993 3949655 3991422

1-to-5 2021227 4935430 4978921

1-to-6 2620776 5911176 5967121

1-to-7 2591917 6893301 6958753

1-to-8 3238437 7910424 7982288

1-to-9 3509326 8912535 8983352

1-to-10 3501215 9924880 9992839

1-to-11 3657008 10958656 11023011

In Table 1, notice that both the HTTP and FTP file transfers took
less time than the BitTorrent when the server ratio was 1-to-1,
meaning that one machine held the complete data and it was being
sent to only one machine. But when the ratio is 1-to-3, the
BitTorrent file transfer takes the least time by a slight margin.

 3

Finally, when the ratio is 1-to-11, the BitTorrent transfer takes
roughly one-third as much time as the HTTP and FTP transfers.
The few BitTorrent tests that were executed with 10MB file
transfers show that BitTorrent works best over a period of time,
which requires either a slow connection or an exceptionally large
file. For example, notice that sending even a smaller file like
10MB to twelve clients—including one on a slower cable modem
connection—resulted in a time savings of more than 60% when
compared to HTTP. This is consistent with the 1GB tests and
similar to the 100MB tests, which saw about a 48% time savings
with seven clients, and roughly a 60% time savings with eleven.
One unforeseen result came about in the 1GB test on the slowest
connection. In this case FTP was quicker than HTTP, albeit by a
small amount. However, an inquisitive mind would wonder if this
is a trend that would continue if further tested. Regardless, that is
outside the scope of this research project.
To put a perspective on the time saved instead of just a
percentage, the longest, largest BitTorrent transfer took 7301648
milliseconds less time than the corresponding HTTP transfer,
which is roughly two hours, which is a very significant difference.
A closer look at the data reveals that although the HTTP and FTP
transfer times increased linearly, BitTorrent’s performance
fluctuated slightly and followed more of a curve. A graph
illustrating this is shown in Appendix 8.2. This is suspected to be
due to multiple clients residing on the same subnet facilitating
quick exchanges between them, as well as a hint of randomness
consisting of exactly which clients connected first to the tracker
and which clients found each other first and committed bandwidth
to each other first. Also, such connections are probably due to
which pieces of the torrent are contained on what machines at any
given time i.e. the rarest-first algorithm.

4. CONCLUSIONS
BitTorrent takes less time than HTTP and FTP when backing
up/transferring large files to several machines at one time. In
these tests, the performance gap widened to where two-thirds of
the time was saved when using the BitTorrent protocol when
eleven clients were involved. This shows that BitTorrent can be
used effectively by an organization to save time when sending
content out to several machines, the time saved increasing with
the number of machines involved.

5. FURTHER RESEARCH
An ideal extension of this research would be to develop a site
mirroring or network backup utility that automated file replication
and distribution using the BitTorrent protocol. This would have
to automate several of the steps in sharing BitTorrent content, but
would actualize and validate this research. Essentially a server
piece would have to be developed residing on the server to be
mirrored that would send its data via a built-in BitTorrent agent to
the client piece residing on the mirror servers with a built-in
BitTorrent client to receive and share the data with the others
while keeping a complete copy for itself. BitTorrent would be the
means for quickly backing up data on several servers over a
network or the Internet to prevent data loss.

6. ACKNOWLEDGEMENTS
Many thanks to all those who helped make this project happen,
either implicitly or explicitly, including but not limited to God,
my supervisor Dr. Gerald W. Cichanowski, Ann C. Smith, Dr.

Joan M. Francioni, David E. Hajoglou, Nathan Lloyd & the SMU
IT Department, Mark Krinke & Digicom, Inc., Jim Bloedorn &
GeoSpatial Services, Mom & Dad, my fellow CS495 classmates,
my roommates for putting up with the server in the living room,
and my advisor, Carol Shields, for putting up with me all these
years.

7. REFERENCES
[1] S. H. Kwok. File sharing activities over BT Networks:

pirated movies. Computers in Entertainment, Vol. 2,
Issue 2, Apr. 2004, page 11.

[2] C. Thompson. The BitTorrent Effect. Wired Magazine
Issue 13.01, Jan. 2005.
http://www.wired.com/wired/archive/13.01/bittorrent.ht
ml (8 Feb 2007).

[3] S. Levy. No, It’s Not The New Napster. Newsweek
Vol. 146, Issue 22, page E4. Nov. 28, 2005

[4] M. Ceballos, J. Gorricho. P2P File Sharing Analysis
For a Better Performance. Proceedings of the 28th
International Conference on Software Engineering,
pages 941-944, 2006.

[5] A. Legout, G. Urvoy-Keller, P. Michiardi. Rarest first
and choke algorithms are enough. In Proceedings of the
6th ACM SIGCOMM on internet Measurement (Rio de
Janeriro, Brazil, October 25 - 27, 2006). IMC '06. ACM
Press, New York, NY, pages 203-216.

[6] World of Warcraft – Frequently Asked Questions.
Blizzard Entertainment, 2005.
http://www.blizzard.co.uk/wow/faq/bittorrent.shtml (8
Feb 2007).

 [7] W Yang, N. Abu-Ghazaleh. GPS: A General Peer-to-
Peer Simulator and its use for Modeling BitTorrent. In
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, 2005, pages 425-432.

[8] L. Goad. BitTorrent Creator Dismisses Microsoft P2P
Project. eWeek News, June 21, 2005.
http://www.eweek.com/article2/0,1895,1830206,00.asp.
(28 Feb 2007)

[9] A. R. Bharambe, C. Herley, V. N. Padmanabhan.
Analyzing and Improving a BitTorrent Network’s
Performance Mechanisms. IEEE Conference on
Computer Communications, 2005.

[10] A. R. Bharambe, C. Herley, V. N. Padmanabhan. Some
Observations on BitTorrent Performance. In
Proceedings of the 2005 ACM SIGMETRICS
international conference on Measurement and modeling
of computer systems, pages 398-399, Banff, Alberta,
Canada, 2005.

8. APPENDIX
8.1 Glossary

(.)torrent - A text file that points to machines seeding the
desired content as well as other machines in the swarm
Leechers - People who download from others without sharing
any files on their own computers
Seed or seeder - A computer with a complete copy of the
BitTorrent content (At least one seed computer is necessary for
a BitTorrent download to operate)

 4

Swarm – The totality of all computers simultaneously
downloading and uploading the same torrent content

Tracker - A server that manages the BitTorrent file-transfer
process

8.2 Graph showing the length of time relative to the number of servers involved.

0

2000000

4000000

6000000

8000000

10000000

12000000

1 2 3 4 5 6 7 8 9 10 11

Number of Servers

T
im

e
 (

in
 m

il
li

s
e
c
o

n
d

s
)

1000MB BT

1000MB HTTP

1000MB FTP

8.3 File transfer times in ms.
Ratio 10MB

BT
10MB
HTTP

10MB
FTP

100MB
BT

100MB
HTTP

100MB
FTP

1000MB
BT

1000MB
HTTP

1000MB
FTP

1-to-1 11727 9598 30724 117252 98874 106278 1073493 999343 1018997

1-to-2 24485 19550 61223 256509 196144 221933 2029849 1988906 2011463

1-to-3 35130 29077 91641 317146 291453 336948 2689217 2968875 3003322

1-to-4 38628 122114 345357 387502 452407 2908993 3949655 3991422

1-to-5 48027 152556 391072 485318 568715 2021227 4935430 4978921

1-to-6 57492 183025 581045 684325 2620776 5911176 5967121

1-to-7 78213 66972 213560 355231 677151 799599 2591917 6893301 6958753

1-to-8 76806 244201 775349 917248 3238437 7910424 7982288

1-to-9 86447 274858 872761 1040453 3509326 8912535 8983352

1-to-10 96338 305450 971501 1156918 3501215 9924880 9992839

1-to-11 106255 336036 339959 1070140 1279332 3657008 10958656 11023011

1-to-12 98001 303786 553278 2522562 3454656 31415212 29987551

 5

Analysis of Microsoft Office 2007 User Interface Design
Catherine Beel

Saint Mary’s University
700 Terrace Heights
Winona, MN 55987

cabeel03@smumn.edu

ABSTRACT
Microsoft's recently released Office 2007 suite has a user
interface that appears significantly different from any of its
previous suite interfaces. The UI redesign represents a massive
research and development effort and is intended to enable users
to focus on the task at hand (what) rather than tool itself (how).
Microsoft claims that new UI features, such as ribbons and
contextual tabs, are easier to use and less distracting than the
traditional menu-oriented features. We tested a number of these
new UI features during formal usability experiments. Our results
show that, on average, users did not perform operations any
better in this new UI. The users found the arrangement of the
new features to be confusing. Users experienced difficulties
locating operations to perform various tasks.

General Terms
Measurement, Design, Experimentation, Human Factors.
Keywords
Usability study, HCI, Office 2007

1. INTRODUCTION
User Interfaces (UI) are extremely important in today’s
computing environments, The design and creation of the UI
must be done according to UI design principals to ensure their
ease of use. In 2007 Microsoft will release a radically revamped
UI for its Office products [5]. For example, the traditional file
menus have been replaced with the new Ribbon feature, shown
in Figure 1. [1] We will provide a timely investigation of the
effectiveness of this new UI design before Office 2007 is
released to the public.

 Figure 1. The Ribbon

Many of these UI design changes stem from well-researched
Human Computer Interaction (HCI) principles. For example,
Fitt’s Law [7] motivates the change from the traditional icon

sizes, which are shortcuts for the UI features, to the new icons
found on the Ribbon. Now upon viewing the icons a user will
notice the new icons are labeled with significantly larger
clickable images. This will make them larger targets. With a
higher screen resolution available on most current monitors the
Ribbon can be larger and hold more icons [2]. The Mini Toolbar
(Figure 2) was created and designed following the principals
laid out by Fitt’s Law. The developers implemented a simpler
version of this concept in the old UI, called ‘on-object UI’. [4]
This basic version is the AutoCorrect feature found in the Office
Applications. It is the small tab that appeared next to auto-
corrected text in Word. With the Mini Toolbar appearing next to
the mouse after an object is selected, the distance the mouse
needs to travel to use an available feature is greatly reduced.
The majority of the object relevant functions are available on
this toolbar.

Figure 2. The Mini-Toolbar

The Contextual Tabs concept engineered the change from the
traditional menu toolbars to the tabs the user sees when an
object is active in the UI [3]. For example, if the user is using
the drawing tool, the tab that is relevant to the drawing feature
will appear next to the menu tabs on the ribbon. This newly
appeared tab will contain the functions that are available for that
object. When an object is no longer selected, the tab that
appeared for the object will disappear because the functions that
the tab provided are no longer applicable.

Microsoft believes that its choice to align
their design decisions with HCI principles
will pay off quickly with user satisfaction in
the way of a quick learning curve for
established Office users. We hypothesize
that the jump to this UI paradigm is too

large and will cause immediate problems for established Office
users. More formally, we hypothesize that despite the fact that
Microsoft designed their new Office 2007 suite to adhere to
currently accepted UI principles, users still face a usability
hurdle due to the act that they are conditioned to operate in the
previous Office UI paradigm.

2. METHODS
To properly conduct a usability study on the Office 2007 UI, we
found 50 participants and anticipate that will be sufficient to
generate significant results. The participants have varying levels
of experience with previous Office versions. We gave a pre-test
survey for the participants in order to gauge their current Office
proficiency and they ware categorized as low, medium, or high
performers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Proceedings of the 5thWinona Computer Science Undergraduate
Research Seminar, April 19, 2007, Winona, MN, US.

 6

We were able to recruit participants from a variety of different
majors and ages of users that can be found on a University
campus. These participants ranged from students to faculty, each
who have different levels of comfort with currently available
UI’s.

2.1 Test Environment
For the experiment we used Morae software created by
TechSmith [6]. The Morae package contains Morae Recorder,
Morae Remote Viewer and the Morae Manager. The Recorder
captured video of the screen, user (including audio) and system
events, which are automatically synchronized and each action is
recorded (such as keystrokes and mouse clicks). The Remote
Viewer allowed us to view the user test while the user was
performing the test. The Manager application allowed us to
analyze the user recording and create markers and segments
based on when the user began and finished each of the tasks of
the test. This provided us with accurate times for each task.

Four computers have Morae installed that monitored the system
and users as they attempted the given tasks. Figure 3 shows the
lab set up. The Lab required video and audio setups and access
to the Office 2007 and 2003 products. It was imperative that
each computer be set up identically; therefore we have set up the
four test machines with a second boot option that ran Windows
XP and has only the necessary applications available (Morae,
Office, Webcam, etc).

Figure 3. The Lab Setup

2.2 User Tests
The participants were given an introduction to the study they
participated in and a brief run down of the different software
packages that they would be using, prior to the test being
conducted. Each participant was required to complete a pre-test
survey (Appendix A) that provided us with their prior
knowledge and comfort with the Word UI. Each user was given
directions (Appendix C) and identical tasks (Appendix D) to
perform. The directions walked them through the test, where
they could find the documents and what they needed to open.
The tasks described the actions the user was to perform on the
test document that was provided for them. They were
encouraged to verbally indicate what they were thinking and/or
feeling throughout the test.

The participants were given five separate tasks that had them use
different features of the office application. They were required
to navigate the different features of the UI. Two of the tasks the
users preformed were identical enough to each other that we
disregarded one. We focused on the four tasks that were left.
Task #1 required them to perform simple font alignments
changes. Task #2 required them to access the spacing function in

the paragraph features of the UI. Task #3 required the
participant to insert bullets into pre indented text. Task #4
required them to change the format of an existing table.

The participants were given a post-test survey, containing open
ended questions that allowed them to describe any successes or
frustrations they may have experienced while performing the
test tasks on the old and new UI’s.

3. RESULTS
Upon analyzing the pre-test surveys from the 50 participants in
the study, we found them to be ranging from the ages of 18 to 31
(49 undergraduate students and 1 faculty member). From those
surveys we were able to conclude that all had used the previous
versions of Microsoft Word 2003, 64% use the application 0-5
hours a week, 26% 5-10 hours a week, 6% 10-15 hours a week
and 4% use the application 15 or more hours a week, so we have
a range of those who are comfortable with it on a day to day
basis.

The test asked the users to open the Word 2003 application and
open a file. For the 2003 recordings we had a total of 94% (47)
successful recordings, of those recordings 85% preformed the
open function, the other 15% directly opened the file from their
file folder. From those 85% the average time it took for them to
click on the ‘Open’ function (either the icon on the toolbar or
File Open) was 4.06 seconds, with the high of 14.81 seconds
and a low of 1.27 seconds. The times are shown in Table 1.

Table 1. Word 2003 Times (in seconds)

Word 2003 Open Save Save As
Average 4.06 2.99 3.76

Max 14.81 5.02 11.41
Min 1.27 1.38 1.07

Number of recordings
performing the action

40.00 5.00 46.00

The test then asked the users to perform some everyday tasks to
manipulate the test document provided for them.

Once those tasks were complete they were then asked to save
the file as “<userID>Test2003.doc”, implying that they use the
‘Save As’ function. 10% of the 47 recordings used the save icon
on the toolbar and 97% did a ‘Save As’. There is some overlap.
8% of those who preformed a straight save, continued on to
locate the ‘Save As’ option. Of the 10% it took an average of
2.99 seconds to find and select save. Of the 97% it took 3.76
seconds to find and select ‘Save As’, as seen in Table 1.

That concluded the first part of the test. Next the users were
required to restart their test machine and choose the boot option
that would load the operating system that had the 2007 version
of Microsoft Office. Unfortunately, for reasons we couldn’t
define, the logon to the 2007 boot took approximately five to ten
minutes. Fortunately the participants were willing to remain
patient with the systems and the tests.

After evaluating the pre-test surveys, we discovered that 18% of
the participants have used the 2007 version of Microsoft Word.
All participants that have used the new UI indicated that they
have used it less than 5 hours a week, though with less than five

 7

hours a week of use time. One participant had indicated that the
Office 2007 suite is the available Suite on their computer, thus
they anticipate using the new UI in an increasing amount in the
future.

Of the 50 participants that took the test, 86% of the recordings
of the participants test sessions were successful. Once again the
users were asked to open the Word 2007 application first and
then open the file. This created interesting results. 88% were
able to find ‘Open’, although on average it took them 28.17
seconds, with a high of 115.90 seconds and a low of 4.63
seconds, as shown in Table 2. On one occasion, the recording
showed the user spending up to 3 minutes and 52 seconds trying
to find the open function, and at the 3:52 mark, the user gave up
trying to find open thus concluding that particular participants
test, leaving 42 recordings.

Table 2. Word 2007 Times (in seconds)
Word 2007 Open Save Save As
Average 28.17 4.43 25.51

Max 115.90 15.32 138.32
Min 4.63 1.63 2.99

Number of recordings
performing the action

38.00 20.00 41.00

23.92
20.18

135.4

0.25

109.58

-5.43

-20

0

20

40

60

80

100

120

140

160

Open Save As

T
im

e
 i

n
 S

e
c

o
n

d
s

Averages

Max

Min

Figure 4. Time Differences

Figure 4 shows that in the new 2007 application it took the
participants on average 23.92 seconds longer to find the ‘Open’
function, with a high of 109.58 seconds and a low of .25 seconds
(disregarding the users who did not use the UI to open the file).
Figure 4 also shows that the user continued to have difficulties
finding ‘Save As’. In the Word 2007 UI the ‘Save As’ and
‘Open’ icons are on the same menu, shown in Figure 5.

The user took, on average, 20.62 seconds longer to find ‘Save
As’ on the new 2007 UI, with a high of 135.4 seconds, and -5.43
seconds as a low (this user preformed the save faster using the
2007 UI). There were a total of 2 users that performed the ‘Save
As’ faster in the new UI. In the 2007 UI test there was a larger
number of people who chose the save option that is located by
default on the Quick Access Toolbar (QAT), The QAT’s
location is indicated in Figure 6.

Figure 5. The 2007 Main Menu

Figure 6. The Quick Access Toolbar

We believe this is because it was the only option that they could
see/find quickly enough that would do what the participant
wanted. Once the participant realized it was not the right option,
they began looking for the ‘Save As’ option. One participant
gave up on finding the ‘Save As’ option altogether.

The user requiring 135.4 seconds to find the ‘Save As’ option did
not use the new menu, from Figure 4, to find the open function.
The participant proceeded to place the icon on the QAT. The
QAT does not allow the option to place a ‘Save As’ icon for
quick access. In opening a file in this manner the user did not
have the experience of opening the menu that ‘Save As’ resided
on. The high for someone that did not use the QAT was 58.35
seconds, which is still significantly high.

It was apparent that there was a wide range of users based on
their familiarity with the UI, and their comfort in transitioning
from one UI to the other. Table 4 shows the times to complete
the tasks in 2003 and Table 5 shows the times in 2007. Analysis
of the task times displayed in the tables that it is evident there is
a notable separation between the minimum times and the
maximum times. This indicates that there were users familiar or
had never preformed that task with the old UI and users
unfamiliar with the UI. For the 2007 UI, that does not apply.
18% of the participants have used the 2007 UI previously. This
proves exposure to the UI but not necessarily knowledge or
comfort with it. Those that have used the new UI have been
exposed infrequently and for short periods of time.

 8

Table 4. Word 2003 Task Times (in seconds)

Word 2003 Task 1 Task 2 Task 3 Task 4
Average 19.02 18.60 14.29 42.36

Min 10.81 8.26 3.54 10.33
Max 30.72 57.34 70.21 112.37

Table 5. Word 2007 Task Times (in seconds)

Word 2007 Task 1 Task 2 Task 3 Task 4
Average 21.9 33.02 15.98 51.97

Min 5.91 7.88 2.8 5.32
Max 91.79 120.06 83.55 300.65

The lower numbers, shown in the Min rows of Tables 4 and 5,
indicate that some users can find things easily in the new UI
whereas others experienced extreme difficulty in finding the
desired action. The participant that produced the data of 300
seconds spent all of those seconds trying to find the desired
function. This participant eventually gave up looking and
continued on with the test without finding the function they were
looking for. Figure 7 visually shows the difference in the
average times from one UI to the other. The positive number
indicates that the user did the task, on average, faster with the
2003 UI, the negative numbers indicate that the user did the task
faster in 2007.

Average Times

0.00

10.00

20.00

30.00

40.00

50.00

60.00

Task 1 Task 2 Task 3 Task 4

T
im

e
 i
n

 s
e
c
o

n
d

s

2003

2007

Figure 7. Time Differences

Upon analysis of the post test surveys, we discovered that 4% of
the participants felt they did not complete the tasks in Word
2003 with ease. The comments the user gave were prominently
focused on difficulties with completing Task #4. In Word 2007
36% felt they did not complete the tasks with ease. That 36%
commented that the interface was unfamiliar to them and they
had difficulties finding the desired functions. 34% of the
participants felt the transition from the old UI to the new UI to
be difficult. Their comments were that they were more familiar
with the old and the new was too confusing at first use. The
main features of the UI that the participants did not like were the
way the menus were taken out and put into the ribbon and
context tabs. They had a difficult time finding what they were
looking for, though the majority of the participants liked the new
look of the UI such as the colors and appearance.

The participants were just about split evenly on some aspects of
how they felt about one UI over the other. Table 4 shows that a
majority of the participants felt that 2003 was a faster, smoother
and easier UI.

Table 4. User opinions on the UI's

 Faster Smoother Easier
2003 52% 82% 54%
2007 48% 18% 46%

The participants were asked to choose which UI they preferred
when performing a certain action, such as saving a document, or
manipulating text. The results were varied, as seen in Figure 8.
Given the choice between the new UI and the old UI, the user
was asked which UI they would prefer to use. Only 40%
preferred to use the old UI.

0% 20% 40% 60% 80%

Open a file

Save a file as

Insert a table

Increase the size of the font

Change the font style

Change the font alignment

Insert bullet points

Navigate the menus

Which UI they felt took longer

UI they would prefer to use

2007

2003

Figure 8. User Preferences

All participants noticed the context tabs throughout the test, but
approximately 42% prefer the old menu toolbar styles, 6% felt
that they liked both styles, 28% preferred the new style and 24%
felt once they got more time with the UI they would prefer the
new style over the old.

Where the mini-tool bar is concerned 32% of the users didn’t
see it. Overall 24% said they didn’t use it or like it, some said
that it got in the way, while 44% had favorable opinions of it
and 12 % used the mini toolbar.

4. CONCLUSION
The results above showed, users on average spent more time
finding the functions they wished to use while using the newly
designed UI. From the participants’ comments from the post-test
survey, we concluded that the time difference is due to how the
traditional menus were taken out and put into the new Ribbon
and context tabs and the complete change to the UI design. The
new organization of these tabs proved to be confusing and
difficult to navigate to the users causing difficulties with the new
UI, though many of the participants indicated that over time the
UI will become easier to use. This is an opinion that we can
agree with, typically everything should become easier to use
over time. The point to these drastic changes was that the new
UI is going to be easier to use, regardless of the users knowledge

 9

or comfort of the Office UI. The test results show that the new
UI is in fact not easier for a new to the UI user or a user that has
already been exposed to the UI. For a user to become
comfortable with the new UI they will have to learn how to use
its different features.

Regarding Fitt’s law and the larger images with text on the icons
located on the ribbon, the participants did notice the larger icons,
and the added text, but the way they are organized on the tabs
were confusing to many and the tabs weren’t as helpful as
anticipated. Where the Mini-tool bar is concerned, the users
were split on whether it is effective or not. Some felt it got in the
way and others felt that it made doing font related functions
easier and liked that it showed up near the newly highlighted
text.

5. FUTURE WORK
We feel more in-depth testing is still needed. A good test would
be to find a large enough group of users that have had significant
amount of time with the new UI and feel as comfortable with it
as the do with the old UI. The tasks would be modified to focus
on a more specific feature of the new UI, for example picking
one of the new design concepts and requiring a user to access
that feature of the UI. A researcher may choose to focus on a
study with a group of users that have not used the old UI or the
new UI. The test would focus on performing task with the new
UI and show how an inexperienced user would respond to the
new UI. The UI is still brand new and there will be more things
to discover that can be studied, examined and questioned.
6. ACKNOWLEDGMENTS
We would like to thank the faculty of Computer Science
Department of Saint Mary’s University for all their assistance in
setting up the labs and finding participants.

7. REFERENCES
[1]. J. Harris (2006) Designing against a Degrading

Experience, Online Retrieved February 8, 2007
http://blogs.msdn.com/jensenh/archive/2006/03/02/5421
18.aspx

[2]. J. Harris (2006) Giving you Fitt’s, Online. Retrieved
February 8, 2007 http://blogs.msdn.com/jensenh/
archive/2006/08/22/711808.aspx

[3]. J. Harris (2005) Its All about Context, Online Retrieved
February 8, 2007 http://blogs.msdn.com/jensenh/archive
/2005/09/16/468365.aspx

[4]. J. Harris (2005) Saddle up to the MiniBar, Online.
Retrieved February 8, 2007. http://blogs.msdn.com/
jensenh/archive/2005/10/06/477801.aspx

[5]. Microsoft Corporation (© 2007) Office Professional
Home Page, Online Retrieved February 8, 2007
http://office.microsoft.com/en-
us/suites/FX101674091033.aspx

[6]. TechSmith Corporation. (© 1995-2007) Morae Features
Overview. Online Retrieved February 8, 2007.
http://www.techsmith.com/morae/features.asp

[7]. P.M. Fitts, The information capacity of the human motor
system in controlling the amplitude of movement,
Journal of Experimental Psychology 47 (1954) (6), pp.
381–391.

 10

APPENDIX A: Pre-Test Survey

User ID:______
Microsoft Word 2007 Pre-Test Survey

This survey is to help us get a better understanding of your knowledge, familiarity and comfort with the
Microsoft Word applications.

Please respond to the following questions and statements as honestly as you can.
Your feedback is extremely valuable to us and much appreciated.

Are you a Saint Mary’s Student? Yes No

 If Yes: What is your major? ___

Are you a Faculty of Staff Member? Yes No

 If Yes: What is the department you teach or work in?_______________________

What is your gender? Male Female

What is your age? ______________

Have you ever used Microsoft Word 2003? Yes No

How often do you use the Word Application over the course of a week?
0-5 hours 5-10 hours 10-15 hours 15+ hours

Have you ever taken a course, or anything similar, that taught you how to use Word2003?
 Yes No

Have you ever used the new Word 2007? Yes No

How often do you use the Word Application over the course of a week?
0-5 hours 5-10 hours 10-15 hours 15+ hours

Have you ever taken a course, or anything similar, that taught you how to use Word2007?
 Yes No

If you have not used either Word 2003 or 2007, what word processing application do you use?
_____Word Perfect
_____Open Office.org Writer
_____Microsoft Works
_____Notepad

 11

APPENDIX B: Post-Test Survey

User ID:__________
Post-Test Survey

Were you able to complete all the tasks using Word 2003 with relative ease?

Yes No

If no, describe the problems you had (Please be as descriptive as possible.)

Were you able to complete all the tasks using Word 2007 with relative ease?

Yes No

If no, describe the problems you had (Please be as descriptive as possible.)

If you experienced trouble with Word 2007, do you believe that with time it would get easier to use? Yes
 No

Did you find the transition from using 2003 to 2007 difficult? Yes No
Please explain why you answered yes or no.

What feature do you like best about the Word 2003 version? Why?

What feature do you like least? Why?

What feature did you find that you liked best about Word 2007? Why?

What feature did you find that you liked least? Why?

In Word 2007, if you saw and used the Context tab, were they useful, or do you prefer the old menu toolbar?
Please explain your answer.

In Word 2007, if you saw the Mini-Toolbar, did you use it? Please explain your answer

 12

Continued on other side (next page).

Which application did you feel was: Faster: Word2003 Word2007
 Easier: Word2003 Word2007
 Smoother: Word2003 Word2007

If you had the option which version would you prefer to use to create a document?
Word 2003 Word 2007 Other ___________________

Do you have any comments or concerns regarding the test?

Application Preferred Which version of Word did you like best when . . Word 2003 Word 2007
Opening files 1 2 3 4
Saving files 1 2 3 4
Inserting a Table 1 2 3 4
Increasing text size 1 2 3 4
Changing Font style 1 2 3 4
Changing font alignment 1 2 3 4
Creating Bullet points 1 2 3 4
Navigating the interface(menus) 1 2 3 4
Which interface took longer to find the item to
complete a task.

1 2 3 4

 13

APPENDIX C: Test Directions

1

Begin Test

• Log on

• Find this icon in R:\

– It must be Test2003.

• Once that has been

clicked your task bar

should look like this

• Open Word 2003

2

Word 2003 Tasks

• Open the file located on your R:\TestFiles

• Complete the tasks given to you

• Once you are ready to save, change the file

name to <UserID>_Test2003.doc

• Save it in R:\2003Test\

3

Saving the session recording

• This application

will show up

once you close

Word 2003

• Enter your

UserID after

Word 2003

• Click OK

4

Exit the Recording

• When this box shows,

just click OK.

• Then close this

window.

5

Shut Down the Computer

• Now restart the

computer(Start

Shut Down)

• Select the restart

option.

6

Restarting the Computer

• Once the computer
begins to boot, this
screen will show (it
only will show for
approx 10 seconds,
so you have to pay
attention)

• Use the arrows to
select the Research
option.

 14

7

Beginning the Word 2007 Test

• Log on

• Find this icon in R:\

– It must be Test2007.

• Once that has been

clicked your task bar

should look like. .

• Open Word 2007

• Begin the test.

8

Word 2007 Tasks

• Open the file located in your R:\TestFiles

• Complete the tasks given to you from

before

• Once you are ready to save, change the file name

to <UserID>_Test2007.doc

• Save it in R:\2007Test

9

Saving the session recording
• This application

will show up once

you close Word

2007

• Enter your UserID

after “Word 2007

Test”

• Click OK

• Click OK on the

next pop-up and

exit the application

10

Restart

• When ready to save, same principals as before

though any 2003 should be 2007.

• Once again Restart the computer, but ignore this

screen (it will automatically choose the CS Lab

option)

 15

APPENDIX D: Test Tasks

_ Find the yellow highlighted text.
 Change the alignment to right alignment; enter ID given to you for test. Hit return

and insert the date.

_ Find the red highlighted text.
 Align it to the center, Change the font to Georgia, and the font size to 20.

_ Find the green highlighted text.

 Tab the beginning of each paragraph, and change the spacing to double.

_ Find the aqua highlighted text.
 Select the section and insert numbered bullets

_ Find the table.

 Change the alignment of all the cells to center, and change the theme of it using
Table Properties.

 16

PerfiTrak – A Web-based Personal Finance System with
Broad I/O Features

Matthew Lieder
Department of Computer Science

Winona State University
Winona, MN 55987

lieder_matthew@hotmail.com

ABSTRACT
Since money is an integral part of most economies, it is usually
important for people to keep track of their personal finances.
Doing so by hand is difficult, and hence, with the advent of
computers (and then the Internet), applications have been
developed and refined to make it easier. Unfortunately, available
applications are far from perfect. Observed deficiencies include
poor interoperability, inflexible categorization of transactions, and
lackluster online management. This paper presents a web
application, PerfiTrak, which addresses these problems.
Specifically, PerfiTrak includes robust import/export functionality
(supporting CSV, QIF, and OFX formats), hierarchical tagging of
transactions, a cohesive user-friendly interface (using PHP and
AJAX), and easy offline access to data (through SOAP web
services).

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability – data mapping.

H.3.5 [Information Storage and Retrieval]: Online Information
Services – data sharing, Web-based services.

J.1 [Administrative Data Processing] – Financial.

General Terms
Design, Economics, Security, Human Factors, Standardization

Keywords
identity, authentication, open standard, open source, AJAX,
personal finance, interoperability

1. INTRODUCTION
Money is an integral part of most economies, and so keeping
track of its flow is a very important activity. Not only should the
flow of money in businesses and groups be tracked, it is important
that individuals keep track of their own money flow too. If one
does not, for example, a big purchase might drain an account so
much that not enough money is left to cover an upcoming bill.

Buying a nice new TV and then not having enough money to pay
the electric bill would be a very unfortunate (and embarrassing)
occurrence. As another example, one might forget about money
they owe a friend or, less likely, they forget about money owed to
them.

So how does one go about keeping track of their money flow?
Some recording is most likely already being done: receipts from
stores, carbon copies of checks, a checkbook ledger, monthly
statements from checking or debit/credit card accounts, pay stubs
from one’s job, and/or even just one’s memory. What may be
noticed from that list though is that 100% coverage is unlikely to
be achieved, accuracy is far from guaranteed (especially in
regards to human memory), and the sources are highly disparate
and difficult to combine to get an overall picture. Not only that,
but questions such as “How much has my car cost me this past
year?” or “Can I afford to buy this car?” or “How much do I owe
people?” take a lot of manual labor to fully answer.

With the advent of personal computers, a viable solution to such
problems finally started to emerge. Applications were developed
to allow people to store their transactions on their computers and
then run queries to view charts and graphs showing their cash
flow. With the advent of the Internet and subsequently online
banking, it became no longer necessary to manually input every
transaction. Transaction exchange formats were developed,
allowing people to download transactions from their bank
websites and then import them into their financial transaction
software. Some applications even entirely automate that process,
regularly automatically retrieving transaction data from banks so
the user is saved from having to do the download/import process
themselves.

Though the area of existing personal finance applications may
seem to be mature and hardly lacking, we have observed clear
deficiencies. One of the major ones is with respect to
interoperability amongst the applications. Most existing
applications allow importing of financial transactions in standard
formats, but very few allow exporting to those same formats –
presenting much difficulty if a person wants to switch to a
different application or use multiple applications in tandem. In
addition, options are usually very limited (if even existent) when
importing. We have observed situations where banks provided
transaction data which had the Description and Memo fields
reversed and all data in visually-unfriendly uppercase lettering.
With existing applications, corrections like those would be very
time-consuming.

Another deficiency involves the categorization of transactions.
The vast majority of applications allow assigning just one

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Proceedings of the 5thWinona Computer Science Undergraduate
Research Seminar, April 19, 2007, Winona, MN, US.

 17

category per transaction, taken from a tree of categories. That was
the way things were done before computers (as evidenced by
filing cabinets), so it was natural to continue using that form of
organization when applications started being developed.
However, often there will be transactions that do not neatly fit
into a single particular category, causing organizational data to be
basically thrown away and thus limiting the power and usefulness
of reports. For example, with the traditional categorization system
finding out how much money was spent on a particular person
would be impossible – transactions would have been categorized
by where the money came from or what it was used for, not who
it was spent on. As another example, suppose someone wants to
find out how much money they spent on computer-related items
in the past year – those transactions would have been under
categories such as “Business” or “Entertainment”, without
anything identifying them as computer-related purchases. Not
every application uses that category system, however: some web
applications [4, 16] use something they call “tags”, allowing any
number of arbitrary labels to be attached to any transaction. That
is an improvement on the single category system, making the
aforementioned examples actually possible, but because the tags
have no hierarchical structure (no relationships between tags)
anything more than a small number of tags quickly becomes
unwieldy and counter-intuitive.

Finally there is a need for web personal finance applications,
especially with the usability and capabilities of their desktop
equivalents. It is becoming common for people to have more than
one computing device (such as desktops, laptops, PDA’s, and cell
phones). At the same time, people are often finding themselves
using computers they do not own (such as at work, libraries,
cybercafés, friends’ houses, etc). Desktop applications (especially
personal finance applications) almost always store their data
locally, so it becomes very difficult for the same person to use the
same desktop application across multiple computers – it quickly
becomes practically impossible to manually keep track of all the
disparate data. With the proliferation of Internet access, web
applications present an appealing solution to that problem because
they allow access to the data stored on them from the web
browser of virtually any Internet-connected computer. While
personal finance web applications already exist, their interfaces
tend to be more static (like traditional web pages) than dynamic
(like desktop applications) and they are often lacking in regards to
features and customizability. They also are fully dependent on
Internet access and provide no real means to manage transactions
without it.

To remedy those deficiencies, we have developed a personal
finance web application called PerfiTrak. For interoperability it
supports both importing and exporting of common financial
transaction formats, for transaction categorization it implements a
fully user-customizable hierarchical tagging scheme, and for web
access it provides a visually interactive and cohesive cross-
browser/operating system web interface while also allowing
transaction management when Internet access is unavailable. It
was developed to potentially have a future as a commercially-
viable project, with a target audience of people without much
financial management skills or interest while at the same time
offering functionality to appeal to others.

2. BACKGROUND
Many personal finance management applications exist, but two in
particular rise above the rest both in terms of features and market
share: Intuit’s® Quicken® [9] and Microsoft Money® [14] both
currently at version 2007. Both applications support account
management, budgeting, and bill-paying, making extensive use of
Internet connectivity to automatically download transaction
details from supporting banks. For banks where automatic
downloads are not supported, the applications can import
transaction data in various industry-standard transaction exchange
formats.

In addition, Personal finance applications are not just limited to
desktop software anymore. Very recently websites such as
moneytrackin’ [16] and foonance [4] have appeared, which allow
financial transactions to be recorded and simple reports to be
generated from almost any Web-connected computer. Currently
they have very simple interfaces compared to their desktop
counterparts and are lacking in features, though as time progresses
they are likely to improve.

3. SYSTEM OVERVIEW
Because of tight time constraints a “Rapid Application
Development” (RAD) software engineering approach [13] was
used, involving rapid, incremental prototyping and the use of as
many existing software components as possible. Since this needed
to be a commercially-viable project, with real users and a future,
practicality and cost factors were also involved in decisions made.

The functional requirements of the application are as follows:

• The application must support both importing and
exporting of common financial transaction exchange
formats. Because of their widespread use, Comma-
Separated Values (CSV) [26], Quicken® Interchange
Format (QIF) [23], and Open Financial ExchangeSM
(OFX) [8, 19] are the formats that should be supported.

• The application must allow the user to create and
organize categories in a hierarchical structure, while
also allowing multiple categories to be assigned to a
single transaction. The categories should be referred to
as “tags”, to distinguish them from ordinary categories
and to be consistent with terminology used in
applications with similar organizational systems.

• The application must be accessible from as many
Internet-connected computers as possible. Because of
their market share, it must work in both Internet
Explorer 6+ and Mozilla® Firefox® 1+. It also must
work under Microsoft® Windows® XP or newer,
Linux®, and Mac OS® X or newer.

• The user interface should be easy for users to figure out
without requiring them to read a manual. Users are
unlikely to spend the time to read a manual and if they
cannot figure something out on their own they will
likely just give up.

• The user interface should be visually appealing, and
utilize effects to make relationships amongst data easier
to visualize while at the same time making the
experience more enjoyable. That is an important part of

 18

drawing in the market segment of people who lack
personal finance skills and would not normally be
interested in tracking their personal finances.

• An easy way for users to access and manage their
transactions stored in the application when Internet
access is unavailable (thus making the application
inaccessible) must be provided. Users should be able to
transfer their transaction data from the application to
their computer while connected to the Internet, view
and change their transaction data while not connected,
and then when connected again be able to transfer their
changes back to the application.

4. DESIGN DECISIONS

4.1 Web Support
One of the first things that had to be done was to choose the best
way to present the application to the user over the Internet. There
have been various solutions developed over the years specifically
to help web applications attain the richness and responsiveness of
desktop applications, including JavaScript (Web browser-
embedded scripting language), Java Applets, and Adobe®
(previously Macromedia®) Flash, so it was wise to make use of
one of them. To help narrow down the search we came up with
some criteria specific to our situation that the ideal solution must
fulfill:

• Cross-browser: while Internet Explorer® is dominant
in the web browser market, a number of other browsers
(including Mozilla® Firefox®, Opera, and Safari™) are
also in use and it would reduce our user base (and
potentially generate bad press) to restrict our users to
just one browser.

• Cross-platform: though Microsoft® Windows® is by
far the most popular desktop operating system, there is a
small (but often vocal) minority using other operating
systems such as Linux® and Apple’s® Mac OS®. For
similar reasons as in the previous point we would prefer
to not restrict our users to a single operating system.

• Seamless with browser: most web browsers allow the
user to change the font size, zoom in on content, and
resize the browser window, and supporting those
functionalities would improve the usability of
PerfiTrak. It would also be helpful to be able in the
future to take advantage of the browser’s printing
capabilities.

• Open standard: since once we chose a solution it
would be hard to change to a different one later, we
want to make sure the chosen solution will be well-
supported and improved upon in the future – with an
open standard those are likely to happen, since they
generally have a broad audience and are not tied to the
fate of a single company. A lot of documentation is also
usually available then, helping to minimize the learning
and development time.

Given those criteria, both Java applets and Flash are out of the
running (both do not work very seamlessly with the browser, and
Flash is additionally not an open standard). One solution, not

previously mentioned, does fulfill all those criteria however:
AJAX (Asynchronous JavaScript + XML) [6]. It is not technically
a new technology in itself, but is a term for a specific collection of
already-existing technologies being used in concert:

• standards-based presentation using XHTML and CSS

• dynamic display and interaction using the Document
Object Model

• data interchange and manipulation using XML and
XSLT

• asynchronous data retrieval using XMLHttpRequest

• JavaScript binding everything together

Those technologies make it possible for a web page to be
completely, dynamically altered without requiring a page refresh,
since the communication with the web server happens quickly and
invisibly in the background. Though relatively new, AJAX is
already in use by many major web applications including
Google’s Gmail™, Maps™, and Docs™; Microsoft’s® Hotmail®
and Virtual Earth™; Yahoo!™ Mail; and many bulletin board
sites around the world. Its technologies are also all open standards
with documentation, tutorials, and examples in abundance,
helping make development as easy as possible.

However, because AJAX involves many different technologies
that are each complex in their own right, developing an AJAX
web application of almost any size from scratch is prohibitively
difficult. Fortunately, because of its popularity there exist many
frameworks to make development using it much easier. Since
PerfiTrak will involve lots of data processing, the ideal
framework should work seamlessly with a server-side
programming language and supporting database management
system. It was decided that PHP© 5 [22] would be the best
server-side language to use, given that it is free, very popular (and
thus well-tested and maintained), and supports the object-oriented
programming paradigm (known for its flexibility and
maintainability). With PHP© 5 selected, MySQL® [17] for the
database management system and Apache 2 [2] for the web server
were natural choices, given how well they work together (and are
supported). Given those choices the field of AJAX frameworks
was narrowed down further, and one particular framework rose
above the rest: Qcodo [24]. It is specifically intended for Rapid
Application Development, makes use of AJAX functionality to
approximate the interactivity and responsiveness of a desktop
application, and is free and open-source, so it fit the bill quite
nicely. One of its two major components is Qforms, a
“completely object-oriented stateful event-driven architecture for
HTML forms processing and rendering” that imitates the way
desktop applications are programmed and separates the logic
layer from the presentation layer (making the code easier to
understand and the user interface easier to customize). Its other
major component is the Code Generator, which intelligently
analyzes the database schema and generates data access object
(DAO) classes to easily (and more securely) interface with the
database (saving a lot of time than if it was done from scratch).
Qcodo is also open-source and easily modifiable/extensible,
which will help us to overcome any user interface (UI) issues we
encounter and make it much easier to create our own UI solutions.

 19

4.2 User Authentication
Since PerfiTrak is a web application, it must have a way to
identify the different users accessing it so that the right data can
be displayed. There would be a huge privacy issue if people’s
financial transaction data was open to the public. Therefore some
sort of user authentication system had to be implemented,
providing a secure means for users to identify themselves (“log
in”) to the web application.

4.2.1 Traditional
The traditional way of authenticating users is by username and
password. The user registers with a site by providing a unique
word (the username), while also providing a private word or
phrase that only they know (the password). When they go to log
in to the site, they provide their username and password and if
they match up to what the site has in its database, the site accepts
them as who they say they are (the username). It is simple and
thus easy to implement in a web application; however, there are
unfortunately a number of drawbacks.

For one thing, unless the web application is running over a secure
HTTP connection (HTTPS) the password is transferred in plain
text, making it possible for any malicious person on any of the
networks between the user and the web application’s server to see
the password. That can be solved by using HTTPS, but most web
hosting companies charge extra for that feature and to keep
operating costs low it is preferable to avoid needing HTTPS.

Another drawback stems from the fact that username/password
authentication is widely in use. Since one person often has
usernames and password at many different sites, to remember
them all they usually use the same username and oftentimes even
the same password for all of them. Because of that, people rarely
change their passwords (a recommended security practice) since it
would be too time-consuming changing passwords at every site or
remembering where the password was not changed. Unfortunately
those facts mean that if a person’s username and password for one
site is discovered (by the site’s database being compromised or
even just simple social engineering), their data at other sites
where they use the same username and password is also
compromised.

Finally, one more drawback is all the care that must be taken to
make sure each user’s password is stored securely and accessible
by only that one person. A hacker seeing a few financial
transactions is likely not going to cause any harm, but on the
other hand a hacker seeing a few users’ passwords could cause all
sorts of harm (because of the previously-mentioned drawback).

4.2.2 OpenID
The above-mentioned drawbacks are well-known in the industry,
so fortunately numerous solutions have been proposed and
developed. One such solution is OpenID, a decentralized single
sign-on system [20, 25]. With that particular system, users are not
required to come up with a username and password for every
participating site. Instead, they register their username and

Figure 1. OpenID 1.1 protocol flow [25]

 20

password with a third-party “identity provider” of their choosing
and are given a unique identifier (a URL or XRI) which they give
to every site (called a “relying party”) they want to log in to.
When the relying party is given the identifier, it communicates
with the identity provider and then forwards the user’s browser to
the identity provider’s web site. Once there, the user authenticates
themselves to the identity provider (often using a traditional
username and password). Finally, the identity provider forwards
the user’s browser back to the relying party’s site along with
confirmation that the user is the person to whom the identifier is
registered. See Figure 1 for a more detailed description of the
protocol flow.

The advantages of using OpenID in PerfiTrak are numerous. For
users, they do not have to be concerned about coming up with a
unique username and password if they already have an OpenID
identifier (an ever-increasing possibility, with Microsoft®,
AOL®, LiveJournal®, and WordPress all pledging support for the
system [11, 12, 30]. Additionally, users that want to change their
password just need to do it in one spot to be in effect for every
site they use their OpenID identifier at. For the application, the
advantage is that most of the user authentication details and
security is offloaded onto identity providers. PerfiTrak only needs
to store the users’ OpenID identifiers. As a bonus, PerfiTrak
automatically benefits from security and functionality
improvements done by identity providers, like HTTPS support
(which many have), anti-phishing measures (like personal
photos), and web browser integration (in development on
Mozilla® Firefox® 3 [5], and Microsoft® Internet Explorer® 7
through Windows CardSpace™ [15]). Identity providers do not
even have to use passwords for authentication: they could use soft
tokens (like Windows CardSpace™), hard tokens (like RSA
SecurID®), cognometrics (like Passfaces™ [21]), or even
biometrics. All those choices and implementation details are left
to the identity providers, without involving PerfiTrak at all.

Using OpenID in PerfiTrak does have some disadvantages as
well, but measures have taken to greatly mitigate them. A big
problem with single sign-on systems like OpenID is that phishing
attacks (where users are misled into revealing their passwords by
being presented with nefarious facsimiles of the real login page)
have a much greater potential of causing harm [1]. Another
problem is that since users can use any identity provider that they
want, their particular choice might have lax security or poor
reliability. To help prevent those problems PerfiTrak recommends
certain well-respected and highly-secure identity providers
(specifically JanRain’s® MyOpenID [10] and Verisign’s®
Personal Identity Provider [28]), and provides a way to add a
secondary OpenID identifier that can be used in the circumstance
that a user’s primary identifier’s identity provider is not
accessible.

4.3 Interoperability
A major component of PerfiTrak is its ability to import and export
transaction data using major financial transaction exchange
formats, enabling it to process statements from banks and
interoperate with existing personal finance applications. Each
format has its own unique advantages and disadvantages,
presenting many interesting challenges when incorporating them
into PerfiTrak.

4.3.1 CSV
Probably the first format used widely to store financial
transactions was CSV, Comma-Separated Values. It is a textual
format where each line of text generally contains all the
information for a single transaction, with information fields
usually separated by commas and sometimes enclosed by
quotation marks. The first line is usually a header, describing
what information the various fields contain. An example can be
seen in Figure 2.

Date,Description,Amount,Running Bal.

01/24/2007,Beginning balance,,"712.30"

01/25/2007,"WMATA SMART BENEFITS","-5.00","707.30"

01/26/2007," ATM DEPOSIT","983.37","1690.67"

Figure 2. CSV from Bank of America’s® online banking site

CSV’s main benefit is that it is generally very simple and easy to
understand, able to be opened by spreadsheet software and easily
visualized and edited. Unfortunately, the generic format itself is
only loosely consistent (fields might or might not be enclosed by
quotation marks, or may be separated by characters other than
commas) and the format when applied to financial transactions is
an absolute mess. As seen in Figure 1, the basic fields required to
describe a transaction are its date, its description, and its amount.
However, other banks have their own fields. For example,
NetTeller® (see Figure 3) stores only the absolute value of the
amount in its Amount column and has a separate column of fields
label “CR/DR” wherein a “DR” means the money was leaving the
account and a “CR” means the money was entering the account.

Posted Date,Serial Number,Description,Amount,CR/DR

01/02/07,,"POS DEBIT",0000000100.80,DR

,,"GOOGLE *DreamHost.com",,

01/02/07,3039,"CHECK",0000004000.00,DR

01/05/07,,"POS DEBIT",0000000021.37,DR

Figure 3. CSV from a NetTeller® online banking site

Additionally, it does not follow a strict one-line-per-transaction
rule. Transactions which have additional information attached
(usually referred to as the “Memo” field) put that info in a second
line.

So far the differences have been relatively minor. However, some
banks differ greatly in one important area: their CSV files lack
headers. If all fields meant the same thing and were in the same
order that would not be such a big problem, but unfortunately that
is not the case. As shown in Figure 4, Wells Fargo® (a major US
bank) skips on the header, stores the amount in the second
column, and puts the description in the last column.

02/16/07,-7.38,"*",,"CHECK CRD PURCHASE"

02/15/07,-1.95,"*",,"BILLMATRIX BILL PAYMT"

02/15/07,-5.99,"*",,"CHECK CRD PURCHASE"

Figure 4. CSV from Wells Fargo’s® online banking site

 21

That greatly increases the difficulty of deciphering its contents.
Other banks without headers in their CSV’s even differ in other
ways; for example, TD Canada Trust skips the Amount column
and instead has two mutually-exclusive columns for credit and
debit. While those issues are difficult, we were able to develop
algorithms to correctly deal with the vast majority of them.
However, banks could change their CSV output at any time or
users might try to import CSV’s from previously-unknown banks,
so it will require regular maintenance to keep accurate.

Unfortunately even bigger issues arise when trying to support
CSV formats from foreign banks. Semicolons might be used
instead of commas to separate fields, labels might not be in
English, date formats rarely follow the US format of
Month/Day/Year, and others. Being able to properly
automatically deal with all those issues becomes virtually
impossible, so a solution had to be devised. It was decided that
when PerfiTrak does not recognize a particular field layout, it will
present a visual interface to the user allowing them to manually
identify what each column means and what format the date is in.
In the worst case (neither PerfiTrak nor the user can properly
identity the format’s layout), PerfiTrak will recommend that the
user instead use a different, more well-defined transaction format
(QIF or OFX).

4.3.2 QIF
QIF, Quicken® Interchange Format, was specifically designed by
Intuit for storing financial data, and thus is less ambiguous than
CSV. Data is also stored textually, but a transaction spans
multiple lines with each line being an explicitly labeled
information field (see Figure 5). While not as easy for humans to
understand as CSV is, the computer has a much easier time
reading it since information fields are all individually labeled.
Unfortunately QIF still shares a major problem with CSV: dates
and amounts do not follow specific formats, instead varying
depending on the language and country of the generating program
[7]. Basic support for reading transactions from QIF’s was easily
added to PerfiTrak, though support for non-US date and amount
formats is currently lacking.

 !TYPE:CCard

 D02/28/2007

 MMIDTOWN FOODS WINONA MN

 N2

 PMIDTOWN FOODS WINONA MN

 T-5.5

^

Figure 5. QIF from Capital One’s online banking site

4.3.3 OFX
As a response to the ambiguity and diversity of existing forms of
storing financial data, in 1997 Microsoft®, Intuit®, and
CheckFree® announced that they were working together to create
a single, unified specification called Open Financial ExchangeSM
(OFX) for the exchange of financial data over the Internet. It is a
very rich format, supporting the storing of almost any sort of
financial data out there. A primary goal of the format was to
enable direct client-server communication between financial

software and financial institutions, though it also works fine (and
is often used) for static storage of transactions like CSV and QIF
are used. It is much more precise than either of those other two
formats, with dates stored in international ISO format and
language and currency explicitly listed. It uses SGML or XML as
the base format, making it very easily read by computers. In
addition it specifies that each transaction should be given a unique
identifier, making it easier for finance applications to recognize if
a user is importing the same transaction more than once. See
Figure 6.

...

<STMTTRN>

 <TRNTYPE>DIRECTDEP</TRNTYPE>

 <DTPOSTED>20050722120000</DTPOSTED>

 <TRNAMT>450.00</TRNAMT>

 <FITID>48397299</FITID>

 <NAME>ABC Manufacturing Inc</NAME>

 <MEMO>Direct Employer Deposit</MEMO>

</STMTTRN>

...

Figure 6. OFX excerpt from format documentation

Further analysis of OFX output from banks led to the discovery of
a major complication however. It was found that banks usually
store bank account or credit card numbers directly in the file. For
desktop personal finance applications that is not a big issue, since
all of the user’s data remains on their single computer. On the
other hand, web personal finance applications (including
PerfiTrak) process and store data in a centralized location not
under the control of the user. Therefore, extreme care must be
taken by web applications to prevent the possibility of that info
getting into the wrong hands. Even though PerfiTrak does not
actually store account or card numbers in its database, there is still
a short period between the user uploading the OFX file and the
application reading the transactions from it where the raw data
(with the account or card numbers) could potentially be read.
Since currently PerfiTrak does not use a secure HTTP connection
and it is running on a shared server (increasing its attack profile),
it was decided that it would be best for OFX support to be
postponed until those things can be rectified.

4.4 Storing Tags in the Database
One challenge while designing PerfiTrak was finding the best
way to store each user’s hierarchy of tags in the MySQL®
database we were using. There are two main models for storing
trees in SQL databases: adjacency list and nested set [3]. In the
adjacency list model, each node is stored in the database with the
ID of its parent node. In the nested set model, each node is stored
in the database with special “left” and “right” numeric fields that
are populated using a modified preorder traversal algorithm (see
the reference for more details). The adjacency list model is the
simplest, but it makes determining descendents of nodes very
difficult. In the nested set model, finding ancestors and
descendents is very easy (for the latter, just look for nodes whose
left and right fields are greater than the node’s left field while less
than the node’s right field). However, when nodes are added,

 22

moved, or deleted while using that model, other nodes’ left and
right fields must be updated to reflect the change in the model: a
major complexity and inefficiency. The nested set model still
would have been acceptable for PerfiTrak’s usage, except for one
particular issue that came up: changing the parent of a node (a
needed ability, since the user can completely customize their tag
structure) was an incredibly complex operation while using nested
sets. Fortunately, there exists a hybrid model that uses an extra
field in the adjacency list model to make finding descendents a lot
simpler [27]. The extra field stores all the IDs of parent nodes as a
single delimited string, allowing the finding of a node’s
descendents through a simple SQL query that performs a textual
wildcard search. For example, finding all the children of a root
node with an ID of 1 would consist of searching for every node
whose field starts with ‘/0/1/’. That was the model we ended up
using for PerfiTrak, trading a little data redundancy for a lot of
simplicity.

4.5 Working Offline
In order for the user to be able to manage their transactions while
not connected to the Internet, there needed to be a way for
transaction data to be downloaded to a computer, to be viewed
and edited, and to be uploaded back to PerfiTrak. Essentially two
problems needed to be solved: how to have an offline interface,
and how to synchronize the transaction data between that offline
interface and PerfiTrak’s online database.

When deciding what form the offline interface should take, a
number of considerations had to be made. Not having much
development time to spare, creating our own desktop application
from scratch was out of the question since that would be a whole
big project in itself. Thus, an existing desktop personal finance
application had to be found. Having to be freeware and multi-
platform (like PerfiTrak), many of the more popular personal
finance applications were subsequently excluded from the search.
Under active development and possessing a good plug-in
architecture were also major considerations. At the end, the
decision was made that an application called “Buddi” [18] would
be used. It is an open-source Java personal finance and budgeting
application, aimed at people with very little financial background.
It seemed to share the same audience as PerfiTrak, and its
interface was also designed to be simple and easy to use. Being
coded in Java, it runs on a wide variety of operating systems. It
also fully supports third-party Java plug-ins, for both importing
and exporting. The only potential issue was that Buddi uses a
single-category organizational system for transactions, but it was
decided that was an acceptable limitation since people could
always easily add more tags to transactions when they go back to
PerfiTrak.

Now that an application was chosen for the desktop interface, a
way had to be devised to somehow transfer transaction data
between it and PerfiTrak. One way of course would be to just
make Buddi able to import and export files in one of three
transaction exchange formats that PerfiTrak already supports
(CSV, QIF, or OFX). However, that would require a lot of manual
work on the part of the user and be far from simple to do. Thus, a
better way needed to be found. Ideally, with just a few button
clicks Buddi should be able to automatically get transaction data
from PerfiTrak’s database and then send the changes (or vice
versa). Fortunately, PHP© 5 and Qcodo have a solution to that

technical issue: SOAP web services. SOAP (also known as
Simple Object Access Protocol) [29] is an XML-based messaging
framework, containing a convention for representing remote
procedure calls (RPC) and responses. PHP 5 and Qcodo
specifically provide wrappers around that technology to make it
easy to implement and use. In addition, Java has libraries that
make it very simple to interface with SOAP web services.
However, an issue arose from doing it that way: since the user
would be accessing PerfiTrak invisibly from inside Buddi, it
would not be possible to use its OpenID authentication because
there would be no good way to send the user to their identity
provider (no browser in use). Our solution was to automatically
give every user a randomly-generated “pass code”, having them
input their OpenID and pass code in Buddi and then sending that
info along with the SOAP RPCs. In the end, we created a SOAP
web service on the PerfiTrak site which had a number of
appropriate RPCs (GetTransactions, AddTransaction, etc.) and
then created import and export plug-ins for Buddi (it did not
explicitly support a “synchronize” type of plug-in) which asked
for the user’s OpenID and pass code (along with a few options,
like which accounts and what dates) and made the appropriate
RPCs to transfer transaction data to/from PerfiTrak’s database.

5. IMPLEMENTATION
The implementation went relatively smoothly, save for a couple
minor issues. We decided to model the interface similar to those
of many desktop applications that involve navigating amongst
categorized data, with the organizational structure (the tags) on
the left, searching/limiting and additional organization data
(accounts) on the top, extra info and functions (importing,
exporting, adding transactions, etc.) on the bottom (as tabs), and
the main data (the transactions) front and center. See Figure 7.

One issue was how to allow the user to assign tags to transactions.
Most personal finance applications have a drop-down list to
choose a category or a simple textbox to type in tags, but the
former wouldn’t work in our case and the latter seemed to be too
tedious and error-prone. Eventually we decided to use drag and
drop, with the user dragging a tag from the list of tags on the left
onto the transaction they want that tag to be on.

Another issue was how to allow the user to organize their tags,
specifically how to let them re-arrange the hierarchy. The easiest
way for the user was unquestionably allowing them to just drag
and drop tags onto their new parents (like many tree components
on desktop applications allow), but unfortunately the tree control
that Qcodo had didn’t have support for that. Eventually we
decided it was worth the effort to implement that support
ourselves, so a big chunk of development time (about 30 hours)
was spent on making Qcodo’s tree control (QTreeNav) allow
drag/drop re-arrangement.

6. SUPPORT FOR FUTURE
DEVELOPMENT
The choice to use PHP© 5 and Qcodo proved to be a big help in
making the application implementation easy to comprehend,
making maintenance down the road easier to perform. It is easy to
re-use code and components (like the tree listing of tags or the
listing of transactions) too, so extending functionality in the future
could be done very cleanly with minimal impact on existing

 23

components. Using Qcodo also proved a major benefit when
changes to the appearance of the user interface had to be made,
since the code was physically separate from the presentation
markup (the XHTML and CSS). That also made it very easy to
add support for user-customizable appearances (“themes”), of
which we hope to have more of in the future.

In addition, while implementing the code for the importing and
exporting of the various transaction exchange formats we
followed an extensible structure (a “framework”) that would
permit new import and export formats to easily be added into the
application. The code was separated into classes based on which
format it was for and if it was doing importing or exporting, with
each class extending a common super-class. Doing so allowed the
exact details of how each format was implemented to be hidden
from the code involved with the UI or interfacing with the
database.

7. CONCLUDING REMARKS
PerfiTrak introduces a rich, easy-to-use web interface to the area
of personal finance applications, hopefully enticing more people
to keep track of their finances and make better, more-informed
financial decisions. It does not restrict users’ transactional data,
allowing them to both import and export that data whenever they
want, in a variety of common formats. It provides a robust

organization system, allowing any number of fully-customizable
hierarchical “tags” to be attached to individual transactions for
better tracking and analysis. Finally, it allows users to access its
interface (and thus their data) from almost any Internet-connected
computer, and even provides a way for transaction management
when the Internet is unavailable. We were able to fulfill our
original goals and requirements, and now plan to offer the
application to the general public at http://www.perfitrak.com/.

Out of general curiosity, while developing PerfiTrak we also kept
track of the time spent researching and coding various sections of
the application; see Figure 8. It took 5 hours to add OpenID
support, 30 hours to implement drag/drop support on Qcodo’s tree
control that we used to display all the user’s tags, 10 hours to
design and implement the database model for the tags, 10 hours to
add basic support for CSV importing, 13 hours to create an Import
plug-in for Buddi and design the SOAP web service it used, and
92 hours on the rest. Those hours add up to 160 spent overall so
far, with more work remaining to finish up a few more areas and
fix any bugs that most likely will be found. Only one developer
was involved, and those hours were done within a time period of
just a little more than 3 months. It definitely took longer than we
expected and prevented us from implementing all the features we
had originally planned, but that was more because of us
underestimating the magnitude of a project like this than the
actual difficulty of doing it. Our choice to use PHP 5 and Qcodo

Figure 7. Screenshot of PerfiTrak’s main interface

 24

were unquestionably big aids in helping us to get done what we
were able to do in the time given.

Area Hours

OpenID implementation 5

Tree control drag/drop support 30

Tag database model 10

CSV importing 10

Buddi Import plug-in & interface 13

Other 92

Total Hours: 160

Figure 8. PerfiTrak development time breakdown

8. FUTURE WORK
Personal finance management encompasses a wide variety of
potential features, and so PerfiTrak currently only implements a
small subset of what is possible. Part of the reason for that is lack
of time and resources, but another part is that PerfiTrak aims to be
simple to use and the number of features and complexity of a
software application are generally directly proportional to each
other. However, there still a few useful features that we would
like to implement in the future:

• Splitting transactions: many existing personal finance
applications allow the user to easily split a single
transaction into multiple transactions, a time-saving
feature, so it would be beneficial to also have that in
PerfiTrak

• Transfers: often people find themselves transferring
money between accounts (a common example being
paying credit card bills), so making it possible for the
user to deduct money from one account and put it into
another in a single step would be helpful.

• Budgeting: one of the big reasons for keeping track of
personal finances is to figure out how much money can
be spent in various spending categories and make sure
those guidelines are being followed. Somehow making
it possible for users to set spending limits on tags and
visualize how well they are following those limits
would be a big benefit to users.

• Charts and graphs: currently PerfiTrak only allows
users to see how much was spent in a particular area
just by numbers, but having charts and graphs to help
users visualize their transaction activity would be a lot
friendlier and would allow more complex relationships
and trends to be identified and analyzed.

• Investments: many people have money invested in
areas such as stocks, bonds, and mutual funds, so
having a way for users to keep track of that money
would likely be very welcome.

• Efficiency: until now the vast majority of work on
PerfiTrak was on making it work and adding features,
with little time spend on optimizing areas for the best
speed and efficiency. Doing so would help decrease the

CPU load on the web server and the amount of
bandwidth used, allowing more users to be able to use
PerfiTrak simultaneously and making the experience
quicker and smoother for them. One particular area we
would like to improve is in the listing of transactions.
We had to restrict it to only show 9 transactions at a
time (with links to show more) since listing more than
20 or so transactions at a time caused the page loading
times to be unacceptable. We feel that with some effort
spent on reducing the amount of XHTML markup
needed for each transaction we should be able to do
much better.

• Mobile device interface: with an increasing number of
people having Internet access on their cell phones, they
are likely to desire to be able to use PerfiTrak from
them. Though most cell phones have web browsers,
unfortunately because PerfiTrak was designed for large
screens and connections with a lot of bandwidth the
experience would be virtually unusable on them.
However, it is completely possible to create a
simplified, low-bandwidth interface specifically for
mobile web browsers that would at least allow users to
view their transactions and add new ones.

9. ACKNOWLEDGMENTS
I would like to thank Dr. Joan Francioni, my project advisor,
without whom this paper would never have been written. Thanks
also go to the author of Buddi, Wyatt Olson, for having created an
open-source personal finance application that so easily could be
used for PerfiTrak’s offline interface, and to the many users of
Buddi who graciously provided samples of CSV files from many
different bank sites for my analysis. Special thanks also must go
to QuasIdea Development, LLC, specifically Mike Ho, for
creating the brilliant Qcodo framework, and to the creators of the
various UI controls PerfiTrak makes use of; without all them,
PerfiTrak may never have seen the light of day. Finally, I cannot
forget to thank Isaac Johnson, who stepped in at just the right time
to provide a graphic design for PerfiTrak that far rivaled the one I
had originally thrown together myself.

10. REFERENCES
[1] Anderson, Tim. “OpenID still open to abuse.” IT Week. 5

March 2007.
http://www.itweek.co.uk/itweek/comment/2184695/openid-
open-abuse. Accessed 29 March 2007.

[2] Apache Software Foundation. “Apache.”
http://httpd.apache.org/. Accessed 2 March 2007.

[3] Celko, Joe. “Joe Celko's Sql for Smarties.” San Diego:
Morgan Kaufmann, 1999.

[4] foonance. “foonance.com.” http://www.foonance.com/.
Accessed 28 September 2006.

[5] Forrest, Brady. “Firefox 3.0 Requirements Are Out.”
O’Reilly Radar. 11 January 2007.
http://radar.oreilly.com/archives/2007/01/firefox_30_requ.ht
ml. Accessed 2 April 2007.

[6] Garrett, Jesse James. “Ajax: A New Approach to Web
Applications”. Adaptive Path. 18 February 2005.

 25

http://www.adaptivepath.com/publications/essays/archives/0
00385.php. Accessed 25 February 2007.

[7] Gribble, Bill et al. “QIF file format.” GnuCash. 6 August
2001.
http://svn.gnucash.org/trac/browser/gnucash/branches/2.0/src
/import-export/qif-import/file-format.txt. Accessed 1 April
2007.

[8] Horadan, Peter H, et al. “Method and system for transferring
a bank file to an application program.” US Patent 5842211.
24 November 1998.

[9] Intuit. “Quicken 2007.” http://quicken.intuit.com/. Accessed
8 February 2007.

[10] JanRain, Inc. “MyOpenID.” https://www.myopenid.com/.
Accessed 2 April 2007.

[11] Kveton, Scott. “OpenID: Signs point to momentum.”
JanRain, Inc. 20 February 2007.
http://kveton.com/blog/2007/02/20/openid-signs-point-to-
momentum/. Accessed 29 March 2007.

[12] LiveJournal. “OpenID.” http://www.livejournal.com/openid/.
Accessed 29 March 2007.

[13] Maner, Walter. “Rapid Application Development.” 15 March
1997. http://csweb.cs.bgsu.edu/maner/domains/RAD.htm.
Accessed 6 February 2007.

[14] Microsoft. “Microsoft Money 2007.”
http://www.microsoft.com/money/. Accessed 8 February
2007.

[15] Microsoft. “Microsoft Outlines Vision to Enable Secure and
Easy Anywhere Access for People and Organizations.”
Microsoft PressPass. 6 February 2007.
http://www.microsoft.com/presspass/press/2007/feb07/02-
06RSA07KeynotePR.mspx. Accessed 29 March 2007.

[16] moneytrackin. “moneytrackin’ – online accounting for real
people.” http://mo.neytrack.in/. Accessed 28 September
2006.

[17] MySQL AB. “MySQL.” http://www.mysql.com/. Accessed 2
March 2007.

[18] Olson, Wyatt. “Buddi – Personal budget software for the rest
of us”. http://buddi.sourceforge.net/. Accessed 26 December
2006.

[19] Open Financial Exchange. http://www.ofx.net/. Accessed 25
January 2007.

[20] “OpenID.” http://openid.net/. Accessed 6 February 2007.

[21] Passfaces Corporation. “Passfaces.”
http://www.realuser.com/. Accessed 29 March 2007.

[22] The PHP Group. “PHP.” http://www.php.net/. Accessed 2
March 2007.

[23] “QIF Definition.” Intuit Inc. 1996.
http://web.intuit.com/support/quicken/docs/d_qif.html.
Accessed 25 January 2007.

[24] QuasIdea Development, LLC. “Qcodo.”
http://www.qcodo.com/. Accessed 25 January 2007.

[25] Recordon, D. and Reed, D. 2006. “OpenID 2.0: a platform
for user-centric identity management.” In Proceedings of the
Second ACM Workshop on Digital Identity Management
(Alexandria, Virginia, USA, November 03 - 03, 2006). DIM
'06. ACM Press, New York, NY, 11-16. DOI=
http://doi.acm.org/10.1145/1179529.1179532.

[26] Repici, Dominic John. “The Comma Separated Value (CSV)
File Format.” Creativyst Software. 2006.
http://www.creativyst.com/Doc/Articles/CSV/CSV01.htm.
Accessed 21 February 2007.

[27] Shick, Trevor. “Varchar-based Nested Set.” threebit.
http://threebit.net/tutorials/nestedset/varcharBasedNestedSet.
html. Accessed 14 March 2007.

[28] VeriSign, Inc. “Personal Identity Provider.”
http://pip.verisignlabs.com/. Accessed 2 April 2007.

[29] W3C. “Web Services Architecture”. 11 February 2004.
http://www.w3.org/TR/ws-arch/. Accessed 12 April 2007.

[30] WordPress. “OpenID.” 6 March 2007.
http://wordpress.com/blog/2007/03/06/openid/. Accessed 6
March 2007.

 26

Cheating Detection and Prevention in Massive Multiplayer
Online Role Playing Games

Kevin Warns

Saint Mary’s University
700 Terrace Heights
Winona, MN 55987

kmwarn04@smumn.edu

ABSTRACT
Due to the amount of time needed to gain experience and items in
massively multiplayer online role-playing games, some people
have resorted to cheating to take a short cut to the higher levels of
the game. This ruins the game play for people who abide by the
rules. Game software companies need to deal with cheaters in a
fast, effective and efficient manner to control the problem. This
paper shows that the current methods of detecting and preventing
cheating in older games are not sufficient. Newer games have
fixed a few of the problems, but still have some to deal with. The
problem lies within the client-server architecture, and how much
control the client computer has over the game. This paper
discusses the strategies employed by people who cheat, methods
of detecting people who cheat, and how to prevent people from
cheating.

Keywords
Massively multiplayer online role-playing game (MMORPG)

1. INTRODUCTION
Playing massively multiplayer online role-playing games
(MMORPGs) is a rapidly growing hobby [1]. With this growing
market, there are many complications. The most common type of
complication is that of cheating. This paper will focus on the
cheating that is prevalent in the online game of Everquest [2] by
using third-party programs that interact with the game. Using the
classification scheme set forth by Randall and Yen, this kind of
cheating would fall under “Cheating by Exploiting Misplaced
Trust” and “Cheating by Exploiting Lack of Secrecy” [3].
“Misplaced Trust” deals with having too much information about
the game on the client side, and “Lack of Secrecy” deals with how
information is passed between server and client, and how it might
not be secure.

2. BACKGROUND INFORMATION
MMORPGs are a computerized version of normal pen-and-paper
role-playing games (RPGs), only on a much larger scale. While
only a handful of people can play traditional RPGs together, a
much larger number of people can simultaneously play

MMORPGs. Even with this difference in number of players,
many of the same concepts apply. When you enter the game,
Everquest in this example, you create a character that will
represent you in the game world. You usually choose a race from
a variety of choices which range from normal humans to standard
role-playing races such as dwarves and elves, to more exotic
special races created for the game, such as lizard-men. You then
would choose a specialty, or class. This would determine your
role in the game world. It can vary from a magic-user, to a thief,
to a warrior. Once you have created a character for yourself, you
can enter the game world. Once in the game world, you are
presented with a user interface consisting of customizable hot-
buttons, chat windows, and many other windows. Using the
keyboard and mouse, you can interact with other player characters
(PCs), or computer-controlled players, called non-player
characters (NPCs). The whole idea of the game is to interact with
other players, to gain “experience points” which will make your
character become more powerful, and to gain more power through
items. Experience points are gained through killing certain NPCs.
For every NPC, you gain a small amount of experience points.
Those experience points fill up a, by default, unlabeled progress
bar. The user-interface is customizable to show an integer
percentage, but there is not an exact percentage visible to the
player. Items are gained through checking the body of your now-
slain foe for money and items.

The idea of why people cheat in these games is apparent: it takes a
long time to create a character with lots of experience and gain
powerful items. Game software companies feel they need to
combat cheating to prevent the game being ruined for people who
play by the rules [4]. This paper will answer the question of what
can be done to make MMORPGs more secure and less prone to
cheating

3. CHEATING STRATEGIES
There are many different ways users can abuse the game. One
such method is by using third-party programs to take advantage of
the information that is sent to the client. The first third-party
program this paper will discuss does just that. It is for the game
Everquest, and is called ShowEQ [5].
ShowEQ works by analyzing the network traffic for information
relevant to Everquest. This information is in the form of packets
that are sent to the client during game play. It then displays the
information gathered from these packets on the screen on a 2-
dimensional map. The information gathered includes the position
of all PCs and NPCs, as well as information about both, such as
level, class, race, and what items they are holding. In Figure 1, it
shows the output of a typical ShowEQ window. On the left are all
of the PCs and NPCs in a color-coded list (colors are based on the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Proceedings of the 7thWinona Computer Science Undergraduate
Research Seminar, April 19, 2007, Winona, MN, US.

 27

difficulty of the NPC), including all known information about
them. On the right is a map view of the current area. The small

dots on the map are the locations of the PCs and NPCs.

Figure 1. PC and NPC Information and Map [6].

This is one security flaw of client-server MMORPGs. To have
low-latency game play, that is, game play that feels like it is
taking place in real time, there must be very little time between
when the packet is sent and received, therefore the packet must
not be heavily encrypted.

Caltagirone et al. do not go in-depth on the subject of encryption
of packets in their paper on the architecture of MMORPGs [7].
They do not take into account that the encryption key must be
stored on the client computer. This is another security flaw of
MMORPGs using the client-server model. The client has to have
the encryption key stored locally, therefore it can be found by the
person on the client side. An example of this is the battle between
Sony and the makers of ShowEQ, which has been very well
documented [8] and will be discussed in Section 5.

A step up from ShowEQ is the program Macroquest [9]. It also is
used to cheat in Everquest. The authors of Macroquest require the
users to run a small program on each computer they wish to use
Macroquest on, which generates two strings in the form of hashes.
These strings are used to compile a version of the program that
will work only on the computers whose hashes are included. This
is done to prevent “everyone” from using the program, requiring
only basic knowledge of computers and how to read directions.
Macroquest is the successor of ShowEQ, and does all the things
ShowEQ does, and more. It provides an in-game application
programming interface (API) which is used to access data stored
on the client side, as well as data objects. For example, the
experience bar mentioned in Section 2 can now be viewed as a
decimal percentage using this API and data objects. To view this

information while playing the game with Macroquest running, the
user would type “/echo ${Me.PctExp}” into the console, and the
game would output the percentage of experience the character
currently has. The “/echo” tells it to output the information to the
console, the “Me” is the data object for the current character, the
“PctExp” is the percentage experience, and the “${ }”
surrounding it tells Macroquest that the information inside the
braces is a variable. [10]

In addition to the API that Macroquest provides, it also gives a
way of automating a character in game. It accomplishes this by
use of a scripting language [11]. These scripts are called macros,
and are the primary reason people use Macroquest. They make
monotonous tasks repeatable without human interaction, which
otherwise would require the player to sit at the keyboard. These
Macros vary on complexity, ranging from simple “click one thing
repeatedly” to more complex macros that will automate a
character to gain experience and gather items unassisted [12].

To understand these macros, an example of the code that would
be used to “click one thing repeatedly” would be discussed. This
specific macro clicks a button to “combine” items gathered from
NPCs into a new item. The more times you combine items, the
better you get at it. On a successful combination, the new item
appears on your cursor. If you fail the combination, the items are
gone. In Everquest, these are called “trade-skills” and range from
baking and brewing, to tailoring and blacksmithing.

The first line of the code, printed below, starts with “#event”,
which watches the chat output for the contents in the quotes. It
then sets up the entry point of the program (Main method), and

 28

sets up a loop to place items from the cursor into the inventory.
Once the cursor is empty, it left-clicks on the “Combine” button,
checks if the #event happened, then loops back to empty the
cursor. If the event did happen, the macro ends.

//Start Code for Combination Macro [13]
#event OutOfStuff "Sorry, but you don't have
everything you need for this recipe in your
general inventory."

Sub Main
 :Loop
 :ClearCursor
 /if (${Cursor.ID}) {
 /autoinventory
 /goto :ClearCursor
 }
 /notify TradeskillWnd CombineButton leftmouseup
 /doevents
 /goto :Loop
/return

Sub Event_OutOfStuff
 /endmacro
/return

Since this is a very simple macro, it does not account for many
things, such as the absence of the “Combine” button, or a certain
combination to be selected. Figure 2 shows the layout of this
window, including the list of combinations available (on the left),
the list of items needed for the combination (middle, on the right.
It is empty because no item from the list is selected) with the
“Combine” button right below. The value listed in the “Trivial”
column describes the difficulty in creating an item, the lower the
number, the easier it is to not only create, but create with more
success as your skill (located in the upper right, next to the name
of the trade-skill being used) increases. The screenshot was
provided by the author on a “thief” class character, who
specializes in making poisons.

Macroquest also can add in customized plug-ins to do other things
that make use of the information stored on the client side. These
plug-ins can perform tasks anywhere from providing a ShowEQ-
like map on the in-game mapping system, to the ability to “warp”
from one side of the map to the other, an ability that normal
characters do not possess.

All these ways of cheating lead up to the question of how to deal
with them. There are a few ways that are currently being
implemented, and a few that have been implemented and failed.
The next section will talk about past, current, and future methods
of detection.

4. CHEATING DETECTION
One method of detection depends on the non-cheating users of the
game community. Any member of the gaming community can
create a “petition” in which they describe the actions of someone
who they believe is not following the rules, and it will be
reviewed by a game master, or GM. Due to the low GM to player
ratio [15] and the amount of petitions for other matters that need
to be dealt with, it takes considerable time for a GM to answer a
cheating petition. This is the main way of reporting cheating in
Everquest, and according to George Scotto, head of the Everquest

customer service department, has increased in efficiency since its
creation [16].

Figure 2. Tradeskill Window [14].

A recent article on the official Everquest site titled “A Day in the
Life of a Game Master” mentions the use of third-party programs
to help automate game play for people who play two characters at
the same time, a style of play called “boxing”. The article states
that automating one character with a third-party program while
the other character is being played by a person is acceptable [17].

Another method of detection takes place on the servers. To
combat against people cheating, the servers keep logs of
everything that happens, and analyze them for suspicious
behavior. Such behavior would include “warping” that was talked
about in Section 3. Since the server would keep track of player
locations, it would be possible to calculate the distance moved in
a certain amount of time. If the distance is greater than the
maximum distance a player could realistically cover, it would flag
the character as a possible cheater. If a character gets flagged for
this behavior repeatedly, a GM would investigate and take
appropriate action if necessary.

The last method of detection is scanning the memory of the client
computer to check for third-party cheat programs. Everquest does
not use this method of detection, but a newer game, World of
Warcraft, does implement this method of detection [18]. Players
of World of Warcraft have mixed thoughts about this method of
detection. Some have said it is good for the game. It catches
cheaters and makes the game fair for all to play. Others say it is
spy-ware because it looks at more information than it needs to.
Greg Hoglund posted that he noticed the program used to scan

 29

memory, called The Warden, was looking at “email addresses of
people I was communicating with on MSN, the URL of several
websites that I had open at the time, and the names of all my
running programs, including those that were minimized or in the
toolbar” [19]. He, along with many others, believes that this is a
massive invasion of privacy.

A recent court case between Blizzard (the company behind World
of Warcraft) and MDY Industries (the creators of a third-party
cheat program for World of Warcraft called WoWGlider [20])
states that having one program (cheat program) read the memory
locations that are in use by another program (the game) is
copyright infringement. The case is currently in court, so the
outcome of the case is not yet known [21].

5. CHEATING PREVENTION
One method of prevention is the obfuscation of memory locations
[22]. With the Everquest example, the use of Macroquest
depends on the unchanging memory address locations to run
properly. To prevent Macroquest from working all the time,
Everquest would have to change the memory addresses of all the
internal data every time it was run, which would require a large
change in the internal structure of the game. This change,
however, would prevent Macroquest, in its current state, from
working. The way Macroquest reads memory would have to
change dynamically, and would possibly be left in a non-working
state for quite some time. Doing this for an older game like
Everquest is not very likely, so this method of prevention would
have to be implemented in new games that are in early
development phases.

Another method of prevention is packet encryption. Everquest
implements a basic encryption scheme for packets, but third-party
programs easily bypass this. They bypass it by locating the
encryption key in local memory and using it to decrypt the
packets that are sent to the client. In 2002, the makers of
Everquest tried to implement a stronger encryption, but it lead to
more overhead and created more network latency [8]. Stronger
encryption leads to more latency, but weaker encryption is easier
to break. In either case, the client computer has the necessary
information to decrypt the packets stored locally.

The last method of prevention that will be discussed is to move
away from the client-server model to a more server-based model,
where most of the important information would be stored only on
the server. Since online games are very bandwidth and memory
intensive, it would be a tradeoff to make a more secure game, but
have less features and robust graphics than the games currently on
the market.

6. CONCLUSION
It would take lots of time and resources for older games to
implement new ways of prevention. For new games that are in
development, the implementation of dynamically-changing
obfuscated memory locations would be less of a challenge.
Packet encryption adds too much of an overhead to online games,
making it an unsuitable solution to the problem. Besides being
unsuitable, the encryption key would reside on the client machine,
making it easier to locate. A move from the client-server model
to a more server-based model would create games that could not

handle the amount of data needed for online games. These would
have to sacrifice graphics and playability for security.

The current state of the gaming industry can not get rid of
cheaters entirely. The best way of dealing with them is by using
the community of non-cheaters to report suspicious behavior, and
analyzing server logs to check for suspicious activity.

These concepts do not apply only to gaming software. Due to the
need to have a program on a client’s computer, it is easy for a
client to change things in the program. By changing values in the
registry, or changing the executables, clients can bypass restricted
access programs like trial version or demo version software. New
developments in programs that run online could take the place of
client-based software. It could be possible that programs which
run solely over the internet would be less vulnerable to the same
types of exploits as their client-based counterparts.

7. WORKS CITED
[1] MMOG Growth Chart. http://www.mmogchart.com. Last

Updated June 29th, 2006. Accessed on February 11th, 2007.
[2] Everquest. Official Everquest site.

http://eqplayers.station.sony.com. Accessed on March 25th,
2007.

[3] Yan, Jeff and Brian Randell. “Cheating and fairness: A
systematic classification of cheating in online games”,
Proceedings of 4th ACM SIGCOMM workshop on
Network and system support for games. New York, NY:
ACM Press. October 2005.

[4] Kuo, Andy. “A (very) Brief History of Cheating”.
<http://shl.stanford.edu/Game_archive/StudentPapers/BySu
bject/A-I/C/Cheating/Kuo_Andy.pdf>. STS 145 Papers
Collection, March 2001.

[5] ShowEQ. Official ShowEQ site. http://www.showeq.net.
Accessed on February 11th, 2007.

[6] ShowEQ Image.
http://www.breneware.com/paseq/showeq.jpg. Accessed on
March 25th 2007.

[7] Caltagirone, Sergio and Matthew Keys, Bryan Schief, Mary
Jane Willshire. “Architecture for a Massively Multiplayer
Online Role Playing Game Engine”. Journal of Computing
Sciences in Colleges, Volume 18 , Issue 2, Pages 105-116.
USA: Consortium for Computing Sciences in Colleges.
December 2002.

[8] Malda, Rob. “EverQuest/Sony Fights Code Wars With
Latest Expansion”.
http://features.slashdot.org/features/02/12/01/1558220.shtm
l?tid=127. Posted on December 1st, 2002. Accessed on
March 25th, 2007.

[9] Macroquest. Official Macroquest site.
http://www.macroquest2.com. Accessed on February 11th,
2007.

[10] Macroquest: Macroquest Slash Commands.
<http://www.macroquest2.com/includes/wassup/manual.ph
p#macslash>. Accessed on March 25th, 2007.

[11] Macroquest: Macroquest Macro Reference.
http://www.macroquest2.com/wiki/index.php/Macro_Refer
ence. Accessed on March 25th, 2007.

 30

[12] Macroquest: Macros.
http://www.macroquest2.com/wiki/index.php/MacroQuest2
:Macros. Accessed on March 25th, 2007.

[13] “Meatball”, “Vanilla” Combine macro.
http://www.macroquest2.com/phpBB2/viewtopic.php?t=71
01. Posted on March 9th, 2004. Accessed April 10th, 2007.

[14] Everquest Screenshot of Tradeskill Window. Screenshot
Taken by Kevin Warns, April 10th, 2007.

[15] Tychsen, Anders and Michael Hitchens, Thea Brolund,
Manolya Kavakli. “The Game Master”, ACM International
Conference Proceeding Series; Vol. 123, Pg. 215-222.
Sydney, Australia: Creativity & Cognition Studios Press.
November 2005.

[16] Scotto, George. Interview with Stratics.com.
http://www.stratics.com/content/interviews/eq/interviews/e
qcsinterview.php. Accessed on March 25th, 2007.

[17] Julie, the Community Relations Intern. EQPlayers.com
Article “A Day in the Life of a Game Master”.
http://eqplayers.station.sony.com/news_article.vm?id=5039
9. Posted April 2nd, 2007. Accessed on April 10th, 2007.

[18] Ward, Mark. “Warcraft game maker in spying row”.
http://news.bbc.co.uk/1/hi/technology/4385050.stm.
October 31st, 2005. Accessed on March 25th, 2007.

[19] Hoglund, Greg. “4.5 Million copies of EULA-compliant
software”. http://www.rootkit.com/blog.php?newsid=358.
Posted on October 5th, 2005. Accessed on March 25th,
2007.

[20] WoWGlider. WoWGlider Official Home page.
http://www.wowglider.com/. Accessed on April 10th, 2007.

[21] MDY Industries, LLC v. Blizzard Entertainment, Inc and
Vivendi Games, Inc CV 06-2555 PHX DGC. United
States District Court: District of Arizona.
http://www.theimageplace.net/uploads/7b600767fb.pdf.
Accessed on April 10, 2007.

[22] Bhatkar, Sandeep and Daniel C. DuVarney and R. Sekar.
“Address Obfuscation: an Efficient Approach to Combat a
Broad Range of Memory Error Exploits”. 12th USENIX
Security Symposium, Washington, DC, August 2003.

 31

Network Throughput Analysis with
Electromagnetic Interference

Christopher G. Popp
Department of Computer Science,

Winona State University
Winona, MN 55987

cgpopp5419@winona.edu

ABSTRACT
There are often many obstacles when planning and implementing
a design for a computer network. One of the more mysterious and
poorly quantified aspects of network design is dealing with
potential network instability caused by electromagnetic
interference, or EMI. There are guidelines to follow for crossing
electrical wiring or fluorescent lighting, but why those guidelines
are necessary is not always clear. This paper covers experiments
that will quantify the effects of EMI on the throughput of both
wired and wireless networks. By exploring EMI of varying
intensity and frequency, we show the impact that results on a
typical network.

General Terms
Performance, Experimentation, Measurement, Reliability.

Keywords
EMI, EMF, Networks, Magnetic Field, Interference.

1. INTRODUCTION
Electromagnetic fields (EMF) induce interference in cabling. The
interference is known as electromagnetic interference, or EMI.
This impacts the quality of a computer network, which depends
on the cabling for data transfer. The correlation between EMF
intensity and frequency to network quality degradation can be
mysterious. The amount of previous research widely available in
this area is relatively limited. From a previous study by Faber et
al. [2], the point emphasized was the lack of quantitative results
relating to the effects of EMI on network traffic. The study goes
on to show minimal effects from the EMI emitted by common
appliances.

The results from the study were relatively limited in that the study
only covered a 100BASE-TX network. Also, the previous study
took the approach of maintaining 30% network utilization and
checking for packet errors. The research we conducted includes
100 Mbps, and 1000 Mbps wired networks. Each wired network
is tested with Cat 5e and Cat 6 UTP cabling. Additionally, we

explore the effect of EMI on an 802.11g wireless network.

Although Cat 5e cabling is currently more prevalent than Cat 6,
Cat 6 cabling has a greater number of twists that allow for it to
reduce interference and provide a higher level of reliability [6].
We explore both to compare the effects of EMI on current
networks as well as the networks of the future.

The experiment was conducted by measuring the maximum
throughput for each type of network without EMI. We then
introduced various levels of EMI and performed the same
throughput benchmark. In each case, we also track the number of
packets that needed to be retransmitted during transfer. Next we
analyzed the levels of EMI necessary to negatively impact the
network in a significant manner. We compared the levels of EMI
with different sources that may be encountered while setting up a
network in a real environment. Our final conclusions show the
importance of considering EMI when planning a network
infrastructure.

2. QUESTIONS AND HYPOTHESES
The paper explores the overall impact of EMI on a wired and
wireless network connection. The experiment was conducted
with a few hypotheses in mind. First, we suspected that Cat 5e
cabling will be more affected than Cat 6. Second, the impact of
EMI was suspected to be greater for 1000 Mbps Ethernet
compared to 100 Mbps. And lastly, we expected to find that
wireless networks are more susceptible to performance drops
relative to wired networks.

3. METHODS
There are three main aspects to our methodology: Setting up the
wired and wireless networks, generating the EMF, and finally
conducting, and analyzing the actual network tests.

3.1 Network Configurations

Figure 1. Wired Test Infrastructure

The wired networks are setup with two workstations, and a switch.
The 100 Mbps and 1000 Mbps networks differ in the speeds

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Proceedings of the 7thWinona Computer Science Undergraduate
Research Seminar, April 19, 2007, Winona, MN, US.

 32

supported by the workstation network cards, and switch. There is
5’ of network cable between the first workstation and switch, and
50’ between the second workstation and switch. The experiment
is done with both Cat 5e and Cat 6 cabling. In the middle of the
50’ segment of cable we place our EMF emitter. The emitter and
cable are surrounded by a grounded wire mesh that acts as a
Faraday cage to prevent the EMF from introducing EMI at
locations other than the cable. The setup is as shown in Figure 1.
It is also important to note the operating frequency of the wired
networks. Both the 100 Mbps and 1000 Mbps networks operate at
125 MHz [1, 4, 5].

Figure 2. Wireless Test Infrastructure

The 802.11g wireless network consists of a laptop with a
PCMCIA 802.11g network card, an 802.11g wireless access point,
and a 100 Mbps wired connection between the access point and a
workstation. The laptop is placed 50’ away from the access point.
This can be seen in Figure 2. The EMF emitter is placed close to
the laptop, and the strength of the EMF measured near the
PCMCIA 802.11g card exterior.

3.2 Generating the EMF
Generating the EMF is done by using existing household
appliances. We are able to generate different frequency EMFs by
choosing appliances with different frequencies, for instance a
microwave operates at about 2450 MHz. We can also vary the
intensity of the field by adjusting the placement of the emitting
appliance [7].

In order to determine the intensity and frequency of the EMF, we
use Vernier magnetic field sensors as shown in Figure 3. These
are capable of measuring the EMF along one axis. An EMF may
have components in the X, Y and Z axis [7]. We use three
sensors; one oriented for each axis. We calculate the magnitude
of the EMF based on combined values of each sensor.

The sensors also allow for us to view the frequency of the EMF.
With the ability to know the intensity and frequency, we are able
to find appliances (and placement distances) that produce the
desired EMF.

3.3 Result Collection and Analysis
We perform the tests between computers using FTP transfers.
The overall transfer time required for a given file size allows for
the calculation of average throughput for the duration of the file
transfer. We also keep track of the number of TCP segments sent,
and retransmitted during the FTP transfer. We do this using the
netstat –s –p tcp command under Windows XP. We record the
number of segments sent/retransmitted before and after the
transfer, and calculate the difference. The software aspects of the
experiment are similar for the different network types. The only
variance will occur in the file size used for FTP.

Figure 3. Vernier Magnetic Field Sensor [3]

We then analyze these results and calculate the percentage drop in
throughput compared to our reference throughput with no EMF.
We also compare the change in segment retransmission rates,
based on the percentage of segments that needed to be
retransmitted during the transfer.

This analysis allows for exploration into the overall impact that
EMI has on a given network type, and relative comparisons
between the network types. Comparisons of the impacts of EMI
on throughput at different frequencies, but equal intensity, will
offer insight on specific appliances and sources that may cause
trouble in real world situations.

4. RESULTS
The results can be seen in Table 1 below. The intensity of the
magnetic field is given in milliTeslas, and the frequency in Hertz.
A reference test is given for each network type, shown in the row
with zero intensity for the EMF.

5. ANALYSIS
The only network which appears to be adversely impacted is the
1000 Mbps wired network over Cat 5e. Even in this setup the
difference between the control case and each case with EMI is
relatively minimal. This does however support our initial
hypotheses that Cat 5e would be more affected than Cat 6, and
that 1000 Mbps networks are more susceptible than 100 Mbps
networks.

Because of the fact that both the wired and wireless networks
operate at much higher frequencies than the EMF generated, it is
possible that the affects would be more prevalent in very high
frequency situations.

6. CONCLUSION AND FUTURE WORK
We began the study with the question of how electromagnetic
fields will impact common types of computer networks. We
noted this is an important area of study due to the lack of

 33

quantified research, and hence a bit of mystery for wiring
standards that mention EMI.

In the end, we came to the realization that lower frequency EMFs
do not have a large impact on the wired and wireless networks
tested. We then went on to note that since the operating
frequency of these networks is much higher than those tested, the
effects may be different, and that would be a good extension to
our research.

There are a number of additional areas that could be expanded
upon. We only tested UTP cabling, so it would be worthwhile to
see how resilient properly grounded STP cabling would fair in
more extreme conditions. In addition, it may be interesting to see
how other network types compare to those we tested. Perhaps
different protocols form their data units in such a way that the
malformations caused by EMI have a different impact.

7. ACKNOWLEDGEMENTS
I would like to thank Dr. Gerald Cichanowski for providing
critical suggestions and guidance that helped to improve the
research. Second, I would like to thank Dr. Andrew Ferstl for
providing access to measuring equipment for the project. And
lastly, thanks to Chris Lohfink, for initially suggesting the area of
research, and providing continual interest in the progress.

8. REFERENCE
[1] Buis, Paul. "Common 100 Mbps Hardware Variations." Sept.

1996. Ball State U. Accessed 7 Apr. 2007
http://www.cs.bsu.edu/homepages/peb/cs637/ethernet/100mbp
s.htm.

[2] Faber, Robert Y., and Valerie A. Rybinski. UTP Cabling and
the Effects of EMI. Siemon. 1997. Accessed 14 Feb. 2007
http://www.siemon.com/us/white_papers/97-10-02-
presentation.asp.

[3] "Magnetic Field Sensor." Vernier Software & Technology.
Accessed 4 Apr. 2007 http://www.vernier.com/probes/mg-
bta.html .

[4] Marsh, David. "Category 6 Cable—Gigabit Ethernet Over
Copper." 9 Dec. 1999. Accessed 4 Apr. 2007
http://www.edn.com/article/CA46370.html .

[5] Rao, Sailesh K., and Juan M. Jover. "Gigabit Ethernet Over
Copper." Aug. 1998. Accessed 4 Apr. 2007
http://www.commsdesign.com/main/9808fe1.htm .

[6] Shimonski, Robert J., Richard T. Steiner, and Sean M. Sheedy.
Network Cabling Illuminated. Sudbury: Jones and Bartlett,
2006.

[7] Young, Hugh D., and Roger A. Freedman. University Physics.
11th ed. San Francisco: Addison Wesley, 2004.

Table 1. Test Results
Network Type File Size

(MB)
Time

(s)
Bandwidth

(MB/s)
Intensity

(mT)
Frequency

(Hz)
Segments Sent Segments

Retransmitted
100 Mbps(Cat 5e) 897 86.51 10.4 0 n/a 1751773 0
100 Mbps(Cat 5e) 897 89.4 10.0 4.6 60.03 1751740 0
100 Mbps(Cat 5e) 897 86.1 10.4 3.5 2000 1751982 0
100 Mbps(Cat 5e) 897 88.4 10.1 2.3 65000 1751899 0
100 Mbps(Cat 5e) 897 88.8 10.1 2 20000 1751867 0
100 Mbps(Cat 6) 897 88.0 10.2 0 n/a 1752877 0
100 Mbps(Cat 6) 897 87.1 10.3 4.6 60.03 1751787 0
100 Mbps(Cat 6) 897 87.2 10.3 3.5 2000 1751793 0
100 Mbps(Cat 6) 897 89.5 10.0 2.3 65000 1751938 2
100 Mbps(Cat 6) 897 87.7 10.2 2 20000 1751847 0
1000 Mbps(Cat 5e) 1270 71.49 17.8 0 n/a 166043 0
1000 Mbps(Cat 5e) 1270 86.1 14.8 4.6 60.03 166894 0
1000 Mbps(Cat 5e) 1270 81.83 15.5 3.5 2000 165793 0
1000 Mbps(Cat 5e) 1270 77.28 16.4 2.3 65000 167320 0
1000 Mbps(Cat 5e) 1270 78.9 16.1 2 20000 165877 0
1000 Mbps(Cat 6) 1270 60.5 21.0 0 n/a 167964 0
1000 Mbps(Cat 6) 1270 58.5 21.7 4.6 60.03 166788 0
1000 Mbps(Cat 6) 1270 66.8 19.0 3.5 2000 166228 0
1000 Mbps(Cat 6) 1270 56.2 22.6 2.3 65000 165495 0
1000 Mbps(Cat 6) 1270 56.7 22.4 2 20000 165012 0
802.11g Wireless 230 100.2 2.3 0 n/a 449210 25
802.11g Wireless 230 97.5 2.4 4.6 60.03 449178 22
802.11g Wireless 230 103.3 2.2 3.5 2000 449225 25
802.11g Wireless 230 102.7 2.2 2.3 65000 448596 24
802.11g Wireless 230 104.3 2.2 2 20000 449873 28

	2007conference
	2007tableofcontents
	lincoln
	caty
	matthew
	kevin
	popp

