Proceedings of the 9" Winona Computer Science
Undergraduate Research Symposium

April 22, 2009

WINON

S-]-A.,-H,N,\,FRS,TA COMPUTER SCIENCE DEPARTMENT

Symposium Schedule

Student Activity Center, Kryzsko Commons

April 22, 2009

Session 1
Title Presenter Page
2:00-2:20 Including Children ln.Pamapatory Design of a User Interface: Andrew Lien 14
Feedback and Analysis
2:20-2:40 | Porting the Lung Cancer Survivability Prediction Tool to the iPhone | Nan Meng 19
. . Comparison of Fuzzy C-Means Algorithms using Correlation .
2:40-3:00 Metrics versus Euclidean Distance Metrics Wei Zhang 41
3:00-3:20 | AutoCompose: Music Generating Kernel Hudaynazar Geldiyev 9
3:20-3:40 | A Classroom Testing Solution for Laptop Universities Matthew Schaub 29
Session 11
Title Presenter Page
6:00-6:20 | Efficient Splitting of Instructions for Code Compression MM Bari 1
6:20-6:40 | Usability Study of Web Forms on a Mobile Device Thomas Caflisch 6
6:40-7:00 Predlctlgn of Home Automation Sensor State Utilizing Fourier Andrew Popp 24
Synthesis
7:00-7:20 | A Behavior Driven Intelligent Home Automation System Danish Shrestha 34

Efficient Splitting of Instructions for Code Compression

MM Bari
Department of Computer Science
Winona State University
Winona, MN 55987
mfbari4336 @winona.edu

ABSTRACT

Use of embedded devices like smart phones, GPS navigation
systems, pdf readers, mp3 players and others is vast and their
demand is rising rapidly. Since these devices need to run
multiple applications simultaneously as determined by the user,
the availability of adequate free memory space in these devices
is very important. The goal is to develop efficient programs for
these devices that take little memory and run fast. One method
for saving memory is to use code compression techniques before
execution. This paper presents a code compression technique
that can save memory space using constant splitting of the
instruction before the program runs. This technique usually
generates a smaller decoding table, and thus requires less
memory space than the conventional approach of code
compression. This paper also shows a comparative result of
structured testing using a Benchmark named MiBench against
the previous test results and shows that the new method would
save 17-22% of memory space for those devices. The resultant
decoding table and its logical representation is also presented.

Categories and Subject Descriptors
B.3 [Hardware]: Memory Structures

General Terms
Performance, Design

Keywords

Code compression, splitting instructions, embedded system,
Huffman coding, modified Huffman coding.

1. INTRODUCTION

Embedded systems are a combination of hardware and software
where the software is enclosed (embedded) in a customized
hardware [10]. The goal of designing an embedded system is to
implement it in such a way that the memory can be utilized
efficiently. In the case of memory usage, compiled code and its
execution take a big portion of memory space. Therefore code
compression has been a common research topic for the last
several years. An embedded processor in an embedded system is
highly constrained by cost, power and size. Thus code size has
become a very important constraint for software designers
targeting embedded applications [1,3]. While parameters such as
speed and simplicity of decoding are important, the primary

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Proceedings of the 9" Winona Computer Science Undergraduate
Research Seminar, April 22,2009, Winona, MN.

metric for a good code compression algorithm it the
compression ratio, shown in the following equation:

Compressed code size + Decoding table size
CR = Original code size

where size represents the total number of bits.

Previous work about code compression uses different
compression techniques. Liu, Zhang and Cheng presented their
idea about code size reduction without performance loss. They
developed a fine-grained mixed code generation scheme that can
switch between processor modes while executing operations and
that leads to a better encoding without sacrificing the
performance [11].

The goal of Error! Contact not defined. and Error! Contact
not defined.’s code compression work was to reduce the size of
the decoding table since traditional compression techniques take
a large amount of space for the decoding table. They introduced
the idea of instruction splitting for a better compression when
using Huffman coding. Before compression they split each
instruction using an algorithm (Splitting algorithm) in a different
variable-length [1]. The algorithm finds the most repetitive
patterns in each instruction and leads to much better frequencies
for Huffman coding. The problem with this technique is that the
lengths of the variables in the decoding table are different sizes
resulting in a non-sparse decoding table. Such tables present
challenges for designing the hardware support for
decompression time.

2. CODE COMPRESSION

This paper focuses on reducing the size of code that is executed
by a machine. There is a difference between data compression
and code compression. In data compression we replace the
frequent words with a shorter code words while code
compression is expressing same code portion to represent the
original copies [2,8]. Both compressions target reducing the
original size and have a decompression technique. Overall
compression efficiency measures take into account both
compression and decompression complexity in terms of time
and memory.

Computer programs are small enough to fit in memory. But in
the case of embedded systems where memory is a concern and
multiple applications need to be run simultaneously according to
user demand, improvements in code compression can improve
performance. When decompression happens, the system
retrieves the original code segment from a lookup table
(decoding table) and this table also needs to be stored in the
memory. Therefore the idea of generating efficient code
compression always demands a shorter decoding table. This

paper describes an efficient splitting technique before applying
the Huffman coding to achieve a shorter decoding table.

2.1 Using Huffman Coding

There are two kinds of compression methods: dictionary and
statistical. The dictionary compression method uses fixed length
codewords that act as indices for the dictionary table. On the
other hand, statistical compression methods look at the entire
program and replace the most frequently appeared text patterns
with shorted codewords [4,6]. Compression techniques also can
be divided into two different categories: lossless and lossy. The
lossless compression technique allows the exact original data or
code to be reconstructed from the compressed code after
performing the decompression. The goal of lossless
compression is to not lose any single bit, whereas the lossy
compression technique retrieves an approximation of the
original data to get a better compression ratio. Lossy
compression is highly used for image and video compression
where human eyes cannot detect any difference between the
original data and the retrieved data after the decompression. But
in the case of code compression, where a single bit change
makes a big difference, lossless compression would be the only
choice.

A good example of statistical compression is the Huffman
encoding algorithm, which is a lossless data compression where
efficiency is based on the frequency of encoding the source
symbol. Instructions in a program that appear the most usually
get the smallest encode, whereas instructions with the lowest
frequency get the biggest encode. Thus, the efficiency of
Huffman coding highly depends on the frequencies of these
instructions. The idea of the splitting instruction technique
increases the frequencies significantly.

2.2 Using Modified Huffman Coding

Since instructions with lower frequencies lead to longer size
encodes, this paper uses a modified Huffman coding for code
compression to focus on instructions with lower frequencies. In
the case of modified Huffman coding, the instructions whose
frequencies are really low will be grouped together and be given
a name “Escape” to find the right Huffman coding [6]. Then
those instructions will be initialized in such a way so that they
can be identified uniquely. For example, if we have 4
instructions with low frequencies, those instructions will be
given a name “Escape,” and the Huffman coding (suppose: 11)
for it will be assigned. Then a sequence of bits (00, 01, 10, 11)
will be added after “11” to identify those newly formed encodes
uniquely, as shown in Table 1.

Table 1: Key concept about modified Huffman coding.

Name Huffman coding
Escape 11

A 11 00 1100

B 11 01 1101

C 11 10 1110

D 11 11 1111

The main idea of using modified Huffman coding in code
compression is to skip the compression algorithm for finding

encodes for low frequency instructions. A table will be
generated to find out the right Huffman coding for low
frequency instructions.

3. INSTRUCTION SPLITTING

Error! Contact not defined. and Error! Contact not defined.
introduced the idea of Instruction Splitting in 2007. They
showed that before performing the Huffman coding, if we split
the instructions, the frequency of different types of instructions
is increased resulting in good compressed codes with a shorter
decoding table. For this technique, they determined how to split
the instruction using a pattern-matching algorithm. In this paper,
we researched splitting instructions using a constant pattern.

3.1 Pattern Machining Splitting

The splitting algorithm introduced by Talal and Jorg finds a
unique pattern from all the instructions that appear in great
numbers. The problem with this technique is that each
instruction needs to go through the splitting algorithm to find the
best pattern for splitting that generates the smallest compressed
code, which in turn leads to a sparse or scattered decoding table
where each item in the table doesn’t have the same size. They
have also applied canonical Huffman coding to improve
sparseness [1].

3.2 Constant Splitting

Since we are concerned with the embedded system, we want an
efficient technique for code compression that takes into account
the manner of execution time as well as the memory usage.
Based on the idea of splitting instructions but avoiding the
Splitting Algorithm, this paper introduces the technique of
constant splitting. First of all, if we know the best constant
pattern for splitting, we don’t need to go through the algorithm
at all, and secondly, we can have a prior idea about the decoding
table size. The constant splitting technique leads to a bigger size
of compressed code compared to the splitting by the pattern
matching technique, but it achieves a much more shorter
decoding table and, as a result, the overall compression ratio
improves. For example, if we split an instruction by 4 bits, at
most only 16 different patterns of instruction would appear. So,
the size of the decoding table would be at most 16*4 = 64 bits.
This technique could be really helpful for a system as the system
would know exactly how much memory space would be
required to hold the decoding table. In this aspect, we have
performed a structural testing that gives the best constant
splitting pattern for different processor architectures.

4. RISC PROCESSOR ARCHITECHTURE

RISC (known as Reduced Instruction Set Computer) is a kind of
a microprocessor architecture for embedded software systems
that utilizes a small, highly-optimized set of instructions instead
of a more specialized set of instructions often found in other
types of processor architectures. RISC architectures simplify the
CPU design and follow a strategy of “do less” to make
instructions execute very quickly [3][5][7]. There are different
types of RISC processors, which are based on architectural
design and the need of use. Well-known RISC families are
Alpha, ARC, ARM, AVR, and MIPS. Two types of RISC
processors relevant to this research are ARM and MIPS. Both
are highly used in embedded devices.

The ARM (Advanced RISC Machine) architecture was
developed by ARM Limited. ARM is a 32-bit RISC processor

that is widely used in embedded systems [9]. We have used the
ARM (version: SA-110) for the testing part of this research.
MIPS (Microprocessor without Interlocked Pipeline Stages) is a
RISC processor developed by MIPS technologies Inc [10]. The
main difference between ARM and MIPS is the size of the
instruction sets. ARM uses 32-bit instruction set whereas MIPS
uses up to 64-bit [10].

5. COMPRESSION AND
DECOMPRESSION USING CONSTANT
SPLITTING

The idea of efficient splitting of instructions is focused on the
technique of constant pattern for splitting. Figure 1 shows the
compression technique using the Huffman coding without any
splitting. Here the total compressed code size becomes only 45
bits whereas the original code size is 104 bits. But the size of the
decoding table becomes very high (88 bits). Since the
frequencies or repeating of each instruction is very low, the
technique actually led to a poor compression ratio in this
example.

Original Code: Compressed

Code Decoding Table
A: 00000000 Huffman A: 011
B: 00000001 Coding B: 1100 A: 00000000
C: 00000010 ¢ 1110 B: 00000001
D: 00000011 || 4011 D: 1101 C: 00000010
E: 00000100 || Bf 1100 E: 1001 D: 00000011
F: 00001111 || B 1100 —)p| F 1111 + E: 00000100
G: 00010000 D: G: 010 F: 00001111
H: 00010010 E: 190 H: 000 G: 00010000
1: 00010011 || Fi 111l I 001 H: 00010010
A: 00000000 || & 010 A 011 I: 00010011
J: 00010001 f' ggf J: 101 J: 00010001
J: 00010001 | T JK 11%;0 K: 01001111
K01001111 K: 1000 Total = 88 bits
Total = 104 bits

Total = 133 bits

Figure 1: Code compression using Huffman coding
without splitting.

Figure 2 shows an example of compressing the same set of
instructions using the constant splitting technique and then using
the modified Huffman coding. Here, we split each 8-bit
instruction using a constant splitting factor of 4. The compressed
code size becomes 58 bits, which is more than the previous
technique, but due to having higher frequencies of each
instruction, we achieve a much shorter decoding table (only 24
bits).

6. EXPERIMENTAL PROCEDURE

The key concept of this research was to do structural testing to
come up with the right constant pattern for a fixed size
instruction that would give the shortest decoding table as well as
the best compression ratio. Using a constant pattern, it would
also improve sparseness of decoding table. For testing purposed,
an embedded benchmark suite, called MiBench (pronounced as
“my Bench”) was used. MiBench is a free, commercially
representative benchmark suite, which is targeted towards
embedded system [5]. This benchmark contains 35 embedded

applications for benchmarking purpose, and among those we
have chosen 8 applications considering their sizes (number of
instruction).

Original Code: Original Compressed
Oatgna o

A: 0000]0000 0lo
B: 00000001 | AlA 0|10 —
. Decoding
C: 0000]0010 A|B| Huffman 0|1100 Table
D: 0000|0011 AlC| cCoding 0]1101
E: 0000]0100 A|D 0|1110 A: 0000
F: 0000|1111 | plg| A[10):0 P o111 I B: 0001
G: 0001|0000 | A|f| BI8I: 10 1000 C: 0010
H:0001[0010 | pja| C[2]: 1100 D: 0011
I: 0001]0011 B|C D [2]: 1101 10]|1100 E: 0100
A: 0000]0000 | B|D "[Z]_‘ gty 10]1101 F: 1111

Rr2l: 1111 | | ;a0 0 W
J: 00010001 | Ala ofo e
J: 0001[0001 B|B 1010 o=
K: 0100|1111 | p|B 1110[1111
)
Total = 104 bits Total = 58 bits

Total = 82 bits

Figure 2: Code compression using Huffman coding
with constant splitting.

MiBench version 1.0 also provides the source codes (written in
C) and sample output files of those applications. This
benchmark contains several source codes ranging from a smaller
sorting program (about 25 lines of C code) to much bigger
programs (about 500 lines) of object recognition from an image.
They have the C source code files, sample output files, and also
the compiled binary files where each binary file contains text
section, data sections and other sections for debugging purposes
[51[13]. We have used those binary files for targeting the ARM
and MIPS architecture. The main idea was to use this binary
files and form different sizes of instructions. Here we were
required to read those binary files, form instruction sets, split in
a different constant pattern, apply the modified Huffman coding,
and measure the size of compressed code, decoding table, and
the original code. Figure 3 shows the basic procedure of this
testing method.

Step1 | Binary files downloaded from “Mibench”
embedded benchmark suit.

Step 2 | Java program “readBinaryFile.java” reads binary
files and extracts 0’s and 1’s; saves as Ascii in a
text file.

Step 3 | Java program reads that text file and forms
instruction (32-bit or 64-bit) then applies
different compression techniques: Huffman
coding without splitting and with different
constant splitting. It results:

e Total bits for all instruction
(original code size)

e Compressed code size.

e Decoding table size

Step 4 | Calculate the compression ratio.

Figure 3: Testing procedure for calculating
compression ratio.

The compression ratio was calculated from the equation shown
carlier. Finally, the different compression ratios were compared
and the best constant splitting technique for ARM and MIPS
architectures was found.

For this whole process, we have generated our own application.
Figure 4 shows the user interface to this program that reads the
binary file extracting 0’s and 1’s, forms different sizes of
instructions, splits those instructions based on the user’s choice
of constant patterns, applies Huffman coding, and calculates the
compression ratio. This application is divided into three parts:
reading binary files, forming instructions for two different RISC

e 00
-

" Browse &) ARM O MIPS

File Name: crc.arm Split by: 8

 ———

Result . .

e I Compression Analysis
Original code size (byte) = 344090
Compressed code size (byte) = 140820
Decoding table size (byte) = 256
Compression ratio % = 40

Figure 4: Testing Interface for calculating
compression ratio.

processor architectures, and applying modified Huffman coding
followed by different constant splitting patterns. The size of the
output files containing 0’s and 1’s were checked against the size
of the input files to validate the reading binary file part. The
integrity of the Huffman coding part was compared with a web
application found from Kansas State University’s website [12].
This web application (huffman.jar) reads any text file and gives
the desired Huffman coding for each character presented in that
file. Our java program that generates the Huffman coding read
the same text file and gave the same output.

Different constant splitting patterns were used with the
benchmark programs before applying the modified Huffman
coding. The size of the compressed code was then added to the
size of the decoding table, and the total size was divided by the
original size of the instructions. Results from all the desired
testing files were saved in an excel file and used to generate a
graph. The purpose of this graph was to compare the results that
were found in the previous work done with the same Mibench
Benchmark.

7. RESULT ANALYSIS AND COMPARE
WITH OTHER TECHNIQUES

In this section we analyze the results found from our structural
testing. We chose 8 binary files among 25 from MiBench
benchmark for the testing. The reasons for choosing these 8 files

were that they were different in sizes, and the exact same eight
binary files were tested for the previous work about code
compression. Our concern was to find the constant pattern for
splitting that would give the best compression. We applied
different constant splitting patterns: split by 4, 8, 16, 32 (only for
MIPS processor) and found 8 was the best splitting factor.
Splitting by 4, gave the shortest decoding table, but it also gave
a bigger compressed code. Splitting by 16, gave the smallest
compressed code size but led to a bigger decoding table since
the average number of items in the decoding table was 18,517
and the size became (18,517*16) = 296,272 bits or 37,034 bytes.
But if we split by 8, then the total number of items in the
decoding table (i.e., different patterns after splitting) would not
be more than 256 (2°8), and the size of this table would not be
more than 2,048 bits or 256 bytes. Splitting by 8 led to a bigger
compressed code size compared with the splitting factor of 16 or
32 (only for MIPS processor), but overall it achieved the best
compression ratio.

To show that constant splitting saves memory and gives a
shorter table compared to other methods, we compared the
compression ratios of the same set of binary instructions. We
tested the benchmark files using 3 different compression
techniques: conventional Huffman coding, splitting by pattern
matching that was introduced in the previous work, and the
constant splitting technique. The results were compared with the
original instruction size. Figure 5 presents the final results of
compression for the 8 different sets of applications for the ARM
architecture, and Figure 6 presents the results for the MIPS
architecture.

500000 1
450000 M B Original Code Size
400000 (byte)
350000)
300000 : " Without Splitting (byte)
250000 | | i
200000 {
150000 ! l Splitting by Pattern
100000 Maching/Previous
50000 l Nork (byte)
o A
. % Constant Splitting
Gl SO L L (byte
& X & & Nl yte)
‘,\¢$ Qé'\ & LR
& QT *

Figure 5: Comparing the original instruction size
with different compression techniques for ARM
processor

Compression ratios for the ARM files were between 43-49% for
all 8 applications when constant splitting was applied, whereas
the average ratio for splitting by pattern matching was 44% [1],
and without the splitting was 71%. In the case of the MIPS
architecture, compression ratios were between 45-51% for
constant splitting, whereas 49% was the average ratio with
splitting by pattern matching and 73% was the ration without
splitting [1].

500000
450000 @ Original Code Size (byte)
400000
350000
300000 Without Splitting (byte)
250000
200000 :
150000 | @splitting by Pattern
100000 { Maching/Previous Work
50000 5‘ {oyte)
)
0 % Constant Splitting (byte)
> 2 &
& &
(;\o & »

Figure 6: Comparing the original instruction size
with different compression techniques for MIPS
processor.

When Huffiman coding without splitting was applied, the
average decoding table size was 40% of the size of the code, and
splitting by pattern matching was only 8% [1]. But in our
constant splitting (factor 8), it was only 0.9% for ARM and
0.7% for MIPS.

From the structural testing procedure, it was observed that the
size of the decoding table played a large role in the compression
ratio calculation. Splitting the instruction before applying
compression results in a much smaller decoding table when
compared with traditional compression techniques. In the case
of traditional compression technique, we need to enter all of the
different instructions into the table and it takes a big portion of
the memory space. Conversely, constant splitting leads to a
consistent fixed sized decoding table, as shown in Figure 7.

160000
140000
120000) -
“= Without Splitting
100000 (byte)
80000
60000 - Splith'.ng by Pattern
Maching/Previous
40000 Work (byte)
20000 Constant Splitting
0 (not more than 256
byte)
> ¢ G X W2
I oS
F & NS @
& Q [o~

Figure 7: Showing the key idea of constant
decoding table size (256 bytes)

Another approach observation of using constant splitting is that
each splitting pattern in the decoding table is of a fixed sized but
pattern matching leads to a sparse decoding table where each
pattern does not have the same length. So hardware design for
the decoding table and memory allocation would be complex.

8. CONCLUSION

We intended to have a research about code compression, and to
this aspect, we utilized the idea of constant splitting of the

instructions for testing our hypothesis by performing adequate
structural testing. From all the results, we can conclude that a
constant splitting factor can reduce the total number of bits by at
least as much as the pattern matching method, and this approach
would generate the shortest decoding table among all other
techniques to save memory space in embedded system to
improve performance.

9. ACKNOWLEDGMENTS

Special thanks to Dr. Joan Francioni, Dr. Error! Contact not
defined., MiBench, Danish Shrestha, Jeff Ringenberg and
Matthew Guthaus, Pratic Singh.

10. REFERENCES

[1] Talal Bonny and Jorg Henkel. Instruction Splitting for
Efficient Code Compression, Proceedings of the 44th ACM
annual conference on Design automation, pp. 646--651, 2007.

[2] D. Das, R. Kumar, and P. Chakrabarti. Code Compression
Using Unused Encoding Space for Variable Length Instruction
Encodings, VLSI Design & Test Workshop (VDAT), 2004.

[3] H. Lekatsas and W. Wolf. SAMC: A Code Compression
Algorithm for Embedded Processors, Transaction on CAD, pp.
1689--1701, 1999.

[4] Timothy C. Bell , John G. Cleary, and lan H. Witten, Text
compression, Prentice-Hall, Inc., Upper Saddle River, NJ, 1990.

[5] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst,
Todd M. Austin, Trevor Mudge and Richard B. Brown.
MiBench: A free, commercially representative embedded
benchmark suite. Workload Characterization, WWC-4. IEEE
International Workshop, 2001.

[6] Salomon, D. 2007. Variable-length Codes for Data
Compression. McGraw-Hill, New York, NY. Accessed February
252007.

[7] Talal Bonny , Jorg Henkel, Instruction re-encoding
facilitating dense embedded code, Proceedings of the conference
on Design, automation and test in Europe, March 10-14, 2008,
Munich, Germany

[8] Fang Yu. Code Compression. Department of Computer
Science, University of California, Santa Barbara
http://www.cs.ucsb.edu/~yuf/paper/CodeCompression.pdf.
2006.

[9] Reuben Townsend. Universal Cores Threaten to Keep
Proprietary. MPUs at ARM's Length. Future Electronics.
http://www.future-mag.com/0701/070127.asp

[10] ARM Inc., http://www.arm.com/news.

[11] Liu Xianhua, Zhang Jiyu and Cheng Xu. Efficient Code
Size Reduction Without Performance Loss, Proceedings of the
ACM symposium on Applied computing, pp. 666--672, 2007

[12] Howell, R. Huffman Code Program, Kansas State
University,
http://people.cis.ksu.edu/~rhowell/viewer/huffman.html.

[13] MiBench, University of Michigan,
http://www.eecs.umich.edu/mibench

Usability Study of Web Forms on a Mobile Device

Thomas Caflisch
Department of Computer Science
Winona State University
Winona, MN 55987
TJCaflis6151 @winona.edu

ABSTRACT

Mobile web browsing is becoming more popular as technology
advances and handheld devices with web browsing capabilities
become more easily available and less expensive. The ability to
browse on these devices efficiently is becoming easier as
standards are evolving, but understanding and completing forms
on some of these devices can still be a challenge. For this project,
we developed a specific form application for the Eagle Bluff
Environmental Learning Center for inputting data about animals
in their natural habitat that is accessible from a mobile device.
Four different interfaces were developed and a usability study was
conducted to compare them. Results show which design users felt
was easier to use and understand, and the amount of time that it
took users to complete specific tasks using the mobile forms
compared to similar PC-based web forms.

General Terms
Measurement, Documentation, Performance,
Experimentation, Standardization, Languages.

Design

Keywords
Mobile Web browser, Mobile device, Web form.

11. Introduction

The availability of the internet on a mobile device has exploded in
the last couple years and designers are faced with new challenges
of creating a layout of a webpage that is easily accessible on a
mobile device, as well as a desktop or laptop[5]. There are many
studies about designing WebPages for a mobile device and
strategies for browsing but there is relatively little documentation
about designing web forms for a mobile device

Browsing on a mobile device can be a very confusing and
unfriendly task. Filling out Web forms on a mobile device can be
something that users refuse to do completely because it is often
times hard to tell if you are filling out the correct form or to even
know what the form is for [1,7].

Web forms on a mobile device are important to the field because
the number of people browsing the internet on a mobile phone is
growing at an exponential rate and currently it can be difficult to
understand and follow some web forms that don’t conform to a
standard on a mobile device.

The challenges of designing these mobile Web pages can be a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Proceedings of the 9" Winona Computer Science Undergraduate
Research Seminar, April 22,2009, Winona, MN.

daunting task as well. The challenges of designing for the mobile
Web are similar to those of designing for accessibility [7]. Now
not only designing your Web page to render correctly on multiple
browsers, you have to design it so that it renders correctly on a
mobile device. This can be a challenge for several reasons
including the screen size limitations, the different mobile
browsers, and user’s purposes of browsing on a mobile device.
There have been efforts made to alleviate the screen size
limitations including optimizing a web page once a mobile device
has been detected, or to divide the page into several subpages [1].
The users’ purposes of mobile browsing is something that has
been studied and people using the Web tend to engage in open-
minded exploratory behaviors, while mobile devices are usually
intended to support task-specific use [5].

In this paper we will study four different designs of a web form
and conduct a usability study on each of the designs on both a PC-
based browser and a mobile browser. Each of these four interfaces
will be able to process the same information; it is just presented in
a different way. The form will be able to accept data from the user
easily and accessibly and will process the information and
ultimately store it in a database where users can access it at a later
time.

12. Background

Eagle Bluff Environmental Learning Center currently has a
system in use where an environmentalist conducts a survey three
specific times a year by stopping at ten specific locations on their
property and listens for the sounds of certain frogs and toads that
live in our region. The environmentalist records for each species,
whether there are any frogs or toads heard, a single or couple
frogs or toads heard, or if there is a chorus of frogs and toads
heard. At the end of the year when the survey has been conducted
all three times, the environmentalist sends the records to the
Department of Natural Resources (DNR) to be used for their
purposes.

Our project was created for Eagle Bluff so that the
environmentalist who listens for the frogs and toads can use a
mobile device and enter the values into a system while conducting
the survey. The DNR can retrieve these values at any time by
accessing the database. The use of our Web application will
eliminate the need for the environmentalist to have to send in the
records at the end of every year. Our Web application will also
make the data easily accessible any time of the year, even if the
survey has not been conducted all three times, because it will be
put directly into the database. By putting the data into the database
directly, time is saved for the DNR as well because they do not
have to have someone enter the data. This will increase
productivity of computations and analysis of things which are
done by the DNR.

13. Methods

What we did was developed a Web application with four different
interfaces for the form and then conducted a usability study on
each of them. The tools we used to develop this software were
Adobe Dreamweaver as the IDE, Firefox, Internet Explorer 7,
Google Chrome. Since we were unable to get a mobile device, for
testing purposes we used the Opera Mini demo and the browser
simulator for the Blackberry Pearl 8100 as our mobile device
simulators. The languages we used to construct the Web forms
were XHTML, CSS, PHP, and for the database we used mySQL.

13.1 The Interfaces

The four interfaces that were used from a mobile perspective are
depicted in figures 1.a through 1.d. These layouts are typical of
what you see on the Internet today. In figure 1.a, there is a colored
box that contains both the label and the input box. This colored
box helps to correlate the label with the input box. Figure 1.b
looks similar to figure 1.a except that there is no colored box to
help distinguish which label goes with which input box. It is
assumed that since the label and input box are both on the same
horizontal line, the wuser should understand which label
corresponds to which input box. This is not always the case
though, especially when viewed on screens that are too small to
display the label and box in the same view. Figure 1.c has the
label so that it is very close to the left side of the input box no
matter how long or short the label is. Figure 1.d has the label so it
is right above the input box.

Eagle Bluff Environmental Lea... Eagle Bluff Environmental Lea...
Observer
Observer
Address
Address
Phone Number
Phone Number
Assistant
Assistant
Morth [January v
Month Januar
Date [+ Date [1 |+
Menu 11:04 $H/Back [Menu 11:04 BH/Back
. . . .
oK oK
DEF
1 2580 3oeF 1 24a8c 3
GHI MNO
S S o & 5Kt 6
PORS. wxvz 7 PoRs Quxrz
J 8ruv 9 m
* 0 % * 0 #

Figure 1.a LinearColor Layout Figure 1.b Linear Layout

Eagle Biuff Environmental Lea... [Eagle Bluff Environmental Lea...
Observer
Address Observer
Phone Number I
Address
Assistant |
Month Janu Phone Number
Date [17+] ‘
oay - Assistant
un [
|
Start Time Horth
R
e 11:03 P/Back Menu 11:02 $H/Back
. . . .
oK OK
DEF
1 15 30EF 1 2580 3
46l 6 mio
46m S 6 mio 5K
PORS Wz 7roRs 9wz
7 9 [8o
* = # * 0 #

Figure 1.c LinearR Layout Figure 1.d Above Layout

We developed a web form that is accessible and functional, which
includes supporting scripting, by most mobile Web browsers as
well as PC-based browsers. The form accepts input from the user
and stores the data into the database. The DNR or the
environmentalists at the Eagle Bluff Environmental Learning
Center are then able to manipulate the data in the database.

14. Results

To conduct our usability study we had 17 females and 21 males
between the ages of 18 — 23 who were all high school graduates
who were attending college for an undergraduate degree. We first
had the participants complete a demographic questionnaire with
some general questions about their age, race, education
background, and number of years using the Internet. Each of the
participants had stated that they had been using the internet for
either 10 or 11 years, and they all stated that they use the Internet
for things such as email, entertainment, games, sports, and
research for school projects. None of the participants claimed to
have browsed the Internet from a mobile device more than two
times.

After completing the demographic questions, participants were
timed while asked to perform four specific tasks on the Web
application. Participants did this on all four of the different
interfaces. Half of the females and half of the males performed the
tasks on a PC-based browser while the other half of each gender
performed the tasks on a mobile browser simulator. After each
participant had completed all of the tasks, they were asked to
complete another questionnaire which asked them what things
could be improved on, things they liked or disliked, and which
interface they thought was the easiest to complete.

The graph in figure 2.a shows the results for the PC-based
browser. On average, users seem to complete the Above layout
faster than any of the others for each of the four tasks, although
not significantly faster. The results for the mobile browser are
shown in figure 2.b. For each of the tasks, on average, users
completed the LinearR layout the fastest, with the Above layout
being the second fastest. The times for the Linear and LinearColor
layout were very close and had no significant difference.

One possible reason why the LinearR layout was completed by
participants the fastest could be because the label is justified so it
is right next to the input box. With the Linear and LinearColor
layouts, we noticed that participants had to do a lot of horizontal
scrolling as between the label and the input box for some of the
items as well vertical scrolling. In the LinearR and Above layouts,
little or no horizontal scrolling was needed.

By observing the participants perform the tasks, it seems as
though initially, it takes a user time to analyze the page once it
loads, but once it has been loaded for a couple seconds they catch
on quickly.

PC-based
70
60
50 B PC-Above
40
30 PC-Linear
20 H PC-Color
18 B PC-LinearR
task 1 task 2 task3 task 4
Figure 2.a PC-Based
Mobile-based
140
- T

120 Mobile-Linear
100

80 Mobile-Above

60

40 ® Mobile-

20 LinearColor

0 B Mobile-LinearR
task 1task 2task 3task 4

Figure 2.b Mobile-Based

15. Conclusion

As mobile browsing becomes more available and the price for
mobile devices with these capabilities continues to decrease, it is
apparent that Web developers should make their Web pages so
that they are accessible to PC-based browsers as well as mobile
browsers. It would take an enormous amount of time for
developers to go back and update current Web pages so that they
are more user friendly for a mobile browser, but the work that we
have done will help developers of future Web pages create Web
forms which are more user-friendly and faster for users to
complete.

16. ACKNOWLEDGMENTS

Our thanks to Eagle Bluff Environmental Learning Center for
allowing us to implement this project into their system.

17. REFERENCES

[1] Ahmadi, Hamad, Kong, Jun (2008). Efficient Web Browsing
on Small Screens. AVI; Proceedings of the working
conference on Advanced visual interfaces

[2] Chen, Yu, Ma, Wei-Ying, Zhang, Hong-Jiang (2003).
Detecting web page structure for adaptive viewing on small
form factor devices. Proceedings of the 1 2" International
Conference on World Wide Web

[3] Gupta, Aditya, Kumar, Anuj, Mayank, Tipathi, V. N,
Tapaswi, S. (2007). Mobile web: web manipulation for small
displays using multi-level hierarchy page segmentation.
Proceedings of the 4th International Conference on Mobile
Technology, Applications, and Systems and the 1st
International Symposium on Computer Human Interaction in
Mobile Technology

[4] Nikolova-Houston, (2005)T. Using Participatory Design to
Improve Web Sites. In Computers in Libraries, Hoffman, D.
(Ed.). Vol. 25 No. 9 Information Today, Inc,

[5] Shrestha, Sujan (2007). Mobile Web browsing:
usability. Proceedings of the 4th international conference
on mobile technology, applications, and systems and the 1st
international symposium on Computer human interaction in
mobile technology.

[6] Tajima, Keishi, Ohnishi, Kaori (2008) Browsing large
HTML tables on large screens.
Proceedings of the 21st annual ACM symposium on User
interface software and technology.

[7] Trewin, Shari (2006). Physical usability and the mobile web.
Proceeding Series; Vol. 134 Proceedings of the 2006
international cross-disciplinary workshop on Web
accessibility (W4A): Building the mobile web: rediscovering
accessibility?

[8] Wong, Ka-Wing, Saiedian, Hossein (1996) Intelligent forms.
ACM SIGICI Bulletin.

AutoCompose: Music Generating Kernel

Hudaynazar Geldiyev
Department of Computer Science
Winona State University
Winona, MN 55987
hgeldiye4718@winona.edu

ABSTRACT

Software for music composition is abundant in the market place.
Most of this software is tailored for musicians or those trained in
musical notations to compose musical pieces. Although music can
be composed this way, another approach to music composition
can be viewed as a simple process of combining basic and
elementary characteristics that is inherent in all intelligent
activities. These simple but elementary pieces can then
subsequently be aggregated into larger musical structures that can
be appealing as well as be aesthetically pleasing. We use this
approach of basic musical units of measures to design and
implement a simple core music generating kernel. The Model-
View-Controller paradigm was used to develop this system. We
utilize a set of software tools to make the kernel flexible in terms
of notes, beats, and scales. The JFugue library was used as the
music playback tool. Our software is web-compatible and can be
used to extend as well as collect composition pertinent data for
further analysis of musical structures.

Categories and Subject Descriptors
Design Pattern: Paradigm - Model-View-Controller.

General Terms
Software Design, Verification, Experimentation.

Keywords
Computer Music, Artificial Intelligence, Event Driven
Architecture,

1. INTRODUCTION

Music has always been a part of the human nature. Whether
preserved through artists playing musical instruments or vocally
transferred from generation to generation, it served as
entertainment and the way for people to express themselves.
Although not many of us are capable of composing music using
musical notations, many of us enjoy listening to it. Analogously,
there are people who cannot write or read, however, they can
understand when being spoken to.

So far, the market has offered software solutions that are tailored
to individuals who understand how to read and write conventional
musical notations [4]. Our goal was to design and implement an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Proceedings of the 9" Winona Computer Science Undergraduate
Research Seminar, April 22,2009, Winona, MN.

environment that will interest those who would want to create
their own music without necessarily understanding the
conventional notations.

The core elements of the environment were borrowed from [2],
whereas the structural architecture was devised and implemented
by the author. We intended to make this environment flexible and
adaptive to a different variety of concepts such as notes, beats,
scales, and instruments.

At the moment, the environment in question is capable of
producing only simple chants. However, the established
architecture could be further developed to create more complex
musical compositions.

2. MOTIVATIONS AND HYPOTHESIS

With the development of computing hardware and the
introduction of new programming languages and paradigms,
computing is becoming more ubiquitous with every year.
Consequently, a lot of opportunities have opened up for artificial
intelligence (Al) and in other areas as well, to utilize computing
power to explore and develop applications there were not possible
earlier. One of such areas is the world of musical composition.

According to Roads [9], Al falls into two broad categories: a
scientific side (also known as cognitive science), devoted to the
development of theories of human intelligence, and an
engineering side (also known as applied Al), devoted to the
development of programs that exhibit intelligent behavior,
whether of human or nonhuman quality. Our approach is more
relevant to the applied Al It could also be described as a
generative approach to music theory as defined in [9].

Roads also notes that programs that generate musical scores have
at least three goals: scientific verification of music theory,
producing an object of aesthetic interest, and recreational value
(also known as fun). Our motivation was to satisfy two of the
abovementioned goals: original composition and recreational
value. However, in addition, our intent was to also develop an
environment that would allow an individual with a non-musical
background to exercise his/her creativity and enjoy the overall
process.

We also hope that by allowing the “average” person to interact
with the application, we will be able to gather information based
on the established set of the application constraints. We will then
be able to develop an application that will learn from observation
and discovery of these constraints and imitate human intelligence
via music composition.

3. SOFTWARE ARCHITECTURE
AutoCompose has been implemented based on the Model-View-
Controller (MVC) paradigm as shown in Figure 1. The MVC

paradigm was introduced with Smalltalk-80. It is frequently
presented as a development environment requiring the
programmer to separate application into three categories of
objects to develop their systems: models, views and controllers.
Models are responsible for handling data related operations. This
includes retrieving data from data source, fetching it to the
requesting object (most likely controller), and storing it back to
the data source when requested. Views are responsible for
presenting the data to the user. This would include rendering data
on some sort of interface (e.g., a graphical user interface or GUI)
and passing users’ input to the controller. Controllers are
responsible for processing of users’ input and updating of the
model and view appropriately. This layer would contain core logic
that drives the application. Hansen [1] states that

“This approach nicely separates three basic concerns
of the system, thus promoting code maintenance and
reuse. Each application, however, has subtle issues
that must be thought through and addressed. The
central problem is that the inherent coupling among
the model, the views and the controllers. The way that
coupling is realized in an implementation has a
profound impact on how easy the code is to develop,
maintain and reuse.”

Although the MVC paradigm was originally designed for a one-
tier environment, we have extended this paradigm to a three-tier
architectural framework. This approach works out the best as it
provides at least three major benefits: ease of user-interface
extensibility, clear separation between controller and presentation

Servlets
(View Layer)

EJB Container
(Service Tier)

N
N

Web-browser
(View Layer) Database

(Data Tier)

N

layers, and data collection.

Figure 1. Model-View-Controller

3.1 View Layer

In essence, AutoCompose is a web application. Therefore, no
special installation is required on behalf of the user. In order to
work with the application a web browser with a plug-in capable of
playing .midi files is required. It is important to note that the
requirements of AutoCompose are satisfied by default, as most of
the operating systems nowadays come with both of the software
components pre-installed.

10

Availability of the user interface via web browser enables the
possibility of using Cascading Style Sheets technology. Because
the separation of the view layer development, modifications to
this layer can be carried out without major changes to the
controller layer. As the result, the application can satisfy creativity
needs not only of those who do not know how to read music, but
also for those who are visually impaired.

The view layer was developed using Java Server Faces (JSF)
technology. As defined in [3], this technology is a server-side user
interface component framework for Java™ technology-based web
applications that offers two main components. The first
component is an API that is capable of the following:

e representing Ul components and managing their state
e handling events

e server-side validation and data conversion

e defining page navigation

e supporting internationalization and accessibility

e providing extensibility for all these features.

The second component is the capability to bind widgets in the
web browser to the back-end objects on the server, thus allowing
one to easily manipulate states of the widgets based on the actions
of the user via AJAX technology without the burden of writing
JavaScript code [7].

Every .jspx file is “bound” to a backing-bean, which is a
traditional Java™ file, foll<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>