

The 14th Winona Computer Science
Undergraduate Research Symposium

April 28 and 30, 2014

11:00am to 12:30pm

Watkins 108

Winona State University
Winona, MN

Sponsored by the Department of Computer Science at
Winona State University

ii

Table of Contents

 Title Author Page

Biofeedback: A Player’s Anxiety as Input Christopher Bischke 1
into a Video Game Environment Winona State University

Improving Navigation Efficiency of Internal Andrew Dean 7
Structures with the Use of Augmented Reality Winona State University

Performance Comparison of Operating Josh Dinndorf 11
Systems for the Raspberry Pi Winona State University

Evaluating the Efficiency and Straightforwardness Matthew Genelin 18
of a Customized WKO Web-based Application Winona State University

On the Need for a Language for General Theron Rabe 26
Intelligence Winona State University

Audio Exam vs. ABXTester: A Survey Comparing Aaron Sands 32
Audio Listening Test Apps Winona State University

Wireless Helmet Sensor for Detecting Joel Sutton 35
Dangerous Impacts Winona State University

User-friendliness of Atlas Mapping in Family Chue Vang 42
Tree Software Winona State University

Biofeedback: A Player’s Anxiety as Input into a Video Game

Environment.

Christopher Bischke

Computer Science Department

Winona State University

Winona, MN 55987

CBischke10@winona.edu

Abstract- This paper introduces a hardware-

software solution for biological feedback game

development. Currently, game developers do not utilize

any dynamic inputs that are based off of a player’s

biological reactions. The goal of this paper is to

research how effectively and efficiently biofeedback can

be implemented into a videogame. This process is

focused on the hardware and software implementation.

On the software side, the game dynamically generate

events based on a player’s heart rate. We use a

standard heart rate monitor that can be attached to the

player’s thumb. Basing the software to respond based

on this biofeedback yields an intimate player-game

experience.

Keywords- Biofeedback; Video Game; Game

Interaction; Hardware; Software Implementation

I. INTRODUCTION

Video game developers aspire to create more

personal and intimate games for players. However, static

standard input devices such as a keyboard and mouse vary

the experiences that each player has. A third dynamic input

device to monitor stress levels of players might improve a

game’s ability to create a more personalized experience.

The third input would monitor a player’s heart rate. The

program would assume a player’s stress level and

dynamically craft a unique experience in the game, thus

crafting an intimate experience for a player.

Today, gaming is accessible to most of the world,

and is more of a common item than it is a privileged item.

The Entertainment Software Rating Board (ESRB) is a

non-profit body that assigns and standardizes content

ratings for video games, so parents may make more

informed choices before purchasing a videogame for their

child [9]. The majority of the games on the retail market

are screened and rated by the ESRB. This means that ESRB

is able to collect data from games and consumers.

According to the ESRB Video Game Statistics posted in

2010, the average age of a gamer is 34 years old [10]. More

importantly, 67% of US households play video games [10].

This data supports that video games are extremely common

today and are played over many age groups.

People are interested in gaming, but unfortunately

the input devices for gaming have remained rather static

since gaming genesis. For home console devices or

personal computers: the choice of input has mostly been

either a controller with buttons or a mouse and keyboard.

Only within the past couple of years have companies such

as Microsoft, Sony, and Nintendo experimented with their

home consoles with some more dynamic inputs. However,

no such inputs have engaged with a player’s personality or

biological feedback. Player heart rate monitoring will aid

in creation of intentional dynamic game events to sustain

elevated player heart rate during play through.

Hypothesis: Player heart rate monitoring will aid in

creation of intentional dynamic game events to sustain

elevated player heart rate during play through.

II. “FLOW”

One of a game developer’s main goals is to create

a game that fully emerges, engages and challenges a player

enough to make the game enjoyable [1]. According to the

Flow Theory researched by Mihaly Csikszentmihalyi in the

early 1980’s [2], video games need to maintain a constant

balance between levels of difficulty [2].

“Flow” is described as when the balance of

challenge and skill of a player is achieved [2]. In this

project’s case, the challenge/anxiety is derived from fear,

and the skill/boredom is a product of how frightened a

player is. When a player is in “Flow” the game is easy

enough to be enjoyable, but difficult enough to be

challenging. Ideally, a player wants to remain in flow

throughout the entire game, but with static input devices

that is not always possible. With aid of a dynamic

psychological and biofeedback input such as a heart rate

monitor, the game has access to a wealth of player based

information.

With static inputs, a developer has to assume what

is going to challenge the player. A developer may run a

statistical experiment between two game events: A and B.

Event A has a more positive feedback, so event A gets

implemented into the game. But what about the players that

enjoyed event B more? Even if it is a small subset of

players, they are not getting as good of an experience as

1

Event A players. It is possible with enough research into

the psychology of videogames along with biofeedback,

developers can design games that appeal to a much wider

audience.

This research will focus on a horror genre game.

When evaluating heart rate of a player, it is easier to

assume that a higher heart rate is increased stress, while a

lower heart rate is boredom. In order to be able to evaluate

other emotions such as, ecstasy, excitement, sadness, and

anxiety against each other, the biological input device

needs to be more robust than a heart rate monitor. For

instance, a heart rate basically has two states, elevated and

resting. A developer is going to have to assume and

interpret what an elevated state means depending on

context. However, a biological device that could monitor

electricity signals in the brain can sense an array of

feelings, not just two assumed states.

Developers want to keep the player within flow.

For the ease and purpose of this experiment, this project is

going to maximize the anxiety of the player.

Fig. 1. Mihály Csíkszentmihályi's Flow representation

when Challenge and Skills are balanced. Picture provided

by [1].

III. HARDWARE

National Instruments supplies the specifications

and instructions for a heart rate monitor. This monitor can

be built using common items from an electronics store

[4].The LED is powered by a voltage source and the LED

is faced in such a way that the light pierces the subject’s

fingertip where the light is received into a photo

resistor. The photo resistor outputs a value to an

automation I/O device [5] which interprets the data for the

game program.

The device is placed on a player’s thumb. A

disadvantage to this model is that the device is bulky and

eliminates the thumb digit, so a player is not allowed to use

the thumb digit on the keyboard. A workaround to this

solution is to use a more slimming device that would work

more like a glove, so all digits can still be used, or use an

electro microphone to record the pulse of a player’s wrist.

However the software does not rely on the hardware

implementation, as long as the data is discernable between

a calm and stressed state. The photo resistor reads a

different voltage level based on the amount of blood

flowing through the finger in this experiment’s device [6].

This provides for a non-intrusive and easy way to monitor

the heart rate of a player [6].

IV. SOFTWARE
This experiment uses VALVe’s Source

Development Kit (SDK) for the game [13]. VALVe’s SDK

is a powerful set of tools completely backed by a powerful

game engine that has been constantly modified and

improved since 2004 [13]. VALVe has successfully

released twelve games since the debut of the Source

engine. Many of those titles have received numerous

awards for their gameplay, mechanics, and storyline. One

of the reasons for such highly awarded games is because

VALVe is backed by such a powerful toolset like the SDK.

The SDK offers robust tools such as a map editor, model

poser, and the game engine itself. This project focuses on

using VALVe’s map editor and source engine for the

implementation of this project.

The map editor, also known has “Hammer

Editor”, is a tool environment that allows the developer to

forge the environment or “map” that a player interacts with.

Hammer also handles the logic for the world, meaning it

handles the creation of game events. In this project’s case,

the map listens to what events are stressing a player and

implements those events later on in the level. The Source

Engine is modified to allow Hammer to have an event

listener for when a player is stressed.

The game keep tracks of certain game events

while measuring a player’s heart rate. The code in charge

of this is known as the game handler. If the heart rate

increases after a certain game event, the game handler

remembers the game event for future use. When playing a

horror game, if a player is frightened of a certain game

event, the game handler remembers that event and then

reuse the same elements later in the game to frighten a

player again. The game program attempts to keep a player

in “Flow”.

2

V. THE GAME

The game map that the participants will play

through is linear style map. Linear means the map has a fix

path for the player to follow; however, the game events that

generate within the map are completely dynamic. The

game generates events based on how the player previously

reacted to past events. VALVe previously demonstrated a

flow chart similar to the figure below [3].

Fig. 2. A version of VALVe’s flow chart.

The game generates and host events that are

aimed to scare and heighten a player’s heart rate. This game

follows a similar model to a critically acclaimed horror

game called, “Amnesia: The Dark Descent” developed by

Frictional Games [14]. Amnesia’s gameplay is based

around a player being defenseless against perusing

monsters. The only way to ‘defeat’ monsters is to quickly

make a decision of where to run and hide to evade

opponents. If caught, the monsters kill the player and the

game is over.

Most generated events and encounters in Amnesia

are based around two premises. First, a planned chase

scene: a player is able to see the monster, but the monster

is not yet aware of a player. This scenario allows for a

player to plan his route and possible actions before he

initiates the chase scene. This type of event also allows for

anticipation and anxiety to build before the chase scene is

initiated. The second type of events are ‘jump’ events. This

type of event is where a player doesn’t expect a chase scene

and is required to make a quick decision to survive the

event. A ‘jump’ event results in a jump in anxiety or heart

rate. The game events are based on either event or a

combination of these two type of events.

All the game events that are dynamically

generated are being generated for a reason. That reason is

based off of the player’s biological feedback reaction to

certain game events. Either the game is attempting to

heighten the level of stress of a bored player or maintain a

stress level for a player to keep them engaged. Since the

game has a reason for a generated event, the game is able

to output that reason for a moderator to view and interpret.

This helps with data analysis and understating of the game

handler that generates game events.

The creation community for VALVe games is

large and supportive. Many map makers and coders release

their maps for public use. I used a map created by the

username, Riman21 [19]. The map resembles a dirty

apartment complex theme. Low lighting and ambient

sounds are to increases the overall eeriness theme of the

map. When the game begins, the participant is forced into

an apartment where static game events are generated.

These events are the same to each participant no matter

what. The events are jump scene events. Based on how the

player reacts, the next event will either be an anticipated

stress scene or a jump scene to increase maximum stress.

Once the player has completed the events within

the apartment. The player is free to wander a restricted and

guided path around the halls of the apartment building. In

the halls of the apartment building all the events are

generated are dynamic and based off of the reaction of the

previous game event.

VI. IMPLEMENTATION

Participants were tested within a confined

controlled room. The lights were turned off for the purpose

of not interfering with the heart rate monitor and add to the

immersion of playing a horror game. A researcher was the

only other person in the room with a participant. The

researcher’s job was to help begin the test, evaluate the

stress of a participant, and help if any problems arise. When

beginning the assessment, the researcher had the

participant sign a consent form that goes over the risks,

data, rewards, and purpose of the study. The participant

was a complete volunteer and was able to leave at any

moment during the evaluation.

Once the consent form was signed, the researcher

placed the heart rate monitor onto the participant, and

discussed the basic controls about the game. The researcher

loaded up an introductory map that has no game events just

for the purpose of the player learning game controls. Once

the player was comfortable with the game controls, the

researcher turned the lights off and started the actual map

with the dynamic game events.

While the participant was playing the game, the

researcher was evaluating the player’s physical stress and

the events that were generated during the game. For

example, if a participant screams during the game event,

Record
Player

Reaction
(Input)

Evaluate
Player's
Reaction

Game
Event

(Output)

Player
Reaction

3

the researcher would note the level of stress they assume

the player is experiencing. This evaluation did not have to

be extremely descriptive since it acted as a small aid later

in the evaluation of the biological feedback results.

During the participant play through. The game generated

events based on the biological feedback of the participant.

Even though game developers want perfect balance of

challenge and ease (flow), the game events generated are

for maximum scare or stress. The reason for maximum

stress is that this study is really focusing on the

implementation of the biological feedback through

software and hardware. Once an implementation has been

proven, further studies can easily work in the psychological

flow model into the implementation.

Once the game was completed, the researcher

viewed a graph generated by the participant. The graph will

display the heart rate data over time, and which events were

generated. The game has reasons for which events were

generated, and those reasons are based off of the

participant’s reaction of the previously generated event. By

interpreting that data, the researcher surveys what events

scared the participant. It is possible that the participant may

intentionally or unintentionally gave false information on

whether they were scared of an event. So by combining the

heart rate results from the video game, and the researcher’s

evaluation of physical stress during the play through, a

confident conclusion may be made on if the correct event

was generated for maximum stress. Evaluating the player’s

stress through survey, physical stress, and heart rate also

ensures that the hardware did not malfunction during the

test. For example, if the participant clearly demonstrated

physical stress during a play through, and the survey

confirms the player was stressed – A confident conclusion

may be that the hardware failed during the experiment.

VII. RESULTS AND ANALYSIS

A total of 20 participants were tested. The number

of events that each participant played through were 4

events each. The first event was not dynamically generated,

so each participant played through 3 dynamically

generated events. So there was a total of 60 dynamically

generated events based off of a player’s heart rate.

Unfortunately, participants number 002 and 003, were not

generating numbers that made a lot of sense. Upon further

investigation it was extremely probable that the heart rate

monitor was broken. For the rests of the tests a new heart

rate monitor was issued and the results were more accurate.

So participant 002 and 003 are going to be removed from

the data analysis because of the monitor fault.

With the two test cases removed, 6 out of the 54

(11%) events were generated incorrectly. Generating an

event incorrectly means that the player was visibly scared

but the game did not catch the elevation in heart rate. There

are numerous possibilities why the program didn’t catch a

person being scared. One reason could be that not everyone

reacts the same to fear or stress. When participants were

scared, the graph would represent a large spike in heart

rate. However, a small portion of heart rates had a gradual

increase in heart rate even though they had physical traits

of being scared. The game looks specifically for large

spikes in a short amount of time, so if a person’s heart rate

rises gradually over time, the game will not sense this.

Forty eight out of fifty four (89%) events were

generated successfully. To be generated successfully, the

game needs to be attempting to scare the player, or

continuing to scare the player with the correct event. In the

case where a player is bored, the game will alternate and

vary the type of events until the player becomes interested

again. If the player becomes scared of an event, the next

event generated is a similar type of event. Once the player

gets bored of a certain type of event, the game identifies

the player is bored and generate a new type of event to

attempt to scare the player.

Twelve out of eighteen (67%) participants were

considered engaged and frighten. To be considered

frighten, the game figured out an event that the player was

scared of, then kept generating the same event, if the player

got bored of the event, the game generates a new event to

scare. If the new event continued to scare the player until

the end of the game, then the player was fully frightened

throughout the game. Six out of eight teen (33%)

participants were bored and disengaged throughout the

game. This means that the game kept generating different

types of events to scare the player, but none of the events

raised the player’s heart rate. This does not mean that the

implementation failed, but may be a reflection of the game

design and scare events. By possibly having more events,

bored players could eventually be engaged and frightened.

Figure 4 is a graph of a representation of a

participant’s heart rate who was scared of the first jump

event, but then was bored of the second jump event. The

game knew the player was becoming bored so generated

anticipated stress events for the rest of the game. Figure 5

represents a participant who was scared of all jump events.

The game was able to determine the player’s fear, so it kept

generating jump events. Figure 6 represents the opposite of

Figure 5. Participant 010 was not scared of the jump events,

but was very freighted and anxious of anticipated stress

events.

VIII. CONCLUSIONS

Between frightened and bored players, the

biofeedback implementation was mostly successful. In

general cases, this implementation seems to be a fairly

4

reliable approach. Though, there are instances where this

particular biological feedback implementation did not

work. First evaluating the hardware: heart rate is extremely

context dependent. The game has to know what type of

event is being generated and what emotion the player

should be experiencing. The player could be react with

different emotions than anticipated, but still giving the

correct heart rate. For example, a developer wants the

player to experience fear at a certain part in the game. The

game activates this event and the player’s heart rate

elevates and the game assumes the player is scared. But the

player’s heart rate may be elevated for a number of reasons:

fear, excitement, exercise, etc. There is no way to

confidently say that the player is experiencing the emotions

that are intended. A better way to approach the hardware

could be by monitoring the player’s electrical signals in the

brain. Certain signals fire in the brand for certain emotions,

so it is a lot easier to assume what emotion the player is

experiencing.

This implementation also measures the relative

jump of heart rate from one sample to the next sample. This

method is advantageous to finding quick jumps in heart

rate that are abnormal when the player is calm. This method

worked for most of the players, but a smaller set of player’s

heart rate reacted slower most of the players. This means

the participant was notably scared during the play through,

but their heart rate just reacted slower to events. In order to

accommodate slower reacting heart rates, the algorithm for

determining if a player is scared needs to be re worked. An

algorithm that can evaluate a player’s heart rate over the

course of a specific timespan may be a better

implementation.

Though there are problems with this

implementation. The cost efficiency, ease of

implementation, and general effectiveness of a heart rate

monitor is suitable for biological feedback in games to

invoke and keep certain emotions of the player.

Fig. 4. Representation of the heart rate of player 008.

Fig. 5. Representation of the heart rate of player 009.

5

Fig. 6. Representation of the heart rate of player 010.

IX. ACKNOWLEDGMENTS

The author of this paper would like to extend a warm

thank you to April Dawn Valete from the University of

Minnesota for the aid in the creation of the survey

implementation. The author would also like to thank Dr.

Debnath, Dr. Iyengar, and Dr. Zhang from Winona State

University for helpful advice and guidance during the

length of the project. The author would also like to thank

Dr. Cichanowski from Winona State University for the

critical review of this paper.

X. REFERENCES

[1] L. Nacke, “Measuring players' experience of games and real-

time simulations”, iTEC08 - Your Technology Hotspot,

Hessen-IT, Darmstadt, Germany, 2008.

[2] B. Cowley, D. Charles, M. Black, R. Hickey, “Computers in

Entertainment (CIE) - Theoretical and Practical Computer

Applications in Entertainment”, Volume 6, Issue 2, Article

No. 20, April/June 2008.

[3] M. Ambinder, "Biofeedback in Gameplay: How Valve

Measures Physiology to Enhance Gaming Experience”,

Game Developers Conference, March 2011.

[4] National Instruments, “Build Your Own Heart Rate

Monitor”, http://www.ni.com/white-paper/14248/en/,

August 2012. Accessed December 2013.

[5] LabJack, LabJack’s U3 Platform, http://labjack.com/u3.

[6] Embedded Lab, “Easy Pulse Sensor Overview”,

http://embedded-lab.com/blog/?p=7336. Accessed

December 2013.

[7] VALVe Software, http://www.valvesoftware.com/.

[8] G. Fonte, “Pulse Speed Timer”, Nuts and Volts, pp 39-43,

April 2007.

[9] ENTERTAINEMENT SOFTWARE RATING BAORD,

http://www.esrb.org. Accessed December 2013.

[10] ENTERTAINMENT SOFTWARE RATING BOARD,

“How Much Do You Know About Video Games?”,

http://www.esrb.org/about/video-game-industry-

statistics.jsp. Accessed December 2013.

[11] STEAM, Steam & Game Stats,

http://store.steampowered.com/stats. Accessed December

2013.

[12] Microsoft, Earnings Release FY12 Q1,

http://www.microsoft.com/investor/EarningsAndFinancials

/Earnings/Kpi/fy12/Q1/detail.aspx, 2012. Accessed

December 2013.

[13] VALVe Software, Source Engine Platform,

http://source.valvesoftware.com. Accessed December 2013.

[14] Frictional Games, Amnesia: The Dark Descent,

http://www.amnesiagame.com. Accessed December 2013.

[15] K. L. Amon, A. Campbell, “Can children with AD/HD learn

relaxation and breathing techniques through biofeedback

video games?”, Australian Journal of Educational &

Developmental Psychology, Vol. 8, pp. 72-84, 2008.

[16] M. Nei, Cardiac Effects of Seizures. Epilepsy Currents, Vol.

9, Issue 4, pp. 99-95, July/August 2009.

[17] C. Bischke, N. Debnath, “Hardware Solutions for

Biofeedback and Game Interactions”, 2013.

[18] D. Carr, D. Comotis, F. Glass, “Video Game Invasion: The

History of Global Obsession”, Beantown Productions,

Documentary, March 2004.

[19] Riman21. Dirty Apartment. GameBanana.
http://hl2.gamebanana.com/maps/177693. Accessed

December 2013.

6

Improving Navigation Efficiency of Internal

Structures With the Use of Augmented Reality

Andrew Dean

Department of Computer Science

 Winona State University

Winona, MN

adean10@winona.edu

Abstract— First time navigation within a new enclosed

structure, such as a school or hospital, can be difficult. Posted

signs and maps are the common method of navigation inside a

building, though signs are stationary and afford limited amounts

of information. Without the use of infrared or near-field

communication devices such as Bluetooth or radio-frequency

identification (RFID) tags, an exact position cannot be

established. Global positioning systems (GPS) are not an option

as there is not a clear path between the satellite and receiver. A

proposed solution to these problems is the use of augmented

reality (AR) and quick response (QR) codes. These can be used

to display a detailed map of an internal environment, as well as

the user’s current location and intended destination. This project

used AR displayed on a mobile device (laptop on a cart with

webcam) and scanned QR codes in the environment. The user

input the destination; directional information was then

superimposed atop the QR code giving the user a map with their

current position and a path to the specified destination. This

combination eliminates the need for near-field communication

while giving the user more detailed information than posted signs

and maps. The AR software used in this project was the open

source program AR-media. A survey was conducted on 30

students at the Winona State University Rochester campus. The

survey compared navigating a building using the AR setup verses

posted signage. Navigation time and the subjects’ preference

were the variables measured. The results of the survey have been

evaluated to determine if the difference in time and preference

between navigation styles is significant.

Keywords—augmented reality; navigation; QR code; mobile

device; localization;

I. INTRODUCTION

Today’s advanced technology allows us to get from point A
to B easier than ever. The gadgets that assist us with
navigation are numerous and complex, but getting started
means knowing where you want to go in the first place. GPS
devices are meant for outdoor navigation and cell phones that
use assisted GPS are only as accurate as the signal they receive
to triangulate a location. Inside a building GPS connectivity is
not an option and even with cellphone and Wi-Fi reception, a
smartphone cannot give you an accurate location.

 Without a device to assist with internal structural
navigation, directional information is not always displayed in a
convenient form. Unless a person knows the layout of the

building or campus, the signage is not always appropriate or
easy to decipher. In a common situation, the stress of being
late to a class or appointment can cause a person to panic and
get lost. Augmented interactions have the potential to affect
users’ psychological and emotional states. For example,
augmented interactions with nature – like direct interactions
with nature – may help to reduce stress and benefit
psychological functioning. [1] This is why I propose a
localized augmented reality software solution to direct anyone
around inside a new building or campus. Augmented Reality
provides a way to present any computer-generated information
on the top of a real world. [5] Most augmented reality (AR)
systems for indoor navigation are based on the assumption of
continuous localization of the user and require either a
significant effort to instrument the environment with the
necessary infrastructure, or sensor-based estimates of user
movement in the environment. [4] The augmented reality setup
for this project will overcome this problem by simply using a
web camera and software compiled and run on a laptop. In
designing augmented reality systems, it is often essential to
implement a tagging (ID) system to make a link between
physical and digital spaces. [6] The augmented reality setup
for this project will scan a quick response (QR) code in a
building and provide a location that is assigned to the code.
The QR codes can be easily made by normal printers, can be
attached to almost any physical object, and can be recognized
by mobile readers.[6] Once the code is scanned, the user is
presented with a detailed map and a path to follow. The
camera attached to the laptop tracks the QR code and changes
the orientation of the map displayed, wherever the camera is
pointed. The QR code will also display the appointment
information related to the surroundings, such as room numbers
or building names. The overall objective for this project is to
test the effectiveness of an augmented reality mobile setup for
navigation within a large building.

Hypothesis - The use of the augmented reality navigation

setup will decrease travel time and will have higher satisfaction

ratings from subjects compared to posted sign navigation.

II. METHOD

The AR navigation setup was tested by a survey. The
survey consisted of 30 current students at Winona State
University Rochester. Each student independently navigated to
the same location. Half of the students were instructed to

7

navigate to the destination using standard signage, while the
others were instructed to use the augmented navigation setup.
Several development steps were necessary to set up the survey,
including AR software utilization, QR code creation and map
association for navigation.

Software utilized in this project included an existing plugin
called AR-media and Sketchup, a CAD tool developed by
Google. The plugin is a free open source download that can be
compiled to run on a variety of devices including Windows,
Mac, iPhone and Android. The hardware used in this project
was an HP EliteBook 8470p, Logitech 9000 Pro web cam, and
a Pryor Products Light-duty Laptop Stand.

The layout of the hardware began with attaching the laptop
to the top of the laptop stand with Velcro. This allowed the
laptop to be removed when not in use as the augmented reality
setup. The web camera plugged into the laptop via USB.
There was no attachment of the webcam to the laptop or cart.
This allowed free movement of the webcam as if the user was
holding a smartphone. Moving the cart was possible due to the
five wheels that swivel independently of one another. This and
the handle that wraps around the cart, made it easy to push the
cart in any direction. To compensate for the various heights of
students, the cart was adjustable with a pneumatic piston
located between the wheels and laptop surface.

The AR-media and Sketchup software was installed on the
Windows 7 operating system. Free trial licenses were applied
to both applications to allow basic functions needed to run the
setup. Sketchup was installed first to allow AR-media plugin
to associate with the toolbars in Sketchup’s design
environment.

Setting up the augmented reality with AR-media began
with creating a quick response code. Typically QR codes are a
high definition matrix of squares arranged in a tight grouping.
These more complicated QR codes are scanned as a still image
and the algorithm used to process the image is more time
consuming. The QR codes used with augmented reality are
larger, simpler combinations of squares or shapes. These less
complicated QR codes are processed in real time by the lower
resolution video sensor. For the purposes of this project, a
simple white square within a black square and the AR-media
logo (fig. 1) was used as the QR code.

 Fig. 1 QR code design

Associating the navigation map to the QR code began with
importing an image of the floor plan from each building on the
UCR main campus. The floor plan images were affixed to the
three dimensional plane in Sketchup, with the center of the
image set to the XYZ coordinates (0,0,6). This makes the map
on the laptop screen appear to float six inches above the QR
code when scanned. (fig. 2) Having the map offset from the
QR code also prevents the map image intersecting with the QR
image. A dashed line was also drawn onto the map to indicate
the path for the participants to follow. The line begins from the
starting room and follows the optimum path to the destination.
(fig.3)

The QR codes were scanned with an external web camera
connected to a laptop. This allowed the student to move the
camera freely when inspecting the map. The laptop was
attached to a cart. (fig. 4) Having the cart mobile enough to
transport throughout the campus was taken into consideration
for the tests. The cart chosen is widely utilized at a major
medical center in the Rochester community. The students
scanned QR codes posted in the same areas the building signs
were located. There were five buildings used in the navigation
path, all connected on the main floor. Each building was
assigned a QR code with one being placed at the intersection of
adjoining buildings. Each QR code gave the student an
overview of their location on campus. The current location of
the student was displayed according to the location of the QR
code. As participants from the AR group followed the path
between buildings, they had the option of scanning a QR code
if they felt they needed more information.

Fig. 2 Map displayed on laptop with AR-media and QR code

8

 Fig. 3 Map design as displayed in Sketchup

 Fig. 4 Laptop attached to cart with webcam

 The students were tested separately from each other to
prevent copied behavior from one student to the next. Each
individual pushed the cart regardless if the AR navigation was
assigned to them or not, equalizing the physical demands. The
path that the students took began at the computer science
department lab, room 101 in Singley Hall and ended in the Hill
Theater green room. The end location was picked as it does
not have a room number associated with it, except on the
detailed floor plans. Each student was followed and timed
during the navigation trial from start to finish. No assistance or
hints were given to the students during this time. Once the
student completed the course the survey was taken. The survey
consists of 3 questions:

1. Did you already know the location of the green room?

2. On a scale of 1-5, 1 being very unhelpful to 5 very
helpful, how would you rate the navigation method assigned to
you?

3. Additional comments?

Question 2 is a Likert scale from 1 to 5 that quantifies the
students’ opinions.

III. RESULTS

Timing from the student trials indicated that there was little
difference on average between the two groups. There were
outliers from both groups that were faster at finding the
destination. The AR group outliers spent more time pushing
the cart through the crowded hallways. The non-AR group
outliers already had a good idea where the room was located.
Of the 30 participants, 28 said the “green room” in the Hill
Theater was unfamiliar to them.

The average times for both groups are compared:

The ratings for both navigation methods are compared:

 The average time for the AR group was 3:32. This was 8
seconds faster than the 3:40 it took for the Non-AR group to
navigate to the same destination. There were 2 outliers that
knew the room location were able to walk straight to the room
in under 3:00. The strides and heights of the students were not
taken into consideration when timing.

 The survey results stated that the AR group rated the AR
navigation at 4.3 out of 5. Students from the Non-AR group
rated the standard sign method of navigation at 3.1 out of 5.
The difference in ratings between the two groups indicated that
the AR group liked their navigation method 24% better than
the Non-AR group.

IV. ANALYSIS

The results from the navigation timing were as expected.
Generally, the time it took for both groups was not significantly
different. One major difference in the navigation timing was
the path that the students chose. Like in turn-by-turn
navigation, the instructions were user-centric, and the results of
a user study show that it is a viable solution to help users
navigate in a building, in the absence of continuous
localization. However, the solution is not robust against users’

3:21

3:28

3:36

3:43

AR group Non AR group

Average Travel Time(min)

AR group

Non AR group

0

2

4

6

AR Group Non AR Group

Navigation method mean
ratings on scale of 1-5

AR Group

Non AR Group

9

deviations from the pre-defined path, due to the complete lack
of localization.[3]

The survey results proved more positive than I expected.
Even with using the cart and the camera, the concept was well
received by all of the students. The common response from the
survey was to implement this on a smartphone. After the
student trials with the laptop cart and webcam, I was able to get
a working version of the AR navigation on an iPad and iPhone.
This was valuable to demonstrate a working version of the AR
navigation at the Judith Ramsey Research Seminar along with
the poster. The response from the poster was positive,
particularly the implementation of the AR navigation in
hospitals and large campuses with multiple buildings.

Separate of the testing method, using the laptop on the cart
was intended to simulate the pushing of an IV pole or
wheelchair while manipulating the navigation software. This
helped to support the idea that AR navigation could potentially
be used in the healthcare system. The ability to hold onto the
cart or wheelchair while navigating would be important for
patient safety. An idea brought up by my Professor, Dr.
Zhang, would be the implementation of this navigation
software on Google Glass. This would allow the user to
operate completely hands free.

Other variations of how the AR navigation could be
implemented would be to include elements of the surrounding
architecture or pictures in the building. Working with
augmented reality in architectural rooms is more than
providing better and more complete ways of interacting with
digital technologies, it further more includes an important task
in making the resulting artistic effects of augmented reality an
integrated part of the total perception of the architectural rooms
and spaces. [2] Beyond using QR codes, the WSU logo could
be used to map a location on campus. Pictures on the wall or
art in the hallways of a hospital could be used as landmarks
that the AR navigation could recognize and display a location.

Determining the success of this project relied on the
feedback I receive from participants in the survey. Most of the
feedback was favorable with suggestions on how to improve
my application. Ultimately I hope to get more feedback on this
pilot project to make it into a fully functional application for
patients, students, or anyone, navigating a new environment.

V. CONCLUSION

 In this paper we covered the plausibility of using
augmented reality as a medium to navigate inside a building.
Requirements for the project were discussed as well as the
changes that AR navigation could bring. The methodology for
implementing the project was covered and results analyzed.
The results showed pointed in a positive direction, implying
AR navigation can assist people navigating in a new
environment. Feedback from the surveys and people interested
in the project will help to shape the future design of the project.
The current version of the project is a fraction of what would
be needed to implement this in an entire building. Databases
and additional programming will be needed to realize the full
potential of AR navigation on a mobile device.

ACKNOWLEDGMENT

I would like to thank my professor, Dr. Zhang and the
students of CS495 for the assistance given to me in writing this
paper. The materials and time allowed to work on this project
while at work would not have been possible without my
employer, Mayo Clinic. Also, love and appreciation to my
wife Andrea who contributed her experience with technical
writing.

REFERENCES

[1] Friedman, B. and J. Peter H. Kahn (2000). New directions: a value-

sensitive design approach to augmented reality. Proceedings of DARE
2000 on Designing augmented reality environments. Elsinore, Denmark,
ACM: 163-164.

[2] Krogh, P. G. (2000). “Interactive rooms: augmented reality in an
architectural perspective”. Proceedings of DARE 2000 on Designing
augmented reality environments. Elsinore, Denmark, ACM: 135-137.

[3] Mata, F. and C. Claramunt (2013). Augmented navigation in outdoor
environments. Proceedings of the 21st ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems. Orlando,
Florida, ACM: 514-517.

[4] Mulloni, A., H. Seichter (2011). Handheld augmented reality indoor
navigation with activity-based instructions. Proceedings of the 13th
International Conference on Human Computer Interaction with Mobile
Devices and Services. Stockholm, Sweden, ACM: 211-220.

[5] Pyssysalo, T., T. Repo, et al. (2000). CyPhone: bringing augmented
reality to next generation mobile phones. Proceedings of DARE 2000 on
Designing augmented reality environments. Elsinore, Denmark, ACM:
11-21.

[6] Rekimoto, J. and Y. Ayatsuka (2000). CyberCode: designing
augmented reality environments with visual tags. Proceedings of DARE
2000 on Designing augmented reality environments. Elsinore, Denmark,
ACM: 1-10.

10

Performance Comparions of Operating Systems for

the Raspberry Pi

 Joshua C. Dinndorf

Department of Computer Science

Winona State University

Winona, Minnesota

JDinndorf10@winona.edu

Abstract—The Raspberry Pi is very popular computer

platform that is small, the size of a credit card, and only costs $35.

Because of this it is obviously limited in its hardware performance.

It is very important to utilize that power as efficiently as possible.

The operating system has a major influence on how those

resources are used throughout the system. We need to find an

operating system that can utilize the Raspberry Pi’s hardware to

get the greatest performance out of the given hardware

configuration. In this paper we look at two operating systems that

run on the Raspberry Pi, namely the Raspbian and the Pidora. We

compare the performance of these two operating systems in three

categories; process management, memory management and

secondary storage management. These categories are evaluated

using synthetic benchmarks to simulate real use of that service.

Results suggest that Raspbian outperforms in one category,

process management, while Pidora performs better in secondary

storage management and the third category, memory

management was inconclusive. Thus we cannot conclude that

either of the operating systems will perform better on the

Raspberry Pi in all scenarios.

Keywords—Raspberry Pi; Raspbian; Pidora; Operating System;

Benchmark; Performance Comparison;

I. INTRODUCTION

The Raspberry Pi, shown in Figure 1, is credit-card sized

computer that cost $35.00 [1]. Obviously at this price point and

size the Raspberry Pi (RPi) is limited in what it can do from its

hardware. With this limited performance it is very important to

manage and utilize it as efficiently as possible. Operating

systems play a big role on how resources are used throughout

the system.

An operating system basically is a program that manages

both computer hardware and software for the end user [2]. Most

computers need some sort of OS, including the RPi. Operating

systems are designed to work with specific systems and

architectures. The RPi uses the ARM11 (ARMv6) architecture,

which is dated and only a handful of operating systems are

designed or still support running on it. Of these RPi OS’s there

are some specialized for certain tasks, like RaspBMC which

designed for media centers. Others ARMv6 OS’s are either not

stable or not optimized specifically to run on RPi. The two

compared for this paper are Raspbian and Pidora. These

operating systems are both based on major Linux Distributions,

they are multipurpose, and they are both stable and have some

optimization for the RPi. Since OS’s are similar it begs the

question which one is actually better suited for the RPi?

In this paper we compare these two operating systems by

measuring the performance of the common operations that OS’s

are responsible for. Operating systems are responsible for a

large amount of tasks. These can generally be broken down into

three categories. These categories are process management,

memory management, and secondary storage management [3].

Operating Systems can implement these categories differently,

which can impact the speed and efficiency of the system.

We need a way to compare each of these categories

quantitatively so we can evaluate how well each of these OS’s

utilize the RPi’s hardware. This is where benchmarks come in.

In general, benchmarking is a way of measuring a task. For

computing, benchmarking is a way to measure variables, such

as speed or bandwidth, when executing a computing task [4].

This allows comparison between different hardware and

software configurations, which in our case is different operating

systems. In this paper we use benchmarks to evaluate the

categories noted above. We then use the results to compare the

two operating systems. The benchmarks we use will simulate

real world workload on the specific components of the

operating system. It is important to note that while benchmarks

give a great view into performance, they do not measure

subjective judgments such as user interface or available

software. Those preferences are out of the scope of this paper.

The primary motivation to compare these two operating

systems on the Raspberry Pi was because of the lack of

quantitative benchmark data doing so. There are many articles

comparing OS’s of the Raspberry Pi on personal option but

Fig. 1: Raspberry Pi Model B

11

none of performance. The Raspberry Pi being such a popular

computer with such limited hardware it is important to compare

the operating systems available for this device on a purely

objective, quantitative way and not just on subjective

preference.

The next section outlines some related works. After that is

a section on the background information on the two operating

systems. Then we will go in-depth into our methodology of

evaluating the operating systems performance. We will then go

through the results of the benchmarks and analysis. Finally in

the last section we conclude about the performance of these

OS’s.

Hypothesis: Raspbian can outperform Pidora on the Raspberry

Pi

II. RELATED WORKS

There is either little or no works comparing the two

operating systems in this paper. There are many works on

comparing other operating systems, computer performance

measuring and benchmarking methodologies. This section will

go over some of the works that influence the approach taken in

this paper.

The three categories of an operating system are based on the

breakdown in “Operating System Concepts” by Silberschatz

[3]. This textbook does a great job of describing operating

system processes and these categories should reflect main OS

processes. The methodology of how to compare these operating

systems and what benchmarks came from a couple of papers.

The first being an older paper from 1995 titled “Operating

System Benchmarking in the Wake of Lmbench” by Brown and

Seltzer. This paper still has one of the most in-depth looks at

how to measure OS performance today. In this paper they

describe how benchmarks are the only way to develop an

understanding of operating systems and the computer hardware

performance. They also explain how one needs a broad array of

benchmarks that cover all the components of the operating

systems [5]. In this paper we used multiple benchmarks in a

variety of categories to follow this philosophy.

The way benchmarks were picked in this paper was based

off of Chen and Lin’s “A Systematic Methodology for OS

Benchmark Characterization”. Chen’s paper was above how to

categorize benchmarks. It pointed out that some benchmarks

didn’t even measure what it was supposed to. Such as disk

benchmarks that didn’t use large enough sizes to get around

disk caching or CPU calculation using wrong timers [6]. This is

why the benchmarks chosen in this paper we chosen carefully

and all benchmarks are from the popular Phoronix Test Suite to

verify popularity and correctness.

The methodology of how to pick and run the benchmarks

was based off Martinovic and Balen’s “Performance Evaluation

of Recent Windows Operating Systems”. This paper they

compared three windows operating systems using a huge suite

of benchmarks, which really encompassed the whole operating

system. A subset of similar functioning benchmarks was used

below, only difference is these could run on Linux and ARMv6

architecture. There benchmark methodology of running a

benchmark and then reinstalling the OS to start fresh was

borrowed also [7].

The way the secondary storage management section is

benchmarked was influenced by Wanninen and Wang paper

called “On Benchmarking Popular File Systems”. In this paper

the authors compared performance of multiple file systems on

multiple operating systems. They used IOzone and their

philosophy on file sizes and tests performed is used below [8].

III. OPERATING SYSTEMS

As stated in The Complete Reference: Linux, Linux is a fast

and stable open source operating system for many devices. It

has many features like Windows and OSX but what

distinguishes Linux is its flexibility along with it being freely

available [2]. This is where the Raspberry Pi comes in. Being

that it has such specific hardware configuration there have been

a handful of Linux distributions that are specifically developed

with the RPi in mind. The two we will be comparing for the rest

of this paper are Raspbian and Pidora.

Raspbian as stated earlier is a distribution of Linux

specifically optimized for the RPi. More specifically Raspbian

is a derivative of the very popular Linux distribution Debian.

Debian has over 40,000 pre-complied packages and many

equally popular distributions based on it like Ubuntu [10].

According to the Raspbian official website “Raspbian is a free

operating system based on Debian optimized for the Raspberry

Pi hardware”. It also currently offers over 35,000 pre-complied

packages [9]. This makes Raspbian a very close port of Debian

that is just tweaked slightly to suit the RPi’s ARMv6

architecture. Raspbian is also based on the most current version

of Debian, which is Debian 7.0 Wheezy. Also Raspbian is the

most common operating system used on the RPi [1].

Pidora, like Raspbian, is a derivative of a popular Linux

distribution but this time it is Fedora. Fedora currently has over

20,000 pre-complied packages [1]. Pidora is a Fedora Remix

optimized for the Raspberry Pi and its ARMv6 architecture.

Pidora is based of Fedora 18 [11]. Fedora 18 came out in early

2013. The current version is Fedora 20. Still Pidora has roughly

15,000 pre-compiled packages. These numbers still put

Fedora/Pidora at the top of the charts for Linux distributions

package number when excluding all the Debian based ones [1].

A note, package count does not mean anything when it comes

to performance and is just stated here to outline the size and

popularity of these OS’s.

These two operating systems were chosen because they are

both based on popular Linux distributions and are both well

rounded operating systems that were specifically optimized for

the RPi. There are a handful of other operating systems that run

on the RPi such as Arch Linux, RISC OS, Slackware ARM and

others. These were not included in the paper for a host of

reasons, including time constants but are still good OS’s and

should be considered in future performance evaluation work.

12

IV. METHODOLOGY

An operating system does many things. As stated earlier a

simple definition of an operating system is a program that

manages the computer hardware [3]. More specifically

operating systems manage hardware resources such as CPU

time and memory space for user services like program

execution or I/O operations. In general all of these operations

can be broken down into three broad categories, process

management, memory management and secondary storage

management [3]. Most benchmarks are categorized based on

hardware. These categories usually are CPU, memory, disk,

graphics and others. In this paper we wanted to focus on

benchmarking operating systems not hardware, even though

they both influence each other. That is why instead we break

down the benchmarks into three categories that more accurately

represent operating system processes not computer hardware

functions. Note that these categories are not independent of

each other. They are interconnected. One cannot test secondary

storage management without using process and memory

management. The benchmarks will primarily test the category

designated.

All the benchmarks that are used are from the Phoronix Test

Suite, which is a comprehensive testing and benchmarking

platform. It is designed to effectively carry out benchmarks in

a clean, reproducible, and easy-to-use manner [12]. This test

suite works on most Linux distributions including Raspbian and

Pidora. Phoronix has over 100 benchmarks within it, and

includes information on all of them. For this paper benchmarks

were hand-picked to best evaluate the categories laid out.

A. Process Management

Process management is one of the most important things an

operating system does. First off a process is a job, a unit of work

within a computer system. A program in execution is a process.

Processes need resources. A program does nothing unless it can

be executed by the CPU. The operating system is responsible

for managing these processes and the resources they use [3].

Since process management is involved is everything one

does it can be tested in many ways. A very easy way to do this

is to see how fast a system can calculate a problem. This should

show how well the operating system can allocate and use CPU

resources. An easy but computational intense problem is to

calculate is finding prime numbers. The benchmark used to test

this is called Sysbench CPU. Sysbench CPU is a basic CPU test

that measures how fast (in seconds) a computer can calculate a

user defined amount of prime numbers [12]. In our benchmark

we used 20,000 prime numbers to stress the CPU out for a

reasonable amount of time. The speed at which each of these

operating systems can calculate this should be a good

determination of the efficiency of floating point operations [7].

The next benchmark for process management is BYTE

Unixbench. As stated on their website “The purpose of

Unixbench is to provide a basic indicator of the performance of

a Unix-like system” [13]. This benchmark is actually a suite of

benchmarks, the one chosen is called Dhrystone 2. This specific

benchmark focuses on string handling, no floating point

operations like the previous benchmark SysBench. This

benchmark is heavily influenced by compiler and linker

options, along with integer data types [13]. The scores of this

benchmark are in Loops per second (LPS), which is how many

times it can cycle through a loop in the benchmark in a second.

This will be a good evaluation of how quickly each OS can

handle strings.

PHPbench is another interesting benchmark. This

benchmark is a testing suite for PHP interpreter. This

benchmark is CPU intensive. This benchmark outputs its results

in terms of a score. This score is calculated by a ratio between

the number of iterations and total time that was needed to

perform all PHP tests. The number of iterations chosen was the

default 1,000,000. Since both Operating Systems have PHP 5.4

installed this benchmark will be a good indication of how

efficiently each can execute PHP programs and programs in

general.

Another good way to benchmark process management is a

Graphics test. This test would measure how well a system can

utilize the GPU along with memory and secondary storage to

render an image [7]. Unfortunately Pidora’s 3D acceleration

graphics were not working at the time of this paper. Any

graphics benchmark worthwhile need 3D acceleration so it is

currently untestable. Even so both have both OS’s have GUI’s.

Raspbian’s default desktop environment is LXDE. While

Pidora’s is Xfce. Which desktop environment is “better” is

based on preference but they both seem to leverage the available

graphics hardware for responsive navigation during normal use.

Actual graphics benchmarks will hopefully be possible in future

work.

B. Memory Management

Memory Management is very important part of any

operating system. The CPU directly reads and writes to the

main memory during a process. The operating system is

responsible for allocating and de-allocating memory space as

needed. Since the CPU uses the memory directly it is very

important that the operating system has the files needed in the

memory or it will greatly reduce performance [12].

A good determinate of how well the memory management

scheme works is to measure small read/write speeds. The

benchmark I will be using is called RAMSpeed. RAMSpeed

measures memory performance by allocating small amounts of

memory space, then either writes or reads to it. It will do this

with increasing amounts of data sizes until it reaches the

memory boundary. This benchmark has two parameters, one

being what unit to use and the other being how to record the

bandwidth. For units integer and floating point were used (two

separate runs) and the average bandwidth was recorded.

CacheBench is the next benchmark used to measure

memory management performance. This benchmark is

designed to evaluate the performance of the memory hierarchy

by measuring bandwidth of repeated accesses to data items of

varying vector lengths [14]. This benchmarks measures both

main memory and cache performance. There are sub-tests for

this benchmark and we decided to run three, Read, Write, and

Read/Modify/Write. These sub-tests do what is implied by their

names. These benchmarks together should show the memory

management performance on each operating system.

13

Table 1: OS’s Information

C. Secondary Storage Management

Secondary storage management is another important part of

operating systems. Because all data cannot fit into the small

memory size it must be stored it on another storage device. In

the Raspberry Pi’s case it is an SD card. When a program is

executed it must be loaded from the SD card to main memory.

If there is a slow transfer of data this can limit the speed of the

program substantially [7]. The operating system is specifically

responsible for mapping, creating and deleting files for storage

[3]. One way to test this is a lot like memory management tests,

measure the speed of read/write performance. For this three

different benchmarks were used, IOzone, AIO-Stress, and

Unpack-Linux.

IOzone is a file system benchmark tool. This benchmark

generates and measures a variety of file operations. We simply

use the most basics file operation tests from this benchmark,

write and read tests. The write test measures the performance of

writing a new file to the system. This file was 1 GB in size

making it bigger than the memory size on the RPI so disk

storage was necessary. The benchmark times how long it take

to write this file in MB/s. The read test measures the systems

performance of reading an existing file. For this test a randomly

generated file was read, again making it bigger than the memory

to force disk reads. This test is also measured in MB/s. These

two benchmarks should show the speeds of disk access which

is very important to overall system performance [15].

AIO-Stress will measure the asynchronous input and output

of a storage device. It does this by read and writing a 2 GB file

sequentially multiple times. This should give a good evaluation

of how well the secondary storage management scheme of each

operating systems is when asynchronously reading and writing

on the RPi.

Another simple but important test is to unpack the Linux

Kernel and time how long it takes to do this. The Linux Kernel

unpacked in this test was linux-2.6.34 which is 53.2 MB large.

This test will time how long it takes, in seconds, to decompress

this file. This is a good indication of how fast the secondary

storage management scheme can handle moving and unpacking

files which is a common operation in real world use [15].

All of these benchmarks metrics compared to each other

with only the operating system changing should be a good

indication of which one can utilize the Raspberry Pi’s hardware

the best and outperform in real world applications.

D. Benchmarking

For all the benchmarks the same process was followed. A

fresh version of the Operating System was installed. The basic

operating system was configured going through the setup

wizard, and booting to terminal was enabled. The network was

then setup to establish internet connection. Then all

update/upgrades were installed using the included package

manager. After the reboot phoronix-test-suite was installed and

also the current benchmark. Then the benchmark was executed

10 times in a row and that data was recorded. After that the

process was restarted with the other OS was installed. All tests

are ran from the terminal.

Then comparing the results of these benchmarks there must

be a verification that one group is in fact greater than the other

by a statically significant margin or in other words, unlikely to

happen due to chance. To establish this an independent, two-

tailed T-Test was used. This is an inferential statistical test that

determines whether there is a statistically significant difference

between the means in two groups [16]. We can use this test to

determine if an operating system was better in that specific

benchmark. We then can evaluate which OS outperforms the

other in each category. If Raspbian can perform better in all

categories we can prove our hypothesis. All the detailed T-Test

result are listed in the appendix along with full benchmark

results.

E. Test Setup

Here is the technical information on the specific equipment

used while running all of these benchmarks. The test setup

consists of a Raspberry Pi, Wifi Dongle, power supply, hdmi

connection to display, and sd card. The only thing that changes

in the test setup is the Operating System installed on the sd card.

The Raspberry Pi is a $35, credit card size microcomputer. The

one in the test bench is a model b which had an ARM11 ARMv6

processor at 700MHz, a Broadcom VideoCore IV GPU at 250

Mhz and 512MB of memory shared with the GPU. The default

memory split between the processor and GPU is 448MB to

64MB respectively. There is also a level 2 cache of 128 KB,

which is only used by the GPU. The Wifi Dongle is a Ralink

RT5370 802.11g/b/n 150 MBps Network Adapter. The power

supply is a 1A / 5V micro USB. The hdmi cable is connect to a

ViewSonic VX2452MH 24-inch 1080p monitor displaying at

720p. And finally the SD card is an 8 GB Sandisk class 4 SDHC

card [17], [1].

When checking system resources from within each OS there

were slight differences in what each system outputted as shown

in Table 1. The most important differences are the Linux

Kernels, memory, and disk filled. All of these could affect the

performance of the system and will make the difference when

it comes to the benchmark results.

 Raspbian Pidora

OS: Debian Linux 7.2 Pidora 18

Kernel: 3.10.25t

(armv61)

3.12.05.2013

(armv61)

Compiler GCC 4.6 GCC 4.7.2

File System: Ext4 Ext4

Screen Res: 1776x952 1794x954

Processor ARMv6 @

.70GHZ(1 core)

ARMv6 @

.70GHZ(1 core)

Memory: 437 MB 435 MB

Disk Type: 8 GB SUO8G 8 GB SUO8G

Disk Filled: 2512 MB 1902 MB

14

55.40

56.55

54.8

55.2

55.6

56

56.4

56.8

Raspbian Pidora

Se
co

n
d

s

SysBench

1,648

989

0

400

800

1200

1600

2000

Raspbian Pidora

Sc
o

re

Th
o

u
sa

n
d

s

Dhrystone 2

2,970

2,937

2920

2930

2940

2950

2960

2970

2980

Raspbian Pidora

Sc
o

re

PHPbench

544.12 576.568
651.913 624.314

504.389
565.424

0

100

200

300

400

500

600

700

Raspbian Pidora Raspbian Pidora Raspbian Pidora

Read Write Read/Modify/Write

M
B

/s
CacheBench

204.477
202.593

205.652

192.965

186
188
190
192
194
196
198
200
202
204
206
208

Raspbian Pidora Raspbian Pidora

Integer Float

M
B

/s

RAMSpeed

6.07 6.08

17.49

20.73

0

5

10

15

20

25

Raspbian Pidora Raspbian Pidora

Read Write

M
B

/s

IOzone

0.178

0.190

0.172

0.176

0.18

0.184

0.188

0.192

Raspbian Pidora

M
B

/s

AIO-Stress

393.05

337.52

300

320

340

360

380

400

Raspbian Pidora

Se
co

n
d

s

Linux-Unpack

Fig. 3. Benchmark Results for Process Management

Fig. 4. Benchmark Results for Memory Management

Fig. 5: Benchmark Results for Secondary Storage Management

15

V. RESULTS

A. Process Management Results

As was stated earlier SysBench benchmarks measures how

fast a computer can calculate an user defined amount of prime

numbers. We decided to go with 20,000 prime numbers. As you

can see in the left of Figure 2, the averages of these calculations

are over a second apart. Being that less is better in this

benchmark, we can say that Raspbian can calculate prime

numbers faster than Pidora. This CPU and floating point

intensive task implies that Raspbian can utilize this power than

Pidora.

The next benchmark Unixbench’s DhryStone 2 is a good

indication of string handling in a system. In this benchmark

Raspbian has a mean score of 1,647,782 and Pidora has a score

of just 989,166. Being that greater is better in this benchmark

Raspbian’s score is 60% higher than Pidora’s, as shown in the

middle of Figure 2. This being a statistically significant margin

Raspbian seems to outperform Pidora in string handling.

The last process management benchmark is PHPbench. This

benchmark testing the PHP interpreter and is CPU intensive. As

shown in the right of Figure 2, these benchmark scores and very

close with Raspbian’s average being 2970.3 and Pidora’s being

2936.8. These are not statically significant from each other,

meaning that neither operating systems comes ahead in this

benchmark.

Process management is a very important part of every

operating system. Raspbian outperformed Pidora in two of the

benchmarks and the third was not statistically significant. This

implies that Raspbian outperforms Pidora in the category of

process management.

B. Memory Management Results

RAMSpeed is the benchmark that measures write and read

performance of the main memory of the system using variable

file sizes then takes the average. In this benchmark, as we can

see in the right of Figure 3, Raspbian is about 2 MB/s faster on

average on both memory speeds for integer. For Floating point

Raspbian is over 10 MB/s faster. This is statically significant so

we can claim that Raspbian is faster in this benchmark then

Pidora.

CacheBench was out next benchmark. This benchmarked

peak performance of very small memory calls. This benchmark

was run with three different sub-tests Write, Read, and

Read/Modify/Write and is shown in Figure 3. This benchmark

shows Pidora outperforming in the Read and

Read/Write/Modify. While Raspbian performing better in the

Write benchmark.

Memory management is obviously very important in any

system. In the benchmarks Raspbian outperformed in both

RAMspeeds benchmarks and CacheBench’s Write speeds.

Pidora on the other hand outperformed in CacheBench’s Read

and Read/Modify/Write speeds. This means that we cannot

definitively say that either of these operating systems

outperformed the other in the category of memory management.

C. Secondary Storage Management Results

IOzone was a great test for measuring the performance of

each operating systems secondary storage management. For the

write test, as show in the left of Figure 4, Raspbian’s write speed

is 6.0673 MB/s versus Pidora’s 6.0752 MB/s. Conducting a T-

test on this data shows that these results are not statistically

different. So write speed is a wash.

Now for the read test, shown in the left of Figure 4, one can

see that Pidora has an average read speed of 20.7336 MB/s,

while Raspbian is 17.4933 MB/s. Pidora has reads speeds over

3 MB/s faster than Raspbian’s. With prove of a T-test this is

statically significant and we can say the Pidora has faster read

speeds than Raspbian.

The AIO-Stress benchmark measures the disk speed of

multiple 2 GB random reads/writes. As the middle of Figure 4

shows, Pidora is about 1 MB/s faster than Raspbian when it

comes to disk read/write speeds. This results is also statistically

significant so we can claim the Pidora is faster than Raspbian

for random read/write speeds to the disk by a slim margin.

The final benchmark was Unpacking a Linux Kernel. This

benchmark measured how fast a system can unpack a Linux

kernel in seconds, so less is better. As shown in Figure 4, Pidora

can more quickly unpack the Linux Kernel then Raspbian by a

statistically significant margin. Pidora can do this these on

average 14% faster than Raspbian.

The secondary storage management is a very important part

of an operating system. With these three benchmarks Pidora

beats Raspbian in IOzone’s Read, AIO-stress and Unpack-

Linux speeds. With IOzone Write being inconclusive.

Therefore we can state that Pidora can outperform Raspbian in

the categories of secondary storage management.

VI. CONCLUSION

The goal of for this paper was to evaluate the performance

of two operating systems, Raspbian and Pidora on the

Raspberry Pi to determine if Raspbian utilizes the computer

hardware better. To analyze this we took an approach of

breaking down common functions of operating systems into

three categories; process management, memory management,

and secondary storage management. We then used synthetic

benchmarks to simulate these categories when in use. We used

the results of the benchmarks to compare the two operating

system to determine which was better for a purely performance

standpoint. In the end, Raspbian outperformed in one category,

process management, while Pidora outperforming in secondary

storage management and the third category was inconclusive.

One operating system is not clearly outperform the other in all

aspects, therefore the hypothesis of Raspbian outperforming

Pidora is denied.

16

REFERENCES

[1] “About us” March 2014 RaspberryPi.org

http://www.raspberrypi.org/about Accessed: 23 March

2014

[2] Petersen, R. (2008). Linux: The complete reference (6th

ed.). New York: McGraw-Hill.

[3] Silberschatz, A., Galvin, P. B., & Gagne, G.

(2005). Operating system concepts (7th ed.). Hoboken, NJ:

J. Wiley & Sons.

[4] Balsa, Andre. August 1997. “Linux Benchmarking

HOWTO” http://www.tldp.org/HOWTO/Benchmarking-

HOWTO.html Accessed: 23 March 2014

[5] Brown, Seltzer. “Operating System Benchmarking in the

Wake of Lmbench: A Case Study of the Performance of

NetBSD on the Intel x86 Architecture”

http://www.eecs.harvard.edu/ Accessed: 23 March 2014

[6] Chen, Chang, Lin, Yew. October 1-4, 2013. “A Systematic

Methodology for OS Benchmark Characterization”

http://delivery.acm.org Accessed: 23 March 2014

[7] Martinovic, Balen, Cukic. January 2012. “Performance

Evaluation of Recent Windows Operating Systems”

Journal of Universal Computer Science, vol. 18, no. 2.

http://www.jucs.org/ Accessed: 23 March 2014

[8] Vanninen, Wang. 2009 “On Benchmarking Popular File

Systems” http://citeseerx.ist.psu.edu/ Accessed: 23 March

2014

[9] “About Raspbian” 2013. Raspbian.org.

http://www.raspbian.org/RaspbianAbout Accessed: 23

March 2014

[10] “WHAT is Debian?” Dec 6, 2013. Debian.org.

https://www.debian.org/intro/about Accessed: 23 March

2014

[11] “Pidora” 23 May 2013. Pidora.ca.

http://zenit.senecac.on.ca/wiki/index.php/Pidora Accessed:

23 March 2014

[12] “Open-Source Benchmarking” phoronix-test-suite.com

http://www.phoronix-test-suite.com/ Accessed: 23 March

2014

[13] “Byte-Unix Benchmark” code.google.com

https://code.google.com/p/byte-unixbench/ Accessed: April

2014

[14] ”Memory Benchmarks: CacheBench” asc.llnl.gov

https://asc.llnl.gov/computing_resources/purple/archive/be

nchmarks/memory/membench_bm_readme.html Accessed:

April 2014

[15] “IOzone Filesystem Benchmark” www.iozone.org

http://www.iozone.org/ Accessed: April 2014

[16] Siegel, A. F., & Morgan, C. J. (. J. (1996). Statistics and

data analysis: An introduction (2nd ed.). New York: J.

Wiley.

[17] Maik, Schmidt. (2012). Raspberry Pi: a quick start guide.

Dallas TX: The Pragmatic Bookshelf.

17

http://www.raspberrypi.org/about
http://www.tldp.org/HOWTO/Benchmarking-HOWTO.html
http://www.tldp.org/HOWTO/Benchmarking-HOWTO.html
http://www.eecs.harvard.edu/
http://delivery.acm.org/
http://www.jucs.org/
http://citeseerx.ist.psu.edu/
http://www.raspbian.org/RaspbianAbout
https://www.debian.org/intro/about
http://zenit.senecac.on.ca/wiki/index.php/Pidora
http://www.phoronix-test-suite.com/
https://code.google.com/p/byte-unixbench/
https://asc.llnl.gov/computing_resources/purple/archive/benchmarks/memory/membench_bm_readme.html
https://asc.llnl.gov/computing_resources/purple/archive/benchmarks/memory/membench_bm_readme.html
http://www.iozone.org/

Evaluating the Efficiency and Straightforwardness of

a Customized WKO Web-based Application

Matthew Genelin

Department of Computer Science

Winona State University

Winona, MN 55987

MGenelin08@winona.edu

Dr. Joan Francioni

Department of Computer Science

Winona State University

Winona, MN 55987

JFrancioni@winona.edu

Abstract—Whole Kids Outreach (WKO) is a non-for-profit

organization in Missouri that provides low-income families with

education and guidance for raising children. We designed a web

application for WKO staff members to easily track and record

client information. The interface of the web application was

designed to be easy to use as well as efficient and straightforward.

We conducted a formal usability study, consisting of ten

participants, on this web application to simulate the major tasks

of an Outreach Specialist staff person, which are: tracking and

recording the results of a client visit and tracking the overall

progress of clients. A post-test questionnaire was administered to

ten participants as well as to five WKO staff members. The

answers from the two groups were examined and compared. The

usability test targeted learnability and robustness usability

principles. Through analyzing the qualitative and quantitative

results of the usability tests, we found that this application is

efficient, straightforward, and user-friendly.

Keywords—usability-study; user-interface; WKO; learnability;

robustness;

I. INTRODUCTION

 Whole Kids Outreach (WKO) is a non-for-profit

organization in Missouri that provides low-income families

with education and guidance for raising children. As of now,

WKO currently is helping over 200 to 300 pregnant women and

families with young children [8]. The staff at WKO consists of

Outreach Specialists who are specially trained to treat and

educate these families. The client data being recorded by the

Outreach Specialists is confidential information and can be

used if called upon in legal matters. The Outreach Specialists

perform two main roles: tracking and recording results of a

client visit, and tracking the overall progress of their clients

over many visits. These specialists have been tracking their

client’s information using paper forms, which is very time

consuming and a waste of resources. Using the WKO web

application that we created the Outreach Specialists will be able

to perform these tasks more efficiently and effectively.

 Jeff Brookshaw, Brett Sissel, and myself, under the

supervision of Dr. Francioni in accordance with Winona State

University, have developed software for WKO. The software

that was created for WKO was a web based application, using

a customized user interface. The application connects to a

database hosted on-site at the WKO center and consists of

lengthy forms and detailed client information. These forms, as

shown in Figure 1, are used to display information of an existing

client by reading from the database. They are also used to

submit any update on a new or existing client’s information by

posting to the database. The application was designed to be not

only functional, but also user friendly and as straightforward as

possible. The forms consist of a tabbed form view, and a user-

friendly layout design. There is also a left navigation submenu,

which allows easy access to any page in the application.

 Since this is a new system, there is no baseline usability

data on the web application. Although the application was

designed with the user in mind, there is no way of knowing that

it is easy to use and user friendly without testing it. A usability

study can be used to provide data about the usability of the

application as is now, and also provides baseline data of

usability for future use. This way, if changes are to be made to

the web application, the usability testing may be performed

again to see where the modified web application then stands in

comparison. A usability evaluation is an important part of the

interface design process, which gives insight into what makes

the interface a limited or successful interface [3].

A. Usability Studies

 A usability study is a research methodology used to collect

a user’s tendencies and likings while in a controlled

environment [1]. The principles tested in a usability study are

learnability, flexibility, and robustness, as defined by Dix in [7].

Learnability is the ease with which new users can begin

effective interaction and achieve maximal performance.

Flexbility is the different number of ways in which a user and

system exchange information. Robustness is the level of

support provided to the user in determining successful

achievement and assessment of goal-directed behavior [7]. A

usability study consists of tasks/scenarios for the participants to

complete. Each task performed by the user testing for one or

more of these principles, where the results are analyzed to show

the usability of a given application. A pre- and post-test

questionnaire provides qualitative results about the users’

18

opinion of the usability of a given application. The large

amount of information recorded is qualitative, which gives

insight about the design [4]. It is important for a web

application or web site to be user friendly and easy to use. A

usable web application makes for a more successful application.

If a webpage or web application does not provide usability and

accessibility then it will make it hard for the users to efficiently

use the application [6].

 This usability study focused on the learnability and

robustness categories including the following specific

principles: predictability, synthesizability, familiarity, and

observability. Predictability is support for the user to determine

a future action based on their past interaction history.

Predictability was determined by how the participants were able

to figure out a future correct path of action based on

their understanding of what they have already encountered.

Synthesizability is about the system support provided to a user

to help them determine the effect of any prior operation on the

current state. Synthesizability is related to the participant’s

understanding of what they did, and how they got to where they

are. Familiarity is how the users’ knowledge and experience

within other real-world computer-based systems can be used

when using a new system. This was related to the scenarios that

included filling out the web forms, and how well they were able

to begin using them. Observability is the extent of how the user

is able to evaluate the internal state of the system from the

representation on the user interface. Observability was used to

Fig. 1. Adult Visit Form within WKO application

19

test the participant’s understanding of where they currently

where, and where they could go [7].

Hypothesis: The assessment of a formal usability study on the

Whole Kids Outreach Web Application will show that, with

minimal training, the custom user interface is easy to use and

more efficient than the current paper-based system.

II. METHOD

 A formal usability study was conducted to provide usability

data through analyzing the feedback and test data from a group

of 10 participants. The software was set up for specific tasks to

be performed by the participants. The following methodology

tests the hypothesis that with minimal training the participants

found the application easy to use and more efficient than a

similar paper-based system. The usability study also gave

useful information to the application developers regarding the

design of the application, as well as anything the users liked or

disliked, which may help improve the application. The

following sections discuss the in depth creation, setup, and

design of the usability study.

A. Participants

 Ten participants from around the Winona area participated

in the usability study. Among these participants, there were

four females and six males between the ages of 19 - 58. There

were also five WKO staff members who participated in the

post-test questionnaire. The usability study was limited to only

users who have used a Mac to eliminate any flawed data.

Running a test of ten users gives statistically significant

numbers and results [6]. The average Mac comfort level was a

3.6 out of 5, and none of the particpants have taken a usability

study before. Of these participants two said to fill out forms

less than once a month, one fills out one form a month, three fill

out two forms a month, and four said to fill out three or more

forms a month. After the tutorial was given, six particpants said

that they felt they could use the application and four said that

maybe they could use the application with more practice.

B. Setup

 The software used was the WKO web application Beta

version. It was run on a Mac Book Pro 12 with the operating

system of OS X version 10.9. The Apache Web Server XAMPP

1.8.3-1 was running to process the PHP requests from the

application.

C. Test Procedure

 Each participant was first informed of what a usability

study was, and then was read the test facilitator script. The

facilitator script (see Appendix A) welcomed and thanked each

participant for partaking in the usability study, and informed

him or her of the purpose. They were reminded that the test is

not a test of them, and that there is no right or wrong answer.

Also, if for any reason they felt uncomfortable, they were able

to exit the testing at any time. The participant was then asked

to sign the consent and waiver form (see Appendix B) giving

the permission to use their information for the study. After the

participants signed the consent and waiver, they were given the

tutorial and then asked the pre-questionnaire. The testing then

started, and each participant was given a copy of the test

scenarios. Each scenario was read aloud to the participants,

where they were asked to complete each scenario. During the

testing, it was important to stay calm and not make the

participants feel as though they had done or were doing

something wrong, which could have made the participant feel

anxious, or add stress [2]. The participant was asked to inform

us when they believed they were done, and then we would move

to the next scenario. After the participants completed all of the

tasks/scenarios, they were given the post-questionnaire and

again thanked for participating in the study.

D. Training

 Each user was briefed on what the study is about, and was

told that no personal information was taken from them to ensure

privacy. The tutorial consisted of informing the participant of

the roles that each Outreach Specialist performs, including: the

tracking and recording of the their client visit results, and the

tracking of the overall progress of clients through their visits.

There was also a 2-minute brief tutorial that familiarized the

participants and showed the major functionalities of the

application. This showed the participants the overall layout of

the application as well as the layout of the forms

E. Pre- and Post- Questionnaire

 A questionnaire was administered to each participant

before and after completion of the study. The pre-questionnaire

(see Appendix C) obtained general information of each

participant including: their gender, age, a Likert scale of their

comfort level using a Mac computer from 1 to 5 (1 being not

very comfortable and 5 being very comfortable), how often the

participant fills out online forms, whether or not the participant

has partaken in a usability study before, and after the tutorial

has been given if they believed they could use the application

or not. The post-questionnaire (see Appendix D) obtained

information of the users overall experience of the application.

The information collected included: the overall impression of

the application, a Likert scale of the ease of use from 1 to 5 (1

being hard to use and 5 being easy to use), what the participant

liked best and least about the web application, what they would

do to improve the app, a Likert scale of their comfort level of

the application from 1 to 5 (1 being very frustrating and

confusing and 5 being very straightforward and comfortable),

and whether or not they believe the application is more efficient

than a similar paper based system.

F. Test Scenarios

 The usability tests were based on the two main functions

that an Outreach Specialist performs, which include: tracking

and recording the client visit results and tracking the overall

progress of clients. To be able to observe participants, they

should be given an assignment known as a task or scenario to

complete [5]. Some of the tests/scenarios may be performed

more often than the others, but together, they should cover the

20

range of tasks an Outreach Specialist may have to perform. Test

scenarios were developed for the following specific tasks:

1. Downloading an existing client’s information (see

Appendix E)

2. Starting a new visit on an existing client (see

Appendix F)

3. Starting a new visit on a new client (see Appendix

G)

4. Filling out a missed visit (see Appendix H)

5. Viewing the information on an existing client (see

Appendix I)

6. Filling out a client termination (see Appendix J)

7. Deleting a client (see Appendix K)

8. Edit a previously recorded visit (see Appendix L)

9. Submitting a visit. (see Appendix M)

 The test scenarios above follow a sequential order in which

an Outreach specialist is likely to perform them. However, the

test scenarios in this usability study were also made

independent of each other, so that the completion of one task

would not rely on the completion of a previous task. This

ensured a participant could still perform a future task if they are

unable to complete the current task. Table 1 shows the usability

principles in each scenario tested.

 An example test scenario was the deletion of a client. The

test scenario was written as “An Adult client named Jennifer

Smith has moved to a new address, which is outside of your

assigned county. The address change has already been made,

and another Outreach Specialist has already been given the

client. You now no longer need this client to be downloaded on

your laptop computer, and for security reasons want to delete

the client. Can you delete Jennifer Smith from your list of

clients?”

G. Pilot Testing

 A pilot usability test was administered to two participants

to assess the study as a whole. This pilot testing helped find

problems with the wording of the test scenarios and

questionnaires. The pilot testing also helped find the expected

completion time and clicks for each task. These were

determined by the expected completion time the designers

determined before the sample testing, and the sample time and

number of clicks the participants achieved during the pilot test.

H. Errors

 User errors during the tests consisted of both non-critical

and critical errors. Non-critical errors involved false and

extraneous information entered. If the user were to misspell or

add in extra information based on the given information, then

they were deemed non-critical. These errors were considered

non-critical errors because the participant was still able to find

the location to enter in the data, but entered in the wrong

information. Critical errors occurred when the participant

failed to enter in the given data into the necessary field. These

were deemed critical errors because the participant was unable

to find the required field, which affected the usability of the

application. Critical errors were recorded during the study,

where non-critical errors were not.

I. Data Collection

 The data was collected via two main methods. First a pre-

and post-questionnaire collected basic information and

feedback from all of the participants. The questionnaire

focused mostly on the layout and design of the application, and

anything in particular the participant liked or disliked. The

second method involved the recording of the user’s interactions

with the computer and the results of the tasks. The participants

were asked to perform a think aloud strategy while performing

tasks and navigating through the app. The completion of the

tasks was rated based on the success of the participant ranging

from 0 to 2 (0 – not completed, 1 – completed with difficulty or

help, and 2 – easily completed) and the number of clicks to

complete the task. This method for collecting data allowed us

to observe the interactions of the participant and the computer,

as well as get an insight into what the participants were thinking

as they went through certain tasks, and what made them click

on certain objects.

 Predictability Synthesizability Familiarity Observability

Scenario 1 X X

Scenario 2 X

Scenario 3 X

Scenario 4

Scenario 5 X

Scenario 6

Scenario 7 X

Scenario 8 X X

Scenario 9 X

TABLE 1. Test Scenarios with applied usability principles

21

III. RESULTS

 After the 10 participants completed the usability study, we

analyzed the results and observations recorded from the tests

and the answers to the questionnaire. The results were reviewed

to find trends or multiple occurrences of situations and

scenarios that may show the usability of the application.

A. Test Scenario Results

 The test scenario results provided ample information to be

analyzed. For each of the nine scenarios, the duration, number

of clicks, errors, success rate and general comments were

recorded. There was a predefined expected completion time

and number of clicks defined for each scenario. Figure 2 shows

the acutal and expected durations of each scenario in seconds,

and Figure 3 shows the actual and expected number of clicks.

(Figures on following pages) Note that if a scenario had a

success rate of 0, then the time and click count was discarded.

The actual values for time and number of clicks were computed

as of each scenario for the group of participants.

 As the participants moved through the scenarios, their

times and number of clicks decreased in regards to the scenarios

expected time and clicks. The first three scenarios each have a

higher average completion time and number of clicks than the

expected completion time and click count. The last six

scenarios only have two scenarios where the average time and

clicks are larger than the expected. The percent difference was

calculated between the actual and expected times and number

of clicks in regards to the first three scenarios, and the last six

scenarios using a formula

|𝑣𝑒 − 𝑣𝑎|

𝑣𝑒 + 𝑣𝑎
2

∗ 100

where ve stands for expected value, and va stands for actual

value. The first three scenarios had an average +15.14 percent

difference in time and a +23.8 percent difference in clicks. The

last six scenarios had an average -3.44 percent difference in

time and -1.39 percent difference in clicks. This shows that the

last six scenarios were completed on average faster and with

fewer clicks than what was expected. The participants figured

out the application relatively quickly, and were able to use the

application efficiently.

 The results clearly show that, scenario three had a

significantly greater completion time and number of clicks than

the other scenarios. For this scenario the user had to enter a

relatively large amount of information into two different forms

and save them. We noticed many of the participants went back

over and reread the scenario multiple times. This is consistent

with the higher error rate for scenario three when compared to

the other scenarios. Since this scenario had the most

information to be entered, the participant had the chance of

making the most errors.

 As stated earlier the success rate ranged from 0 through 2,

where 0 was an incomplete scenario, 1 was a scenario that was

completed with difficulty or help, and a 2 was an easily

completed scenario. The average success rate and number of

errors for each scenario are shown in Table 2.

Out of the 90 total scenarios completed by the participants,

there was a total of 80 scores of 2, 9 scores of 1, and 1 score of

a 0. This means that all of the scenarios were completed except

for one, which results in a 98.9% completion rate. Out of all

the scenarios, 88.9% were easily completed and 10% were

completed with difficulty or help.

 For the participants who took the study, the average Mac

comfort level was a 3.6 out of 5, and none of the particpants had

taken a usability study before. Two of the participants said they

filled out forms less than once a month; one, one form a month;

three, two forms a month; and four, three or more forms a

month. After the tutorial was given, six particpants said that

they felt they could use the application and four said that maybe

they could use the application with more practice.

B. Post-Questionnaire Results

 After the participants completed all of the scenarios, they

were asked the post-questionnaire. Members of the WKO staff

were also asked the same post-questionnaire to back up the

results from the study. The main data taken from this survey to

determine the usability was the participants’ ease of use while

using the application, the users experience using the

application, and the efficiency compared to a similar paper-

based system.

 Success Rate

(Avg.)

Errors (Avg.)

Scenario 1 1.7 0

Scenario 2 2 0

Scenario 3 1.7 1.8

Scenario 4 2 0.2

Scenario 5 1.9 0

Scenario 6 2 0.3

Scenario 7 2 0

Scenario 8 1.8 0.3

Scenario 9 1.8 0

TABLE 2. Average Success Rate and Errors Per Scenario

22

Scenario
1

Scenario
2

Scenario
3

Scenario
4

Scenario
5

Scenario
6

Scenario
7

Scenario
8

Scenario
9

Expected 60 110 300 75 15 90 25 104 43

Actual Average 79.4 130.3 337.3 73.2 26.7 85.8 26.9 90.5 37

0

50

100

150

200

250

300

350

400

Se
co

n
d

s

Scenario
1

Scenario
2

Scenario
3

Scenario
4

Scenario
5

Scenario
6

Scenario
7

Scenario
8

Scenario
9

Expected 14 18 42 16 5 16 5 18 5

Actual Average 15.7 19.9 58.4 14.3 6.3 14.7 4.7 17.9 6.2

0

10

20

30

40

50

60

70

N
u

m
b

e
r

o
f

C
lic

ks

Fig. 2. Expected v. Actual Scenario Completion Times

Fig. 3. Expected v. Actual Scenario Number of Clicks

23

 The participants the application’s ease of use as a 4.4 and

their experience using the application a 4.6, and the WKO

members rated the ease of use a 5 and their experience a 4.6,

shown as in Table 3.

 The participants in the study and the WKO members both

rated their experience using the application as a 4.6 on average.

The WKO staff rated the ease of use as a 5 compared to the

participants from the study’s 4.4 rating. The WKO staff had

been working with the software for approximately two to four

weeks, where the participants were only given a two-minute

tutorial on the application. Even so the participants still rated

the application’s ease of use close to the WKO members’ rating.

All of the participants found the application to be more efficient

than a similar paper-based system. Many thought that it was

more efficient for these main reasons: (1) the client’s

information backfilled for each visit so they would not have to

retype it on each visit; (2) they liked being able to type in the

information, and said it was faster than having to write out all

of the information; and (3) they also thought it would be more

organized.

IV. ANALYSIS

A. Predictability

 Predictability was determined by how the participants were

able to figure out a future action based off what they had already

encountered [7]. Predictability was tested in scenarios four,

five, six, seven, and nine, which included filling out a missed

visit form, viewing client data, filling out a client termination

form, deleting a client, and the submission of visits. The

average success rate for these scenarios was a 1.96. Three out

of the five scenarios had an average completion time that was

less than the expected completion time; scenario seven had an

average completion time that was less than two seconds longer;

and scenario five had a average time that was 11.7 seconds

longer than expected. The scenario five had two ways to

perform the scenario: view the client under the my clients page

and view the client under the ‘Searchdb’ page. Five participants

viewed the client under the ‘My Clients’ page and five viewed

it under the ‘Searchdb’ page. Using the ‘Searchdb’ path usually

took longer, and the five participants who performed the task

this way had an average completion time 14.6 seconds longer

than the group who viewed it under the ‘My Clients’ page.

Each scenario that tested for predictability had an average

number of clicks that was ± 2 of the expected number of clicks.

Having a high success rate and low average completion time

and number of clicks on the given scenarios shows the

participants were able to figure out future actions based on what

they had already encountered, and application supports good

predictability.

B. Synthesizability

 Synthesizability is the participant’s understanding of

what they did, and how they got to their current situation [7].

Synthesizability correlated with the completion of a scenario,

and participants knowing the actions they took and the outcome

of those actions. 89 of the 90 scenarios were completed, which

is a 98% success completion rate. This shows that the

participants were aware of the actions they were performing,

and the results of those actions. Synthesizability correlates well

with the success rate, time and number of clicks of the tests.

C. Familiarity

 Familiarity is how the users’ knowledge and experience

within other real-world computer-based systems can be used

when using a new system. Testing in this category focused on

the scenarios that included filling out the web forms, and how

well the users were able to begin using them [7]. Familiarity

tested for scenarios two, three, four, and six, which were the

scenarios the participant had to fill out client forms. Two of the

four scenarios were completed with an average time less than

the expected time, and all of the scenarios together had an

average that was only 12.9 seconds longer than the expected

time. Three out of the four scenarios had an average number of

clicks that was ± 2 of the expected number of clicks, and

scenario three had an average that was 16.4 clicks larger than

the expected. This could be because it was a long scenario with

a lot of information to be filled in, and two of the participants

used a built in calendar option for the birthdates, which

increased the number of clicks dramatically. The average 12.9

seconds longer than expected was not very long when

completing these tasks.

D. Observability

 Observability was the participant’s understanding of

where they currently where, and where they could go from that

point [7]. Observability tested for the overall flow of the

website, why they were on the current page, and what pages

they could access at that point. The participants did not have

any difficulty navigating through the application. Out of the 90

scenarios, only 1 was not completed. This shows the

participants where aware of where they were, and where they

could have gone. The biggest observation taken from the tasks

was determining the difference between accessing the ‘My

Clients’ and ‘My Visits’ page. Where the ‘My Clients’ page

shows all existing clients and starting visit information, and the

‘My Visits’ page shows all current visits. In the post-

questionnaire seven of the participants answered what they like

best about the application with an answer dealing with the

application’s flow. The answers varied from the organization

and layout to flow to easy to find and access items.

E. Improvements of Application

 By tracking observations and participants’ comments, we

were able to determine if pieces of the application could be

improved to increase usability. The most noticeable

observation was that some participants had difficulty

distinguishing the ‘My Clients’ and ‘My Visits’ pages

 Participants from

Study

WKO

Members

Ease of Use 4.4 5

Experience 4.6 4.6

TABLE 3. Comparison of Participants and WKO Staff

ease of use and experience of the application

24

functionalities. A participant noted that a ‘help’ button or

subpage would be helpful in distinguishing between the

functionalities of these as well as other pages. We also came

across a smaller UI issue that could be changed to increase

usability. When a user is asked to delete a client, a screen pops

up to ask the user if they are sure and to type ‘y’ to delete. This

pop up includes a long dialog sentence and a large text box to

type in ‘y’. A participant pointed out that the dialog could be

shorter and to the point, and that the box could be shorter since

they were only entering in ‘y’, or this functionality could be

changed to a radio button with yes or no choices.

V. CONCLUSION

 This usability study on the WKO application tested that

with minimal training the application was easy to use and more

efficient than the current paper-based system.

 Although the testing went smooth, there were some

changes that we would consider for future testing. The type of

computer used would be judged with a higher concern. A

Macbook Pro was used because that was the computer that was

available. Although all of the participants had previously used

a Mac computer before, many participants did not rate their

comfort level very high. Also the possibility of allowing the

participants the ability of using a mouse instead of the trackpad

should be examined. Two participants had said during the

testing that they prefer a mouse to a trackpad. Even though the

Outreach Specialists run the application on their laptops, they

are still able to use a mouse if they prefer. For a future study

we could ask the participants before hand if they would prefer

a mouse or to use the trackpad.

 This study helped to provide baseline usability data, which

is very helpful for any future changes made to the application.

WKO may plan on adding in additional features to the

application, or changes may be made to the existing application.

Since the Outreach Specialists are traveling they may want to

go to strictly mobile devices such as an iPad or other device. If

any of these or other major changes are made to the WKO

application, then this usability study may be duplicated to

compare the usability data of the two applications.

 Through testing the ten participants and comparing the

questionnaires with the WKO staff members, we conclude that

with minimal training the application is easy to use and more

efficient than the current paper based system.

ACKNOWLEDGMENT

I would like to thank my project mentor Dr. Joan Francioni, as

well as my three professors apart of CS 495 including: Dr.

Mingrui Zhang, Dr. Sudharsan Iyengar, and Dr. Naryan

Debnath. I would also like to thank all of the participants and

staff from WKO that have participated in this study.

REFERENCES

[1] Linfeng Li, Marko Helenius, and Eleni Berki. 2012. A usability test

of whitelist and blacklist-based anti-phishing application. In

Proceeding of the 16th International Academic MindTrek

Conference (MindTrek '12). ACM, New York, NY, USA, 195-202.

[2] Rubin, Jeffrey, and Dana Chisnell. Handbook of usability testing:

howto plan, design, and conduct effective tests. Wiley. com, 2008.
Accessed Web. 22 Jan 2014

[3] Melody Y. Ivory and Marti A Hearst. 2001. The state of the art in
automating usability evaluation of user interfaces. ACM Comput.

Surv. 33, 4 (December 2001), 470-

516.

[4] Nielsen, Jakob. "How Many Test Users in a Usability Study?."

Nielsen Norman Group. 4 Jun 2012.
<http://www.nngroup.com/articles/how-many-test-users/>.

Accessed Web. 22 Jan 2014

[5] McCloskey , Marieke. "Nielsen Norman Group." 12 Jan 2014.

<http://www.nngroup.com/articles/task-scenarios-usability-

testing/>. Accessed Web. 22 Jan 2014

[6] Richard Atterer. 2008. Model-based automatic usability validation:

a tool concept for improving web-based UIs. In Proceedings of the
5th Nordic conference on Human-computer interaction: building

bridges (NordiCHI '08). ACM, New York, NY, USA, 13-22.

[7] Dix, A. J., Finlay, J., Abowd, G., Beale, R. Principles to support

usability, Human-Computer Interaction, 260-273, Third Edition

[8] "Whole Kids Outreach Programs." Whole Kids Outreach.

<http://www.wholekidsoutreach.org/index.php?page=programs>.

Accessed Web. 16 Feb. 2014.

25

On the Need for a General Language for

General Intelligence

Theron Rabe and Sudharsan Iyengar

Computer Science Department

Winona State University

TRabe09@winona.edu

Abstract—General Intelligence can be assessed based on the

accuracy, speed, and process with which one arrives at decisions.

This is apparent in decision making processes where decision

making is accomplished through deductive, inductive, and/or

abductive reasoning. We first define the notion of a self evolving

general language L , a superset of all languages. Additionally, we

define and develop a process of reduction R, for improving the

accuracy and speed of decision-making in L . Similar to natural

languages, L is an incremental and self evolving language.

Similar to intelligent processing, R accommodates all possible

inputs. Finally, we present the limitations of λ-calculus with

respect to L and propose remedies that provide us an

implementation platform for L and R.

Keywords—Artificial General Intelligence; General Language;

Reduction; lambda calculus;

I. INTRODUCTION

The original goal of artificial general intelligence is to
simulate intelligent behavior at or above human level [1]. This
goal necessitates a means of comparison between intelligent
agents. One such comparison method is to measure the speed,
efficiency, and process with which the agent arrives at proper
decisions [2]. In other words, when an agent is given some
problem, its intelligence with respect to that problem is a
combination of the amount of time it takes to find a solution,
and how accurate that solution is. From this, we can argue that
general intelligence should demonstrate speed and accuracy in
solving not only pre-defined problems, but in general, an
evolving scope of problems.

Humans use intelligence by reasoning over observations
[2]. This reasoning falls under various forms of deductive,
inductive, or abductive reasoning. If a person's repeated
observations indicate that A must always imply B (i.e. if A, then
B is learned), then upon subsequent observation of A, definitely
B can be decided through deductive reasoning. Alternatively, if
a person has at some time observed and learned that A possibly
implies B, then upon subsequent observation of A, maybe B can
be decided through inductive reasoning. Finally, if a person has
learned through observation that A may imply B, then upon
observing B, maybe A is decided using abductive reasoning.
Since inductive and abductive reasoning are inherently

uncertain, they are of particular interest for solving problems
suited for general intelligence, which usually involve a high
degree of uncertainty. Such problems include machine
learning, pattern classification, natural language processing,
statistical analysis, computer vision, and data compression
[3,6].

Natural languages, the primary visible forum for
intelligence, are incremental, self-evolving, self-mutating, and
the evaluation of a statement using a language generates
another statement in the same language. All decisions are based
on previous experiences. Previously unknown expressions are
either deemed irrelevant (and hence discarded) or considered
acceptable new knowledge that is integrated into the language.
Inductive and abductive reasoning requires earlier experience
and decisions that help similar current decisions. For example,
when a person (infers) induces that they will be hungry later
because they did not eat breakfast, they must have previously
experienced that not eating breakfast could cause hunger. The
same can be said for a person who (feels) observes hunger and
abductively attributes it to not having eaten breakfast. At the
time of originally deciding that “not eating breakfast causes
hunger”, a minimum of two critical observations should have
occurred. First, the person must have observed that they did not
eat breakfast. Second, they must have later observed hunger.
Any number of other intermediate observations (like “drank
coffee” or “watched TV”) may have occurred between these
critical observations. Initially, all the relevant observations are
included, considered, and processed in arriving at “not eating
breakfast causes hunger”. The number of observations included
in such intermediate decision making can be called the critical
observations’ distance. Upon such repeated processing one
tends to shorten the distance between observations in decision
making. Thus, the act of correlating hunger to not eating
breakfast is an act of shortening the distance between them
(and pruning other insignificant observations).

When observations are later reasoned over, the observations
that compose their distance may be ignored. For instance, if a
person had “gone walking” after “not eating breakfast” and
before becoming “hungry”, the observations made on “gone
walking” may not contribute to making the intelligent decision
that “not eating breakfast” causes “hunger”. The association of
these two observations are utilized in inductive (forward or
anticipatory) and abductive (backward or causal) reasoning.

26

This process of learning, and subsequent shortening of the
distance between cause and effect observations, is elementary
in demonstrative intelligence.

Thus general intelligence possesses a primitive decision-
making process that shortens the distance between critical
observations. This process lowers the complexity of the
decision-making process by removing unnecessary
intermediate steps. In other words, an intelligent agent must be
able to take an observation series A→B→C, and simplify it to
decide that observation A may directly indicate C without
regard to the presence of observation B, where applicable. We
call this decision-making process reduction.

Section II defines and describes the properties of the
reduction process. Section III defines and describes the general
language. Section IV presents the limitations of λ-calculus with
respect to a general language and presents our approach to
modifying λ-calculus so as to implement the features described
in this paper.

II. REDUCTION - A WAY TO PROCESS PHRASES IN A LANGUAGE

Reduction is manifested at multiple layers of abstraction
within intelligent thought. People use language as a means of
abstracting their thought process. An observation, when
abstracted by language, becomes a phrase. A phrase is either a
symbol, or a sequence of symbols within a language. For
example, “rain” is a phrase composed of a single symbol that
represents the observation of water falling from the sky, in
English. In the same way reduction permits simplification of
non-critical observations, it permits simplification of their
abstractions. When a complex phrase is interpreted by an
intelligent agent, reduction can be applied to the phrase to
shorten the relation between its sub-phrases or observations,
thus simplifying the task of reasoning over their semantical
correlations.

For example, let us take the sentence: “Enough humidity
has gathered in the air as to generate clouds of an
unmaintainable density” which could be interpreted to the
phrase “It is raining”.

This sentence has multiple subphrases (observations) viz.
enough humidity, gathered in the air, generate clouds, and
unmaintainable density.

Upon reasoning, the phrase becomes simpler but interprets
the same. By utilizing a ‘shortened’ version of the original
phrase, one is able to simplify the semantic interpretation of the
original phrase. In other words, the reduced version is faster to
interpret. With respect to language, reduction is the translation
of phrases to semantically-equivalent (or -approximately
equivalent), but syntactically-minimal previously learned
abstract phrases.

We now present the properties of such a reduction process.
Correlation between phrases and semantics, when indicated,
are presumed. The establishment and verification of the
semantics to phrases are beyond the scope of this paper.

Definition 1: A language L is a tuple (T, N, G, S) where T

is a set of terminal phrases, N is a set of non-

terminal phrases, G is a grammar, and S is a

semantics.

Definition 2: Given a language L , a phrase P in L is a

sequence of symbols of the form {s1, s2, .., sn} such

that 0<i<n, ∀ si ∈ P (si ∈ (T ⋃ N)). All members

of the power set P (T ⋃ N) meet the definition of a

phrase.

Definition 3: Given a language L , its grammar G is a set

of production rules, each of the form A→B, where

A and B are phrases in L .

 Definition 4:

N = {A | (A→B) ∈ G}

T = {t | (t ∉ N) ∧ (∃ (A→B) ∈ G : (t ⊆ B) ᐯ (t ⊂ A))}

Definition 5: Given a language L , its semantics S is a set

of tuples (t, b) where t ∈ T, and b is an

observation. An observation is some mechanical

or logical effect on an L interpreter.

It is important to note that a phrase contains terminal and
non-terminal symbols, but the semantics of the phrase is
expressed by way of terminals only.

Definition 6: Given a phrase P, the set of symbols used in

P is denoted {P}. The distance of P is the

cardinality of the set (P ⋂ N), denoted Pc.

Definition 7: Given a language L , the evaluation of a

phrase P in L , denoted P(), is a function such

that:

 P() = {b | ∀ t ∈ (P ⋂ T) : (t, b) ∈ S} ⋃

{P’() | ∀ n ∈ (P ⋂ N) : (n→P’) ∈ G}

Where P' is some partial evaluation of P.

An evaluation function correlates a phrase to its abstracted
observations, thus causing a series of mechanical or logical
effects on an interpreter. We argue that the evaluation of a
phrase is dependent on the distance of the phrase. Terminals
need no further reduction as they carry semantics.

Definition 8: The complexity of an evaluation, denoted

O(P()), is given as follows:

O(P()) = 1 if ∀ s ∈ P : (s ∈ T)

O(P()) = f(Pc) if ∃ s ∈ P : (s ∈ N)

where f is some mathematical function

Definition 9: Given a language L , the reduction of a

phrase P with respect to L , denoted R (P, L), is a

function such that R (P, L) = p, where p is a

phrase in L , and

R (P, L) = R (p, L)

P() = p()

27

O(p()) ≤ O(P())

First, that the reduction of phrase P is equivalent to the
reduction of its reduction, p. That is, the reduction function is
final. Second, that the evaluation of the phrase P will be
equivalent to the evaluation of its reduction, p. In other words,
reduction does not change the semantics of a phrase. Third, the
complexity of evaluating the reduced phase is less than or
equal to that of the original.

An input string is reduced in formal languages by
iteratively applying the rewrite rules specified in the language's
formal grammar, on an input string, until it cannot be further
reduced. Since natural languages have no exact formal
grammar, their reduction is more difficult to achieve.
Reduction of a natural language depends on an accumulated
familiarity with the phrases that constitute the language. The
correlations and equivalences amongst these accumulated
phrases behave as the language's grammar. Because reduction
of a natural language depends on phrases having been learned
and subsequently used in an meaningful way, natural language
reduction appears indicative of intelligence.

Thus, to replicate this act of intelligence using artificial
systems, the reduction process must be achievable in a
language that is being prescribed through free use of previously
unknown phrases that could become part of the language. Thus
our proposal for a framework for a general language as
opposed to a specific natural language. Since general
intelligence processes must be applicable in broad domains we
define a general language next.

III. GENERAL LANGUAGE

We note that the behavior of intelligence is dependent on
what is known, understood, and utilized. Contrast this with an
artificial system that can process phrases in the French
language. This system is demonstratively limited in what it can
accomplish because it is programmed as such, and it does not
accommodate and/or learn other phrases. Humans on the other
hand possess the ability to behave on what is assimilated, but
additionally also accept and ingest new information, and thus
evolve or grow. In fact, this is modus-operandi of human
behavior. (Ironically, we consider this intelligent behavior and
not the ability to process teraflops in milliseconds.)
Importantly, note the language of a person is but that which has
been assimilated and unrestricted, in contrast to what might be
prescribed to be English, French, or the sign-language.

For the purposes of developing an intelligent machine we
describe the notion of an unrestricted general language. This
general language must satisfy the following three criteria:

 General language must accept all possible phrases

 General language must be Turing-complete

 General language must be interpretable in-order

Primarily, all potential phrases must be acceptable in the
general language. This requirement implies that a general
language has no predefined syntax rules. This is important as
the order of the phrases is immaterial as long as the sentence is

interpretable. Arguably, capability of interpretation without
strict limitations on the order of the phrases, captures
elementary intelligence. An example of this would be
interpreting poetry as opposed to prose. Additionally, the
general language must accept new previously unencountered
phrases - as legitimate phrases. The interpretation of such
phrases is subject to the intent of observations associated with
the phrase and other considerations.

Secondly, the general language must have Turing-complete
semantics, so as to enable inference of a type 0 grammar [7].
Given this feature, we can automate the grammar application of
this language, giving us the possibility of developing an AGI
system.

Thirdly, we note that intelligent behavior generally
interprets observations as they are input - without the need for a
pre-requisite forward (anticipatory) reference. As such, the
general language must accomplish interpretation without a
requirement of forward reference. This requirement is further
explained.

Since, the general language lacks definite syntax rules, it
must accommodate an infinite alphabet. An infinite set of
symbols cannot be enumerated, as required for a formal
grammar, but the set of contextually pertinent symbols can be.
Consequently, during forward interpretation when a new
symbol is encountered, the interpretation process must treat
that symbol as a valid member of the language's alphabet in
order to accept possible phrases with the new symbol.

Remedy 1: Represent infinite alphabet through its

encountered subset.

This simplification permits an interpreter to reason a partial
formal grammar over an alphabet. Note that as a consequence,
the interpreter must posses the ability to maintain a dynamic
alphabet and grammar rules. As a general language interpreter
is used, it will encounter an increasingly large set of phrases.
As such, it must maintain a repository of phrases encountered
so far, and utilize this repository in its future interpretations.

Definition 10: A set of encountered phrases {p0..pn},

represents an interpreter’s history P.

Due to general language’s need to be interpreted in-order, a
function defined within phrase pi must be expressed in terms
relative to phrases p0..i. In other words, the semantics of some
future phrase is determined by its relation to past encountered
phrases. Therefore, P represents a learned subset of the general
language, as expressed in terms of P. This makes P an evolving
construct analogous to a human’s understanding and use of
natural language. For example, a person might equate the
phrase “rain” to “water that falls from the sky”, but “water that
falls from the sky” is just another phrase that can only be
defined in terms of other learned phrases.

Definition 11: ∀ pi ∈ P (pi() = f(p0..pi))

where f is some computable function

Since a general language interpretation machine must be
Turing-complete, it must support a means of defining and

28

applying functions that support arbitrary recursion and
abstraction. [4]

Definition 12: ∀ pi ∈ P (∃ A ∈ P ∧ ∃ B ∈ P : pi(A) =

B)

for any decidable pi(A)

Therefore, a general language function is a means of
rewriting arbitrary phrases into other arbitrary phrases, as
derived exclusively from a set of encountered phrases. Because
all formal grammars can be expressed as a set of phrase
rewriting rules [7], all formal grammars can be directly derived
from general language expressions. For this reason, deriving
general recursive phrase→phrase rewrite functions by
reasoning over P is equivalent to deriving a formal grammar
for a language that contains all the same phrases as P.

A machine that correctly interprets a general language,
regardless of the semantics of that general language, will learn
both the phrases and the grammar that constitute a subset of the
general language. Since all languages are subsets of the general
language, a general language interpreter can learn natural
languages by interpreting an input that causes it to construct a
P that is approximate to some desired natural language in both
phrase content and grammar. Because reduction is a
computable function for any language with a formal grammar
and all computable functions may be contained in P,
approximation of a natural language via restriction of the
general language permits reduction of that natural language
with as much accuracy as permitted by the grammar defined in
P.

If semantics are defined for a general language, reduction
of natural languages can be approximated. Reduction of a
natural language is an act of intelligence that improves the
speed and accuracy with which decisions can be made for
problems with uncertain solutions.

We call for the need of a formal semantics for a general
language. Given formal semantics for a general language, an
abstract machine can be designed for evaluation of general
language strings. A machine that evaluates general language
has an inherent ability to learn, due to general language's
requirement of an extensible alphabet. Furthermore, since the
interpretation machine must be Turing-complete, it has the
ability to derive and perform any computable function over its
learned alphabet. Provided with the correct input string, an
abstract machine that evaluates general language can learn both
the phrases that constitute a natural language, as well as the
functions that correlate those phrases within its language. Thus,
a general language interpreter is capable of improving its
intelligence with respect to any language, and therefore, any
problem domain, through experience.

IV. A LOOK AT Λ-CALCULUS AND ITS LIMITATIONS

To address the semantics for the general language, and
exemplify the ambiguities that arise in doing so, we start with a
Turing-complete language, and progressively remove all
syntax rules. We use λ-calculus [5] as the starting language.

To exemplify the ambiguities that arise from removing
syntax rules from λ-calculus, we will examine three
syntactically invalid λ-expressions:

1. λxyz.a

2. λλx.F.a

3. λλx.xy.a

Expressions (1), (2), and (3) each define a function whose
body is composed of the symbol a and whose abstraction
declaration contains syntax errors. Thus, in order for λ-calculus
to meet the requirements of the general language, its semantics
must be altered in such a way that each of these expressions is
syntactically valid and unambiguously outputs the symbol a.

Expression (1)'s abstraction declaration contains three
symbols (x, y, z) where only one is allowed by λ-calculus'
formal grammar. To make this syntax valid, we suggest
modifying λ-calculus such that a function with multiple
symbols between λ and '.' is semantically equivalent to its fully
curried version.

Remedy 2: λS.a = λs1.λs2. … λsn-1.λsn.a

for any sequence S of symbols s1..sn

With this modification, Expression (1) becomes
syntactically valid. And given any three inputs, Expression 1
retains unambiguous output of symbol a.

Expression (2) contains two consecutive λ symbols, so it
can be referenced in parts. Call part “λx.F ” the inner function,
and everything else the outer function. Let F to be some oracle
function that returns either symbol a or symbols xy. The output
of F becomes the output of the inner function, which by way of
Remedy (1) becomes the abstractions used by the outer
function. Should F return symbol a, the outer function no
longer outputs symbol a, and instead behaves as the identity
function. Although the behavior of Expression (2) may
arbitrarily change, it remains unambiguous in either definition
it is dynamically given. We suggest the acceptance of semi-
decidable function definitions by means of evaluating all
definitions. Since definition is a prerequisite of application, any
definition must be evaluated before its function can be applied.
Because a function could potentially be applied immediately
after definition, the expression containing its definition must be
evaluated in-order.

Remedy 3: ∀ pi ∈ P (pi() = p1(), p2(), …, pi-2(), pi-1())

Where f is some computable function, and pi is a sub-
phrase of phrase P

Strings must be evaluable in-order.

Expression (3) also appears to have an inner and outer
function. Ambiguously, the inner function may consist of either
λx.xy or λx.x, depending on which function (inner or outer)
owns symbol y. Should the inner function be provided another
function for input x, that function x may be applied to one of
two input sources, and in one of two orders. A function
abstracted by x may be applied to y, or to whatever expression
follows that which provided x. Additionally, that application
may occur either before or after y has been provided with an
expression to abstract. Which of these evaluation patterns is

29

taken affects Expression 3’s ability to output symbol a. To
correct this ambiguity, we suggest marking both the start and
end of both function definitions and function inputs with
dedicated symbols.

Remedy 4: λx.y z → (λx.y) [z]

By using these symbols purposefully and without
restriction we can preserve the general language's first
requirement (lack of syntax rules) and prevent ambiguity. This
language is Turing complete and thus implementable on a
computer.

V. CURRENT WORK & THE EESK PROGRAMMING

LANGUAGE

We have designed and implemented a high-level
programming language Eesk that attempts to be a general
language. The Eesk system behaves as a lambda calculus
interpreter that has, for the most part, remedied the ambiguities
related to the double-lambda problem described above. With a
few exceptions, this language meets all the three criteria of the
general language.

The Eesk runtime environment has shown equivalent to an
abstract machine that performs reduction on arbitrary learned
languages for all halting inputs that have been tested. We
intend to continue developing this system to use as a
framework for further investigating the use of general language
reduction as an approach to improving both the speed and
accuracy of artificial general intelligence.

As with any correct implementation of the general
language, Eesk’s syntax is arbitrary. Valid Eesk is defined as
any sequence of symbols. Conceptually, any symbol is either
of the terminal or non-terminal type. Operators may be treated
as terminal symbols. Operators that may be applied to an
operand of one type may equally be applied to any operand of
the other type. Thus, the language is weakly and dynamically
typed. Since the typing is implicit, automatic, and prone to
change, it does not necessarily concern an Eesk programmer.

Similar to other homoiconic functional languages like
Scheme and Racket [8,9], Eesk is lexically scoped and full
funarg [10] capable. The availability of symbols to their sub-
and super-scope can be explicitly decided using “public” and
“private” modifiers. Declaration of new symbols is done
implicitly upon first encounter, defaulting to accessibility for
all sub-scopes, but not the super-scope.

Due to general language’s third requirement, Eesk may be
parsed by a means as simple as LL(1) [11]. Each symbol
encountered by such a naive left-to-right parser could be
translated directly into machine code without respect to what
symbols come next. The current implementation however, uses
a recursive descent approach instead. Each descent may be
implicitly escaped by encountering the end of a symbol stream.
This solution permits much of the computational expense
associated with determining scope to be handled at compile
time.

To accommodate the remedies prescribed in this paper,
Eesk employs a runtime architecture composed of three stacks,

separating it from the list-processing approaches taken by
philosophically similar languages [8, 9, 14]. The first of these
stacks is used to store intermediate computed symbols, and the
second to store function arguments. The Eesk calling
convention causes these first two stacks to exchange
responsibilities. This stack rotation method allows Eesk
functions to both accept and produce syntactically arbitrary
Eesk expressions without causing stack corruption.
Furthermore, stack rotation permits the elements belonging to
many sequential dynamic data structures to be accessed in
constant time.

Eesk’s third stack maintains control information for the
calling convention, and its presence is opaque to an Eesk
programmer. The third stack can be modeled using only the
first two stacks, but in doing so, the runtime environment loses
constant-time lookup of symbols in the super-scope.

Through the remedies provided in this paper, Eesk is a
reflective language in which syntax is a first class citizen, and
reduction of syntax is the primary mode of evaluation. Eesk
expressions can be dynamically generated and evaluated by
means of reduction. Beyond the primitive operators suggested
for a pure reduction system, Eesk delivers additional
predefined (but overridable) operator symbols that permit
pattern matching between expressions, similar to use of (quote

…) and (match …) in some languages [8,9] of LISP [14]
heritage. Also, through intentional placement of function
application operators, an Eesk programmer can explicitly
denote whether a function is evaluated eagerly or lazily [12].
Additional features provided by the Eesk language framework
include first class citizenship of continuations [13] and a
foreign function interface.

VI. CONCLUSION

We have defined complementary tools of reduction and
general language that characterize general intelligence in
language processing. The process of reductions is aimed at
simplifying the complexity of decision-making over uncertain
problem domains. The beneficial and problematic implications
of implementing such a framework is discussed. The use of λ-
calculus, and suggestions for modifying its syntactic structure
to make it suitable for use as the general language, are
presented as well. We are calling on the need for the
formulation of formal semantics of the general language as an
approach to general intelligence.

VII. REFERENCES

Allen Newell and Herbert A. Simon. 1976. Computer science as empirical
inquiry: symbols and search. Commun. ACM 19, 3 (March 1976), 113-126.
DOI=10.1145/360018.360022 http://doi.acm.org/10.1145/360018.360022

Sudharsan, Iyengar. Cognitive Primitives for Automated Learning,
Frontiers in Artificial Intelligence and Applications, Vol. 171, AGI
2008, pp. 409-413.

Duda, Richard O., David G. Stork. Pattern Classification (Pt.1). (09
November 2000)

Turing, A. M. Computability and λ-Definability. The Journal of Symbolic
Logic. Vol. 2, No. 4 (Dec., 1937), pp. 153-163

Church, Alonzo. An Unsolvable Problem of Elementary Number Theory

Murphy, Kevin P. Machine Learning: A Probabilistic Perspective (Adaptive
Computation and Machine Learning series) (24 August 2012)

30

Chomsky, Noam. On Certain Formal Properties of Grammars. (1959)

Gerald Jay Sussman and Guy L. Steele, Jr.. 1998. Scheme: A Interpreter for
Extended Lambda Calculus. Higher Order Symbol. Comput. 11, 4 (December
1998), 405-439. DOI=10.1023/A:1010035624696
http://dx.doi.org/10.1023/A:1010035624696

Matthew Flatt. 2012. Creating languages in Racket. Commun. ACM 55, 1
(January 2012), 48-56. DOI=10.1145/2063176.2063195
http://doi.acm.org/10.1145/2063176.2063195

[10] Joel Moses. 1970. The function of FUNCTION in LISP or why the
FUNARG problem should be called the environment problem. SIGSAM Bull.
15 (July 1970), 13-27. DOI=10.1145/1093410.1093411
http://doi.acm.org/10.1145/1093410.1093411

D. J. Rosenkrantz and R. E. Stearns. 1969. Properties of deterministic top
down grammars. In Proceedings of the first annual ACM symposium on
Theory of computing (STOC '69). ACM, New York, NY, USA, 165-180.
DOI=10.1145/800169.805431 http://doi.acm.org/10.1145/800169.805431

Paul Hudak. 1989. Conception, evolution, and application of functional
programming languages. ACM Comput. Surv. 21, 3 (September 1989), 359-
411. DOI=10.1145/72551.72554 http://doi.acm.org/10.1145/72551.72554

Reynolds, J. C. (1993). The discoveries of continuations. Lisp and symbolic
computation, 6(3-4), 233-247.

McCarthy, John. Recursive functions of symbolic expressions. Springer
Berlin Heidelberg, 1983.

31

http://dx.doi.org/10.1023/A:1010035624696

ABXTester vs. Audio Exam: A Survey Comparing

Audio Listening Test Apps
Aaron Sands

WSU Computer Science Department

Winona, MN

(651) 434-8619

ASands09@Winona.edu

Abstract— There are several data formats and bit rates

available for digital audio listeners to use to suit their

needs. Data formats each have their own characteristics.

Lower bit rates offer smaller file size, and more efficient

transfer over the Internet, but the result is generally

poorer sound quality. The best way for a listener to

compare differences between audio encodings is a double-

blind listening test. Not much software is available to

compare differences in sound fidelity, especially on Mac

OS X. Participants were surveyed to determine if the new

application Audio Exam provides a better experience than

the existing application ABXTester in terms of

intuitiveness, preference of test set-up, and the results

generated by the applications. The results are summarized

in this paper.

I. INTRODUCTION

 The Audio CD format became commercially available in

1982, and was the first time digital audio was available to

consumers. As with any new technology, much of the public

was skeptical at first, and many were stubborn to accept it [1].

It slowly gained popularity until it overtook the audio cassette

as the most popular musical format around the early 1990’s.

Digital has many advantages over analog formats – higher

fidelity, easier duplication, and more durability in the long

term. In the early days of the CD, the personal computer was

becoming more popular as well. By the late 1990’s and early

2000’s, personal computers started having enough secondary

storage for a sizeable collection of music, and portable digital

music players (MP3 players and iPods) started becoming

immensely popular.

 There are many ways to represent an analog waveform

(music) as digital information that computers can process.

Uncompressed digital audio, which is found on Audio CDs,

requires large amounts of storage. Audio CDs contain PCM

data, or pulse-code modulation. With PCM, an analog

waveform is sampled at a regular interval, in the case of the

audio CD, 44,100 times per second. This value is called

sampling rate, and is usually expressed as 44.1 kHz. Each

sample gets a fixed-size value. This is called bit depth, and in

the case of the Audio CD, it is 16 bits. The bit rate, or number

of bits per second needed to store one second of audio, can be

found by multiplying sampling rate by bit depth by number of

channels (nearly always 2 for music). The bit rate for PCM is

1,411.2 kbps. Some of the data occupied by a PCM file is

unnecessary. For example, a period of silence is represented

by a long string of zeros in the file. Compression codecs serve

to eliminate some of this redundancy. There are lossless and

lossy audio compression codecs. Lossless codecs decrease the

file size, but allow the original waveform to be recreated

exactly. FLAC, free lossless audio codec, is an example of a

lossless codec. Lossy codecs such as MP3 reduce file size but

also distort the waveform to some degree. Most lossy codecs

allow control over bit rate at encoding time. Lower bit rates,

in general, lead to more distortion and therefore poorer

quality, potentially to the detriment of the listening

experience. Depending on the bit rate, the result of a lossy

encoding can be undetectable by a listener, in other words,

transparent. Table 1 shows various encodings of a 3 minute,

57 second song, along with file size, and that number times

7160 (the average size of a music library) [2].

FORMAT FILE SIZE FILE SIZE * 7160

Uncompressed PCM

(16-bit, 44.1kHz)

40.8 MB 292,320 MB (285

GB)

ALAC (Apple

Lossless Audio Codec)

29.1 MB 208,356 MB (203

GB)

MP3 320kbps

9.1 MB 65,156 MB (63 GB)

MP3 VBR0 (220-

260kbps)

8.3 MB 59,428 MB (58 GB)

MP3 256kbps

7.3 MB 52,268 MB (51 GB)

MP3 160kbps

4.6 MB 32,936 MB (32 GB)

MP3 128kbps

3.7 MB 26,492 MB (26 GB)

MP3 80kbps

2.3 MB 16,468 MB (16 GB)

TABLE 1. Various encodings of the track “Under Cover of

Darkness” by The Strokes

32

 Encoding a music library in a compressed format such as

MP3 instead of CD Audio (uncompressed PCM) results in a

lot of saved disk space. Audio listeners can benefit from

knowing which bit rate offers the best trade-off of audio

quality and file size. The ideal codec and bit rate depends on

the listener’s ability to perceive the difference in fidelity

(which includes their own playback system and ears), how

much music they own, and how much disk space they have.

Judging what level of audio quality is good enough for the

user is tricky, due to the nature of the human hearing system

and psychological factors at work. The best way to tell is with

a double-blind listening test of different encodings [3, 4].

 ABX tests done with software are a common way to do a

codec listening test. ABX testing involves comparing two

stimuli “A” and “B” under a double-blind condition. For each

trial, either “A” or “B” is randomly selected – this is “X”. The

test is to try to identify if “X” is “A” or “B”. Double-blind

means that neither the tester nor the person being tested knows

which sample is which. In the case that a computer is

administering the test, the random selection is done

computationally. Over the course of many trials, statistical

analysis is done on the results to determine the probability that

the listener really can tell the difference, or that the subject

was merely guessing. Many computer programs have been

created to administer listening tests like this. They all serve

the same purpose, but have different user interfaces and

features. Program intuitiveness is very important in this

context, as is the set up of the test itself, and the results

generated by the program [3, 4, 5, 6].

 Hypothesis: Users will find that the intuitiveness, ability

to loop playback, and built-in results analysis in Audio Exam

makes for a better experience than ABXTester.

II. METHODS

 Only one piece of software previously existed in the Mac

App Store that serves this purpose. It is called ABXTester,

and is shown in Figure 1. In ABXTester, a user first loads the

tracks ‘A’ and ‘B’. Then, five randomized trials are displayed

– each one is either ‘A’ or ‘B’, and the user can listen to as

much of each file as they like with the audio players provided

until they select ‘A’ or ‘B’ with the buttons to the right. Then,

the answer is checked, and percent correct is shown. There is

no way to loop one section of music or switch back and forth

instantly – which is important for this type of test. The results

must be recorded manually by the user and analyzed manually

if they want to do so. In the newly created application Audio

Exam, shown in Figure 2, a randomly selected 5-second

section of the file is played, alternating between the two

encodings. The file name, data format, and bit rate are shown

onscreen as each track is being played. There are two

possibilities – either the displayed file information is correct (a

“true trial”) or the information is swapped. (a “false trial”). At

any time, the user can select ‘true’ or ‘false’ to complete a

trial. During the test, the user has the choice to either quit or

jump to another 5-second section. Once they pick which track

they think is X, the program will record the result and jump to

another point in the song. The reason for this test setup is to

allow a very quick comparison between the two files without

the user having to click pause and play several times. Upon

quitting or reaching 20 trials, the program will display the

number correct, the p-value of the cumulative binomial

probability of the result, and the interpretation of the p-value.

Although the setup of Audio Exam does not technically fit the

definition of a ABX test, it is functionally equivalent to one.

Fig 1. ABXTester UI

Fig 2. Audio Exam UI

33

 The only material requirement the participants need is a

Mac with Mac OS 10.9. The participants are emailed the

audio files and instructions. The two applications can be

downloaded for free in the App Store. Before beginning, the

user downloads ABXTester and Audio Exam from the store.

First, two test files are downloaded. Then, with each

application, the respondents do ten trials comparing these two

test files. The survey contains three pairs of questions which

compare ABXTester to Audio Exam. The questions asked on

the survey are as follows:

 1A. Overall, ABXTester was intuitive to use.

 1B. Overall, Audio Exam was intuitive to use.

 2A. The way the each trial was set up in ABXTester was

 an effective and quick way to try to identify differences

 between A and B

 2B. The way the each trial was set up in Audio Exam was

 an effective and quick way to try to identify differences

 between A and B.

 3A. After the ten trials in ABXTester, I think I know how

 to interpret the result.

 3B. After the ten trials in Audio Exam, I think I know

 how to interpret the result.

III. RESULTS

 There were twelve survey participants. The median

responses to questions 1A and 1B are neutral and agree

respectively. The median responses to question 2A lies

between disagree and neutral, and the median response to 2B

is strongly agree. The median response to 3A is between

neutral and agree, but the median response to 3B is strongly

agree. The complete results are shown in the graphs below.

Figure 3 shows the frequency of each type of response for

questions 1A and 1B. ABXTester is in blue, and Audio Exam

is in red. Figure 4 shows the responses for questions 2A and

2B, and figure 5 represents questions 3A and 3B.

Fig 3. Number of responses to question 1

Fig 4. Number of responses to question 2

Fig 5: Number of responses to question 3

IV. ANALYSIS

 The Wilcoxon Signed-Rank Test can be applied on each

pair of questions (1A and 1B, 2A and 2B, 3A and 3B) to

determine the likelihood that we would obtain these results

given that users really didn’t have a preference for either

application [7]. The null hypothesis is that the median

difference between each pair of data is zero. The alternative

hypothesis is there is a nonzero difference in favor of Audio

Exam. For question one, the test statistic (W) yielded is 55.

Since the sample size excluding identical pairs is less than 10

for question 1, a z-score cannot be calculated, but since W is

greater than the critical value of 29, the null hypothesis can be

rejected. For question two W = 66, z= 2.91, and p = 0.0018 is

obtained. Finally, for question three, the values W = 55, z =

2.78, and p = 0.0027 are found. Therefore, there is evidence

that users preferred Audio Exam over ABXTester in all three

of the aspects surveyed. From looking at the test statistics, the

most dramatic difference was with preference of test setup

(Q2).

0

2

4

6

8

10

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

Question 1

ABXTester Audio Exam

0
1
2
3
4
5
6
7
8

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

Question 2

ABXTester Audio Exam

0

2

4

6

8

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

Question 3

ABXTester Audio Exam

34

 There are some limitations to this survey. Firstly, twelve

respondents is not many, and more data would have led to

stronger confidence that one application is better than the

other. As with any survey of this type, there is potential for

central tendency bias (people tend to avoid the extreme

answers), acquiescence bias (people tend to simply agree with

the question stated), and social desirability bias (people may

tend to choose the answer the asker wishes to see).

V. CONCLUSION

 Although it seems Audio Exam is preferred over

ABXTester, there is still room for improvement for Audio

Exam. Some of the things that users suggested were improved

file compatibility, drag-and-drop file selection, and a more

detailed result output. The user interface in Audio Exam, as

with any application, can be improved to provide an even

more intuitive experience.

ACKNOWLEDGMENT

 I express my sincere thanks to Dr. Minguri Zhang, Dr.

Sudharsan Iyengar, and Dr. Narayan Debnath of the Winona

State Computer Science department for their advising on this

project. I also want to thank Dr. Tim Gegg-Harrison of the CS

department for assisting with the software development and

also Dr. Tisha Hooks from the statistics department for

helping with the analysis part of the application. Thanks to

Nate Clay and Josh Day for their help on the project as well.

REFERENCES

[1] “How the CD was developed.” 2007. News.BBC.co.uk.
http://news.bbc.co.uk/2/hi/technology/6950933.stm. Accessed: 6 Feb
2014.

[2] Sands, Aaron J. 2012. Digital Sound: Where Music and Computers
Come Together

[3] “ABX Testing” 2004. Boston Audio Society.org.
http://bostonaudiosociety.org/bas_speaker/abx_testing.htm Accessed: 6
Feb 2014.

[4] Meilgaard, Morten; Gail Vance Civille, B. Thomas Carr. 1999. Sensory
evaluation techniques (3 ed.). CRC Press. pp. 68–70

[5] “ABX Binomial Probability Table” 2001. Home.provide.net/~djcarlst.
http://home.provide.net/~djcarlst/abx_bino.htm. Accessed: 6 Feb 2014.

[6] Kleinholtz, L. L. 1992. Audio update. Radio-Electronics, 63(6), 76

[7] Boone, Harry N. Analyzing Likert Data. Journal of Extension

35

http://bostonaudiosociety.org/bas_speaker/abx_testing.htm
http://books.google.com/books?id=XX9xwk9G0EUC&pg=RA1-PA68
http://books.google.com/books?id=XX9xwk9G0EUC&pg=RA1-PA68
http://home.provide.net/~djcarlst
http://home.provide.net/~djcarlst/abx_bino.htm

Wireless Helmet Sensor for

Detecting Dangerous Impacts

Joel Sutton
Computer Science Department

Winona State University

Winona, MN, United States

Email: jdsutton7464@winona.edu

Abstract— Concussions in contact sports can go undetected

due to a lack of observable symptoms. Concussion detection is

essential for immediate treatment and monitoring as well as

prevention of future concussions. It has been determined that an

impact event with acceleration of 60g or greater can cause a

concussion that may or may not display symptoms. We created a

device to detect head impacts and send wireless alerts to a laptop

for impacts that can cause a concussion. The system was created

with an analog accelerometer, an Arduino microprocessor, and a

simple XBee Wireless RF network. We tested the system by

embedding the device in a football helmet and studying the

consistency of the output generated by applying controlled

impacts to five regions of the helmet. We found that while the

system can reliably detect and transmit impact data, the

consistency and usefulness of the data is limited by the use of a

single accelerometer.

Keywords—XBee, Arduino, Accelerometer, Helmet,

Consussion, IEEE 802.15.4

I. INTRODUCTION

Concussions and the effects of head trauma are a growing
concern in contact sports. According to Alcaraz et al. [1],
67,000 high school football players are clinically diagnosed
with concussions each year, and nearly the same number of
players suffer concussions that are not diagnosed. This
provides two reasons for concern. The first is that a player
who suffers brain damage and continues to play is at a higher
risk for subsequent concussions. The second is that such
injuries appear to be cumulative [2]. Bailes et al. [3] also
suggests that head impacts that occur commonly during
contact sports can result in subconcussive injuries. These
injuries often have no outwardly visible signs and symptoms,
so they are not recognized as concussions by a clinical
diagnosis [4].

Diagnosis and treatment of players is based on physical
signs and symptoms associated with a concussion. However,
these studies suggest that clinical diagnosis is insufficient for
detecting all head injuries and preventing subsequent injuries.
Studies on the effects of controlled head impacts in laboratory
animals and the effects of repetitive impacts in football
indicate that an impact threshold in the range of 60-90g can
cause a concussion [3]. Given that a significant number of
concussions are not easily diagnosed, a wireless impact alert
system may be a helpful tool for diagnosing and monitoring a
player for concussive or subconcussive injuries. This project

will create a prototype of a wireless impact alert system
composed of a helmet module with an accelerometer,
microprocessor, and an XBee transmitter that can notify a
receiving module if an impact to the helmet exceeds a
designated force threshold.

Hypothesis: A helmet sensor system composed of a 3-axis

accelerometer, an Arduino microprocessor, and an XBee

Wireless RF network can consistently detect helmet impacts

from multiple directions and send alerts to a laptop.

II. METHOD

A. Materials

The hardware used to build this prototype system are an
Arduino Uno, an ADXL377 3-Axis +- 200g accelerometer,
two Digi XBee Series 1 Wireless RF modules with 802.15.4
firmware, an XBee shield, an XBee Explorer USB adapter, a
9V battery, and a MacBook Pro laptop. Other materials
include a football helmet and a ballista impact device.

The Arduino Uno was chosen as the basis for this project
for several reasons. Margolis [5] describes many advantages to
using Arduino. The Arduino environment is designed for fast
and effective prototyping. Arduino hardware and software
(also referred to as Arduino) are open source and cross-
platform and thus have a thriving and robust community of
users and support that can be accessed easily online.
Additionally, the Arduino hardware is on the same level of
sophistication as the hardware used in commercial embedded
systems. Various models of Arduino development boards are
available, with sizes ranging from that of a credit card to that
of a postage stamp. They come equipped with various I/O
ports and can be powered with a battery power supply.

We chose the Arduino UNO, the basic model, because of
availability of support resources and component adapters.
These factors made it a good choice since we would be
making frequent modifications and adaptations in our fast
prototyping process. The disadvantage to the Arduino Uno for
our particular application is that its dimensions are 6.8cm X
5.3cm, making it slightly larger than desirable for placing
inside a football helmet. However, this project is intended to
serve as a prototype, and a subsequent unit could be created
using one of the smaller Arduino models.

We chose the Digi XBee Series 1 (802.15.4) OEM RF
module as the wireless communication device, not only

36

because of its small size, but also because of the flexibility
provided by the IEEE 802.15.4 data transmission protocol.
The ease with which the devices are configured is another
attractive feature. The 802.15.4 standard allows for
communication in both point-to-point and point-to-multipoint
Personal Area Network topologies consisting of node devices
and a coordinator device. In addition to these, the Digi XBee
modules can operate in a peer-to-peer configuration, which
does not require the use of a coordinator [6]. Configuration of
new XBee devices into an existing network is simple and
takes only minutes. The devices are capable of 250 kbps RF
data rate communication to the end node, and this particular
XBee model has a line of sight range of 100m [7]. These
features are desirable since our device is to be used in fast-
paced team sports.

B. Hardware Assembly

 The first assembly required was the connection of the
XBee Shield to the Arduino microprocessor. This was
done by following the XBee Assembly Guide provided
by the XBee Shield manufacturer, Sparkfun [8]. The
XBee Shield stacks on top of the Arduino. The pins of
the XBee Shield attach directly to the header sockets
on the Arduino.

 The next step is to connect one XBee Wireless RF
module to the XBee Shield. To do this, the XBee

Wireless RF Module was oriented according to the
printed guidelines on the XBee Shield and the header
pins of the module were inserted into the
corresponding sockets on the shield.

 Connecting the accelerometer to the Arduino was done
using solder and wire. Instructions were provided by
the Adafruit Learning System [9]. Fig. 1 shows a
diagram of the helmet device with labeled connections.

 The Arduino is powered by a 9V battery connected to
the power jack on the Arduino board.

 The second XBee Wireless RF module is connected to
the XBee Explorer USB adapter. Instructions for this
are provided by the Sparkfun assembly guide [8]. The
XBee Wireless RF Module is oriented according to the
printed guidelines on the XBee Explorer USB adapter.
The header pins of the module are inserted into the
corresponding sockets on the adapter. The XBee
Explorer USB adapter board is connected to the laptop
by a miniUSB-to-USB cable.

C. Software

The XBee Wireless RF network was configured using the
serial port terminal application called CoolTerm version 1.4.3.
Configuration instructions are found on page 469 of Arduino
Cookbook [6]. The MacBook Pro laptop was running OS X

Fig. 1. Wiring diagram for connecting accelerometer sensor to Arduino UNO processor with XBee Shield and XBee Wireless RF Module

37

version 10.9.1 (Mavericks). The software running on the
Arduino microprocessor was an Arduino sketch written in
Arduino language, which is based on C and C++. The coding
was done using the Arduino IDE version 1.0.5.

D. Data Processing and Output

The accelerometer senses acceleration from force applied
to the accelerometer on the X, Y, and Z directional planes and
outputs a corresponding voltage value to the Arduino A0, A1,
and A2 pins respectively. The Arduino sketch reads the input
values of the A0, A1, and A2 pins in a continuous loop.

Since our accelerometer is connected to the Arduino 3V
regulator pin, the accelerometer voltage output when level and
at rest is 3V. The Arduino has a 10-bit Analog to Digital
Converter, or ADC, that converts the analog voltage values
from the ADXL377 into digital values ranging from 0 to 1023.
For a resting, level accelerometer, the ADC value is
approximately 512. In order for our application to make use of
this data, our Arduino sketch converts the ADC values
corresponding to the X, Y, and Z values from the
accelerometer into acceleration g values. The conversion
function is derived from the Arduino ADC conversion
function and the ADXL377 Zero g Voltage offset factor and
Sensitivity Ratiometric factor as listed on the ADXL377 Data
Sheet [10]. The sequence of events for processing I/O is as
follows:

 A helmet collision event occurs and the accelerometer
senses the impact.

 The accelerometer outputs analog voltage values for
the X, Y, and Z-axes to the Arduino processor. The
ADC converts each analog value to a digital value
ranging from 0 to 1023.

 The Arduino sketch converts the digital value into an
acceleration g value for each axis.

 The values are composed into a single string message
with axis labels corresponding to the value for that axis

 If the acceleration g value is ≥ 60 g, the string
“DANGEROUS HIT” is appended to the message.

 The resulting string is written to the XBee Wireless RF
module via the Arduino serial output.

 The XBee Wireless RF module uses the 802.15.4
wireless protocol to send the message to the XBee
Wireless RF module connected to the laptop.

 The receiving XBee module writes the received
message to the USB serial port on which the CoolTerm

application is listening.

 The CoolTerm application displays the message in the
console for a human observer to read.

E. Helmet and Helmet Sensor Unit

The helmet used in this experiment is a size X-Large
Rawlings Momentum youth football helmet. The helmet was
purchased new and was unused prior to this experiment. The
impact sensing unit was affixed to the inside of the helmet
with the accelerometer placed at the top-center of the helmet
interior and connected to the main unit by jumper wires. The
accelerometer was oriented such that the X-axis sensed
impacts on the front and rear of the helmet, the Y-axis sensed
impacts to the side of the helmet, and the Z-axis sensed
impacts to the top of the helmet. The main unit, consisting of
the Arduino, X-bee module, and battery pack, was attached to
the helmet interior with adhesive tape and additional foam
padding.

F. Impact Device

The impact device is a ballista style machine that uses an
elastic sling to propel a blunt-ended bolt into the helmet. The
ballista has a base platform with two vertical stanchions on
one end. On the opposite end is a platform where the helmet
sits. The distance from the top center of the helmet to the
closest stanchion, the front stanchion, is 1m. Each end of the
elastic sling is anchored on either side of the front stanchion.
The elastic sling is made of rubber tubing with a 13mm
outside diameter. The bolt shaft is a 1.3m length of PVC pipe
with 26mm outside diameter. The bolt head is made from lead
fishing weights that are bundled, wrapped, and affixed to the
PVC shaft with duct tape. The total weight of the head is
approximately 226 grams.

To operate the device, the bolt is inserted into guide holes
in the stanchions with the blunt end toward the helmet
platform. The bolt is nocked on the elastic band and pulled
back to the desired draw length. Markings on the bolt shaft are
used to consistently measure draw length. The zero marking is
38cm from the nock end of the shaft and indicates the point on
the shaft that rests at the front stanchion when the bolt is
nocked and the elastic is drawn to the point just before
tension. From the zero mark, the shaft is marked at 10cm
increments up to 50cm, which is the maximum draw length we
used for firing at the helmet. When released, the bolt is
launched at the helmet sitting at the opposite end of the
platform. Fig. 2 shows the ballista device with the helmet on
the platform in preparation for an impact test on the facemask
region of the helmet.

Fig. 2. Ballista impact device with helmet in place for facemask impact test

38

G. Testing Procedure

The system was tested by performing a series of con-
trolled impact tests on the helmet and recording the output of
each impact as it was displayed in the CoolTerm console on
the laptop. Data was collected for impacts on 5 helmet
regions: facemask, side, forehead, front, and back. These
regions are the same regions used for impact data collection in
the study by [4]. Each helmet region was subjected to sets of 5
impacts from the 20cm, 30cm, 40cm, and 50cm ballista draw
lengths so data could be recorded as the impact force
increased incrementally. This makes a total of twenty recorded
impacts for each helmet region. For each impact, the primary
impact data for the X, Y, and Z-axes was captured in the
CoolTerm console and recorded in a spreadsheet. Fig. 3 shows
a sample output from a trial run of the system.

In theory, the device would only transmit impact data for
impact events that are considered to be dangerous, i.e., impact

events with force ≥60g. However, because we wanted to
examine the consistency of the data over a range of impact
forces, we had to modify the Arduino code to also transmit
data that would not necessarily indicate a dangerous impact.
For our experiment, the threshold for a sensed impact force to
be transmitted was 4g. This means that any impact to the
helmet that was sensed as less than 4g would not be
transmitted to the laptop unit. If, for any given hit event, no
data was transmitted for a particular axis, a value of <4 was
recorded for that axis in the spreadsheet. In order to simulate
the functionality of alerting the laptop observer of actual
dangerous impacts, we programmed the Arduino to append a
‘DANGEROUS HIT’ message to the output when an impact
≥60g was sensed. Our spreadsheet record also indicates
whether or not this message appeared as expected for
dangerous impact values.

Lowering the impact threshold for data transmission
introduced the side effect of transmitting data that would be

considered ‘noise’. While the noise is legitimate impact data,
it does not reflect the primary impact of the bolt on the helmet.
Instead, it is impact data sensed when the helmet landed and
rolled in the catch padding after being knocked from its
platform. The highest values for X, Y, and Z are shown
clustered together. These are the initial output corresponding
to the primary impact of the bolt on the helmet. They are
indicative of the data points collected as our result data for
each trial. The remaining data was discarded as noise.

III. RESULTS & ANALYSIS

Results were recorded for 100 impact trials. Each result
contains 5 data elements:

 Draw Length – indicating the draw length of the
ballista in cm.

 X - indicating the impact value for the X-axis.

 Y - indicating the impact value for the Y-axis.

 Z - indicating the impact value for the Z-axis.

 ALERT - indicating YES if the output contained the
‘DANGEROUS HIT’ message for any X, Y, or Z
  value ≥ 60g

 Note: An X, Y, or Z column label denoted with *
indicates that this axis is the primary axis of impact for
that helmet surface region. An example is shown in
Table 1, which displays data for the facemask helmet
region.

For each impact test, we recorded the X, Y, and Z-axis
outputs for a total of 300 data points. Analysis focused on the
100 data points corresponding to the primary axis receiving
the impact for each helmet region: X-axis for the forehead,
facemask, and back, Z-axis for the top, Y-axis for the side.

To simplify the comparison of data for each region while
accounting for the wide range of output values within each
helmet region, we calculated the arithmetic mean of the 5
output values produced by each set of draw length tests on
each helmet region. The mean values for each helmet region
are listed in Table 2. This gives us one value for each helmet
region that can be compared to the mean impact value of the
other helmet regions for the set of tests performed at each
draw length.

This data shows that the mean values for each helmet
region vary significantly. For the 20cm draw length tests, the
back helmet region had the lowest mean impact value at 25g,
whereas the highest mean impact value was for the side
helmet region at 54g. This is a difference of 29g. The largest
range of mean impact values among the helmet regions was
produced at the 40cm draw length. The lowest mean value
produced by this set of tests was from the top helmet region at
67g. The highest mean value for this set of tests was 135g
produced by impacts on the side helmet region. This is a
difference of 67g. Mean impact values for the helmet regions
follow a similar pattern for the 30cm and 50cm draw length
test sets.

Fig. 3. CoolTerm console displaying output of side impact test

39

Despite the inconsistency in the data within and among
each helmet region, one trend is common among the helmet
impact regions. The trend is noted when comparing the change
in the mean values for each helmet region as the draw length
of the impact tests increases. As we might expect, an increase
in the draw length of the impact test corresponds to an overall
increase in the mean impact values for each helmet region. For
instance, the mean impact value for the side helmet region is
54g for 20cm draw length tests. It increases to 108g for the
50cm draw length tests, reflecting an overall upward trend.
However, it is interesting to note that the mean impact values
of four of the five helmet regions is highest for the 40cm draw
length tests rather than the 50cm draw length tests as one
might expect. The exception is the top helmet region where
the highest mean value is found in the 50cm draw length test
data. From this trend we can infer that the device works at
least at a very basic level of being able to output values that
correspond to different impact forces.

IV. DISCUSSION

As indicated in the previous section, the output of the
impact-sensing device does not provide consistent data when
comparing the output values of the primary axis for each
helmet region. This could lead us to believe the device does
not work properly or does not provide measurements with
enough precision to accurately reflect the actual force of
impacts on the helmet. While this is not an incorrect inference,
if we look at the output data of the secondary axes in relation
to the data from the primary axis, there are some instances that
suggest a possible solution to our data measurement problem.

Consider the highlighted rows in the 50cm draw length
section of Table 1. The first highlighted row shows that the X-
axis value, the primary impact value, is only 16g. While we
would expect impact values at the highest draw length to be
relatively high, this value is actually the lowest primary
impact value for this helmet region. However, the associated
secondary impact values are much higher than expected. The
Y-axis value is 63g and the Z-axis value is 23g. Similarly, the

TABLE I. FACEMASK REGION TEST RESULTS WITH PRIMARY IMPACT AXIS X

TABLE II. MEAN OUTPUT OF FIVE HELMET REGIONS FOR EACH DRAW LENGTH

40

other highlighted row has a low primary impact value of 32g
in the X-axis and higher than expected secondary impact
values in the Y and Z-axes, 47g and 68g respectively.

These deviations from expected output are not isolated to
the facemask region output shown in Table 1. These data
relationships are important because they show that the lower
than expected output values on the primary impact axis are not
necessarily the result of a device malfunction. Rather, it
appears that the force intended for the primary axis was sensed
on the other two axes. This leads to speculation that using a
single accelerometer limits directional sensitivity of our
device.

We determined that the directional sensitivity of our single
accelerometer is such that the small variation in the
consistency of impact location provided by the ballista
machine can cause our device to produce the output we see in
these instances. If the ballista bolt deviates even slightly from
the center of the primary impact point on the helmet, the
output data reflects a lower than expected primary axis output
and higher than expected secondary axes outputs. We believe
this problem could be solved by placing multiple
accelerometers around the perimeter of the helmet. This would
improve the accuracy of our sensor device by increasing the
number of direct impact measurement points distributed over
the helmet regions.

V. CONCLUSIONS

After reviewing our data, we concluded that the system
works reasonably well for a rapidly developed prototype.
However, our hypothesis must be rejected since our output
data indicates a lack of consistency in sensed impacts from
one helmet region to another. The primary drawback is the
limitation imposed by using only a single accelerometer for
sensing impact events. We noticed that when the ballista bolt
deviated even a small amount from the center of the targeted
impact axis of the helmet, the recorded impact data would not
reflect the same output as when the bolt hit directly on the
targeted axis. However, the general trend was that as the
ballista draw length increased, the output data showed an
increase in sensed impact force.

From these data we can conclude that the device provides

basic functionality. The XBee Wireless RF network provided
a low power, user-friendly means of transmitting data with the
frequency, speed, and reliability required for tracking sudden
impact events. The Arduino microprocessor proved to be a
flexible and reliable platform for integrating the I/O
components and implementing the processing algorithm.

ACKNOWLEDGMENT

I express my sincere thanks to Dr. Mingrui Zhang, Dr.
Sudharsan Iyengar, and Dr. Narayan Debnath for their advice
and guidance. Thanks to Chris Popp and Andy Tolbert for
their guidance in using the XBee and Arduino in this project.
Thanks to Chris Sutton for assisting in the design of the ballista
device. Thanks to Peter Boysen and Tim Marshall at
Enlightened Equipment for the use of their facilities for taking
the photos used in this paper and associated presentations.

REFERENCES

[1] Christopher Alcaraz, et al., Head impacts during high school football: a
biomechanics assessment. Journal of Athletic Training, 44.4:342, 2009.

[2] Mayo Clinic Staff Diseases and Conditions: Concussion 2014.
MayoClinic.org.
http://www.mayoclinic.org/diseasesconditions/concussion/basics/compli
cations/con-20019272. Accessed: March 20 2014.

[3] Julian E. Bailes, M.D., et al., Role of subconcussion in repetitive mild
traumatic brain injury. J Neurosurg, 119:1235-1245, 2013.

[4] Thomas M. Talavage, et al., Functionally-Detected Cogni- tive
Impairment in High School Football Players Without Clinically-
Diagnosed Concussion. Journal of Neurotrauma, 30:1-12, 2013.

[5] Margolis, Michael. 2003. Arduino Cookbook. Sebastopol, CA: O’reilly
Media, pp. 1-3, 469-472.

[6] Digi International White Paper. Demystifying 802.15.4 and Zigbee. Digi
International Inc. 2007-2008. http://www.digi.com/pdf/wp zigbee.pdf.
Accessed: February 2 2014.

[7] XBee Multipoint RF Modules: Embedded RF Modules for OEMs. Digi
International Inc. 2006-2011. http://www.digi.com/pdf/ds
XBeemultipointmodules.pdf. Accessed: February 2 2014.

[8] Arduino XBee Shield Guide. 2006. Sparkfun.com.
https://www.sparkfun.com/tutorials/194. Accessed: February 6 2014.

[9] Adafruit Analog Accelerometer Breakouts. 2013. learn.adafruit.com.
http://learn.adafruit.com/adafruit-analog-accelerometer-
breakouts/wiring. Accessed February 6 2014.

[10] ANALOG DEVICES Data Sheet ADXL377. 2012. Analog Devices, Inc.
Revision 0: Initial Version. September 2012.

41

User-Friendliness of Atlas Mapping in Family Tree Software

Chue Vang

Winona State University

 Computer Science Department

Winona, United States of America

Cvang11@winona.edu

Abstract— There are many different family tree applications

available, but few with integrated atlas mapping. The integrated

atlas mapping marks areas where families have migrated to and

lived in. This paper presents testing methods and surveys users to

determine if they prefer to have the atlas mapping. The

applications used are the Family Tree Maker and the iFamily on a

MacBook Pro. The testing was done on three groups of

participants. Two groups used the Family Tree Maker and one

used iFamily. One of the two groups testing the Family Tree

Maker will not test the atlas mapping aspect of the application.

Analysis shows that atlas mapping does not make the application

user-friendlier. Although the data showed that atlas mapping

made the family tree application less user-friendly, the data was

not significant.

I. INTRODUCTION

There are approximately 7.2 billion people living in the
world. Many of them would like to know what their background
or ethnicity is. Knowing your background is important for a

person when they are going through self-development [1].
People who want to know more about their family origins often
don’t have any information because much of it is lost over time.
Though families have various ways of passing down their family
heritage through dances, story telling, and various forms of
media—many changes in all cultures means it is getting harder
to keep track of this information. A modern way to keep track of
this information is through the use of a family tree application.

A family tree application stores information of a person’s
family and events that have happened to them. Typical
genealogical information is composed of a person’s surname,
first name, gender, date and places of birth, baptism, death, and
burial [2]. This information is normally stored in a data structure
form of a tree with a parent node and multiple child nodes [3].
Each tree arc branches from child to parent as shown in Figure
1 [3]. The root is the latest child recorded on a tree and has no
other child nodes connected to it.

Fig. 1. Interface of iFamily Application

42

Fig. 2. Family Tree Maker - Atlas Mapping

There are many family trees that have already been designed
such as Ancestry.com, Family Tree Builder, Geno Pro and more.
While many of these applications are popular, there are few with
atlas mapping. Atlas mapping on a family tree application is a
feature that allows a person to locate areas around the globe and
mark it with a pointer for where family events occurred. This
function allows family members to be able to trace back their
heritage and perhaps even history geographically. Atlas
mapping has been used in multiple fields such as global
positioning systems (gps), traffic monitoring and even for
tracking Internet usage [4].

The goal of this study is to find if users would like to use the
family tree application with an integrated atlas mapping to trace
their family origin. The users will input the locations that their
family has lived in and/or moved to, as shown in Figure 2. This
study will mainly test if the users like the atlas mapping feature
and to find out if it is useful to integrate in to a family tree
application.

I hypothesize that a family tree application with an integrated
atlas map of family history is more user-friendly than one
without.

II. METHODS

The approach for the survey was a usability study test. Users
completed a survey based on the application that they tested. A
series of questions were then asked to the users regarding their
opinion of the program.

A. Participants

Participants were chosen at random from a range of people
on the Winona State University campus. However priority was
given to participants whose ancestry originated in multiple parts
of the world. This allowed the users to test the application more
thoroughly and allow us to be able to gather results that are more
precise. Participants were given a consent form in which they
signed if they agreed to the terms and agreements. There were a
total of 18 participants that conducted the usability test.

B. Materials

Each user was presented a MacBook Pro with the
application, Family Tree Maker or iFamily. The application to

43

be tested by the participant was chosen at random. With the
MacBook Pro, the 3D feature of the atlas mapping in the
application was not usable as it would be with a Windows
operating system. The participants then completed a sequence of
tasks, which allowed them to familiarize themselves with the
application. There were three groups of participants, one group
which tested the Family Tree Maker application without using
the atlas mapping (Group 1), and the second group which tested
the application with the use of atlas mapping (Group 2). The
third group tested the iFamily application (Group 3). Each group
had 6 participants to complete the usability test.

TABLE 1. Groups with applications

Group # Application

1 Family Tree Maker (no atlas mapping)

2 Family Tree Maker (with atlas mapping)

3 iFamily

Participants in Groups 1 and 2 used the same application but
Group 1 did not test the atlas mapping aspect of the application.
This helps to rid of any skew/bias that may occur due to using
another application that may have a different interface but no
atlas mapping. As seen in Figure 3. Family Tree Maker’s
interface is a bit more complex than the interface of iFamily in
Figure 1.

Fig. 3. Family Tree Maker

C. Test Cases

Each of the participants had a set of test cases to complete.
Group 1 did not have to worry about the Family Tree Maker not
functioning without atlas mapping because it would work

normally even if the atlas mapping aspect was ignored. Group 2
participants testing atlas mapping received the same set of tasks
as the Group 1 but also received another set of tasks that tested
the atlas mapping aspect of application. Group 3 had a separate

44

set of tasks to complete since they were using iFamily and not
Family Tree Maker. After completion of all the test cases for the
application, the participants became more familiarized with the
application allowing them to take the survey.

D. Surveys

The survey questioned users’ thoughts and ratings on how
they felt about the family tree. The pre-test survey started with a
series of pre-questions (did not have rating bar), which occurred

before the test cases were given. The post-test survey after the
test cases was a paper survey, which includes a rating bar of 5.
1 is the worst rating and 5 is the best rating. The survey shown
in Figure 4. is a sample of the survey that the user received.

Fig. 4. Sample of Survey Questions

There were also a series of post-questions (did not have
rating bar) that were administered to gain more information on
what the all participants thought as. The survey was the same for
all groups. Except for Group 2, who tested atlas mapping, which
had one additional question which asked participants, “How did
you like the Atlas Mapping?” This additional question for Group
2 is highlighted in Table 2.

45

TABLE 2. All Survey Questions

Pre Questions

Have you ever used a family tree application? Yes_
No_

Do you see your family using a family tree application
for multiple generations?

How have you keep track of your family history or
ancestry?

Post Questions

How easy was the interface to navigate?

How good was the information storage?

Did the application do well displaying information
stored?

Did you like how you can add photos to each person
in the tree?

How well do you like the display of the generated
family chart?

How would you rate the program overall?

How did you like the Atlas Mapping?

Short Answer Post Questions

What is your overall impression to the application?

What did you like best about the application?

What would you like the see the application have/do
that it doesn’t already have/do?

Do you have any other final comments or questions?

The data that was collected was then compiled and the scores
of the applications were compared through two groups. Group
1’s data were compared to Group 2, and Group 3 was compared
to Group 1. An analysis of the data gathered will help determine
whether the atlas mapping is user-friendly in a family tree
application. Then a comparison of Group 3’s data with Group
1’s data will be conducted to verify if the atlas-mapping feature
is a desired feature when designing new applications, if the
results show that the application is preferred. This part of the test
is important for future research because to determine if the atlas
mapping design is applicable for future designs.

E. T-Tests

To compare the significance of the results, a T-test was used.
A T-test checks whether two sets of results are significant and
large enough to say that the difference between the groups is not
likely to have been a chance finding. The P-value is set to 0.05
in-order to find out if the data is significant [5]. Since atlas
mapping is supposed to make the application more user-friendly,
the T-test is set to a one-tailed test. The degrees of freedom is 10
with an alpha level of 0.05 giving us a cut-off of 1.812.

III. RESULTS

Figure 5. shows that Family Tree Maker with Atlas Mapping

has the lowest average score of satisfaction, 3.67 out of 5. The

highest was iFamily for Leopard with a 4.17 out of 5.

Comparing Group 1’s data to Group 2’s data using a T-test

showed that the difference was not significant, t(10) = 0.12, p <

0.05. Since the T-score of 0.12 is below 1.812 it shows that the

data was not very significant. The same goes for the T-test of

Group 2 and Group 3, t(10) = 0.10, p < 0.05. The T-score of

0.10 is below 1.812, meaning that the data isn’t significant. This

rating score is from the question that was asked to the

participants, “How would you rate the program overall?”

In Figure 6. the data shown is very similar to Figure 5. The

compiled data of Figure 6 consists of the rating from all the
questions asked except its overall rating question. This data also
shows results that closely resemble the previous chart. The
results from this chart shows that the Family Tree Maker with
atlas mapping was the lowest rating.

Again using a t-test on the results showed that the difference
was not significant for Group 1 and Group 2, t(10) = 0.02, p <
0.05. Since 0.02 is below 1.812 it shows that the data was not
very significant. The t-test for group 2 and group 3 was also not
significant as the t-score was 0.01, t(10) = 0.01, p < 0.05.

46

Fig. 5. Overall Average Rating out of 5

Fig. 6. All Questions Average Rating out of 5

4.08

3.67

4.17

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

Family Tree Maker Family Tree Maker with Atlas
Mapping

iFamily for Leopard

4.23

3.77

4.37

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

Family Tree Maker Family Tree Maker with Atlas
Mapping

iFamily for Leopard

47

Since the T-scores are not above the cut-off the data is not
sufficient to determine if atlas mapping is negatively affecting
the application’s rating. If the T-scores exceeded the cut-off then
it would mean that atlas mapping did have a negative effect on
the application.

The t-scores shown in table 3 lists out the two groups
compared, which questions, the T-score, P-value, cut-off and if
the data was significant. The overall rating question is a single
question that was asked and All Q’s are all the questions asked
excluding the overall rating question.

TABLE 3. T-tests and T-scores

Questions Compared Groups Compared T-score P-value Cut-off Significant

Overall Rating 1 & 2 0.12 0.05 1.812 No

Overall Rating 2 & 3 0.1 0.05 1.812 No

All Qs 1 & 2 0.02 0.05 1.812 No

All Qs 2 & 3 0.01 0.05 1.812 No

 The question that was asked only to group 2 was “How did
you like the Atlas Mapping?” It scored a 4.17 out of 5, which
resulted in an 83% satisfaction. The results from this show

that users liked the feature, but from the previous results, the
atlas mapping seems to bring down the user-friendliness of the
application.

TABLE 4. Results of Atlas Mapping Survey Question

Participant # 1 2 3 4 5 6 Total Average

How do you like the Atlas Mapping?

(Rating 1 - Worst, 5 -best) 3 4 5 3 5 5 25 4.17

IV. CONCLUSION

Although the data collected showed that Atlas Mapping

made the application less user-friendly, the data was

insignificant. Thus, it cannot be concluded that atlas mapping is

a negative feature to include in applications. However, the

results did show that atlas mapping does have a negative impact

on the user-friendliness of the application, Family Tree Maker.

V. DISCUSSION

There were several areas in which the survey could have

gone better. If there were more participants to take the surveys

then the data could have been more significant. There were only

six participants in each group, which totaled to 18 participants.

With each usability test taking about 30 – 45 minutes, it was

quite time-consuming causing prospect participants to be antsy

about taking the test.

The rating bar was out of 5, if I had set it to 10 it could of

gave a better rating scale. With at rating bar of 5, it only gives

the participants a 20% interval of judgment, where as the 10

would give it a 10% interval. With a smaller interval the data

would be more precise. In one of the tests, a participant even

put down a 4.5, which would be a 9 in a rating bar of 10.

One of the interesting things that I found from this study was

that people were quite concerned about the photos. They liked

that they could put photos and were allowed to edit them and

tag it with notes. I think that this could be a potential study in

the future, enhancing the photo features.

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my

professors Dr. Zhang, Dr Debnath, and Dr. Iyengar, for their

support as I worked on my project. Without their guidance, this

project would not have been possible.

In addition, I would like to acknowledge my friend Jouapag

Lee for her continuous help in proofreading my material.

REFERENCES

[1] R. Parke, “Development in the family,” Annual Review of Psychology,

Vol 55: 365- 399, 2003.

48

[2] J. Wesson, M. Plessis, C. Oosthuizen, “A zoomtree interface for
searching genealogical information,” AFRIGRAPH, pp 131- 136, 2004.

[3] L. Georgiadis, et al. “Data structures for mergeable trees,” ACM
Transactions on Algorithms, Volume 7 Issue 2, pp 14:1- 14:30, 2011.

[4] R. Durairajan, “Internet atlas: a geographic database of the internet,”
HotPlanet ’13, pp 15- 20, 2013.

[5] (2006) “The T-Test” [Online]. Available:
“http://www.socialresearchmethods.net/kb/stat_t.php”

49

	Announcement
	Proceeding14
	Bischke
	Dean
	Dinndorf
	Genelin
	Rabe
	Sands
	Sutton
	Vang

