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ABSTRACT 

This paper gives a consumer focused review of several commercial 

grade light sensors: A Photo resistor, UV/IR/Visible 

Light(SI1145), High Dynamic Range LUX(TSL2591), Digital 

Luminosity LUX(TSL2561), and an Analog 

Light(GA1A1S202WP). Many consumer reviews for sensors exist 

and continue to grow, as the market expands in the area of home 

automation. This paper examined a subset of sensors for a specific 

micro controller and assess their qualities with an approximation of 

what an average consumer may use them for, in an attempt to create 

a more consumer friendly quality assessment. The assessment is 

based on many traits present in the sensors, one such quality is light 

sensitivity. The assessment points to the Analog sensor as 

preferable for basic level applications.  

Keywords 

Light Sensing, Light sensors, Light spectrum. 

1. INTRODUCTION 
In the modern digital age, home-automation with small micro-

computers is a common sight. Many of these devices operate using 

basic sensors, for example, light sensors. A light sensor is a device 

that responds to changes in light. Most detect light changes through 

changes in voltage coming through the circuit. Light hits the sensor, 

and the photosensitive materials change the resistance offered by 

the sensor. This change in resistance can be coded to represent data. 

Light sensors come in a variety of types, ranging from UV capable, 

analog based, digital based, simple, and complex. Light Sensors are 

present in light fixtures, burglar alarms, garage doors, solar panels, 

and various other devices and applications [8-12]. Advance 

applications of light sensors such as, fiber optic cables, optical 

computers, wireless direct-line-of-sight devices, and bar code 

scanners have been around for several decades. The versatility of 

light makes sensors that use it popular with home-automation 

individuals. As a result, many light sensors have come into the 

market and finding the best one for a job may be difficult. One such 

light sensor is the photo resistor. It is a device that costs less than 

$1.00 that decreases electrical resistance when sensing light [1]. It 

is simple in all respects: cost, complexity, and light spectrum 

capability. Some sites like AdaFruit.com, provide detailed 

specifications for each sensor. These traits are esoteric and may not 

well indicate the quality of the sensor in an approachable way. Price 

may not always indicate quality, and you may make an unnecessary 

expenditure. Taking more variables into account, like 

implementation complexity, library dependency, and traits not 

stated in the manufacturer’s specs can give consumers a more 

complete assessment of the light sensor from a consumer 

prospective. My research gives manufacturers better insight into 

what consumers need or want. It is common for researchers to 

tackle this type of project, but uncommon to attempt to address it 

from a beginner perspective [7-8]. 

2. Hypothesis 
The Photo resistor, based on traits compared among a subset of 

selected sensors, is the highest performing light sensor, given the 

quality criteria. 

Using an assessment based on cost, complexity, light capabilities, 

and other traits, among the subset of selected sensors, we 

determined the quality criteria of the sensor. The Photo resistor was 

the control due to its simplicity. 

3. Methodology 

3.1 Sensors 
We obtained a set of light sensors from the distributor 

Adafruit.com: The Photo resistor, UV/IR/Visible Light(SI1145), 

High Dynamic Range LUX(TSL2591), Digital Luminosity 

LUX(TSL2561), and Analog Light(GA1A1S202WP). 

3.2 Sensor Specifications 
The sensor manufacturers provide data on each sensor. 

Temperature range, dynamic range, voltage range, are a few 

examples. Information used for assessment from manufacturers is 

recorded in Table 1. This was recorded and factored into the later 

quality criteria calculation. Some information present in the 

manufacturer specs is not present because of the beginner 

perspective limitation. Information sampled with our testing 

methodology is present in the documentation for each sensor 

already. This test retested these in an effort to standardize and 

simplify the data for the lower level perspective. 

3.3 Sensor Testing 
For the quality assessment, there are two important variables for a 

standard light sensing application: light turnover and light 

sensitivity range. Both of these specs are provided by the 

manufacturers, but retested to simplify and standardize the 

environment variables. To approximate a common application of a 

light sensor, we build a simple light mount and sensor holder 

(Figure 2), the process of constructing this mount, and programing 

the sensor processor, gives us the same steps a common user may 

follow. This helps build a consumer perspective: purchase, receive, 

prepare sensor, implement hardware, program for hardware, and 

finally run.  

We constructed our light mount’s light sensor processor 

using an Arduino Uno microcontroller, purchased from 

AdaFruit.com (Figure 1). We used a White LED inside a (Samsung 

Galaxy S4 Assistive light) for our light source. We used an 

algorithm written specifically for this project for assessing light 

values. The algorithm attempted to correct for ambient light values 

by first taking ten samples of ambient light and then using the 

average of those lights to adjust the incoming sensor value before 

actual sensing begins. We used the Arduino to sample a light value 

from the sensor once every .0001 seconds. The light range 
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sensitivity was measured by how high and low the sensor value 

changes with respect to a light. Light turnover was measured by the 

speed of the sensor adjusting to a changed light value. Simply, start 

with a light off, turn it on, and measure the time it takes to reach the 

high. All the sensors were implemented using their defaults or 

minimum required setup process. 

 

 

 

Figure 1. Arduino Microcontroller, Arduino Uno. 

 

Starting with the photo resistor as the control (For it is the 

simplest sensor), we test each sensor against it. The apparatus 

indicated in figure 2 acted as a stand in for a generic sensor 

application a common person may use. Measuring light intensity 

readings and responding to rapid changes in intensity can indicates 

the capability of the sensor. This process was repeated a number of 

times for each sensor.  

Process 

1. Install Light Sensor into apparatus 

2. Collect light range 

3. Calculate light turnover 

4. Repeat for each Sensor 

 

Figure 2: Test Apparatus Diagram. 

3.4 Quality Criteria 
We took the results from our test and the values from the constants 

together and created the assessment of a sensor’s quality. The 

quality factor assumed that spectrum range, cheapness, sensitivity 

range, light turnover, command read accuracy, and simplicity of 

sensor implementation was regarded as ideal. The final number 

calculated was an aggregate of all these traits, rated, and summed 

on a ranking 0-5, 0 is not ideal, 5 is ideal. The following are some 

definitions of what is ideal in a sensor from our set quality 

assessment. Explanations for each rating was given in the analysis, 

much of this was relative to the sensors. 

3.5 Quality Criteria Definitions 
Spectrum Range: Quality was be measured in how wide the 

sensible spectrum of light is. Price: The lower the price the more 

ideal. Simplicity of Implementation: How difficult is setting up the 

sensor, wiring it up, fitting it to the devices, and implementing code 

for it. Less steps of implementation and a smaller easier to 

manipulate are ideal. This is the least empirical trait, the ratings for 

this trait was accompanied by an explanation. The basic assessment 

looked at number of steps to go from receiving the device to 

receiving values from it. Sensitivity Range: How much the sensor 

reacts to light changes. A wider range indicated a greater degree of 

sensitivity. Each sensor measures light differently, the Photo 

Resistor measures in the change in voltage, the Arduino maps the 

voltage output as given by the Arduino page as, 5 Volts/1024 units 

yielding a .0049 Volts/unit [6], the LUX sensors output a lux value 

which is a fairly complex unit of light intensity over an area; the 

IR/UV/VS sensor gives a unit less value for visible light; the analog 

sensor operates similarly to the Photo resistor, but it can be 

converted to LUX given the log-scale nature of the resistor. This 

trait was analyzed separately due to the difference in units of 

measurement. Light Turnover: How fast does the sensor detect 

change when the light changes. The Arduino can read in an analog 

voltage at a rate of .1 ms [6]. The formula for calculating the 

rise/fall values are stated in formula 1. Some of the sensors may 

need to be sampled at different rates, the actual numbers for the 

turnover calculation is included in the data table. 

Formula 1: (.0001 second + sample rate (.0001 second) * number 

of samples). The Arduino’s input speed plus the sample rate times 

the number of samples that indicate a light change [15-16]. 

4. Results and Analysis 
These explanations are the basis for the scores given to the sensor 

traits. If a consumer places a greater emphasis on a certain trait 

apply a multiplier.  

Spectrum Range 

The Photo Resistor is not sensitive to other parts of the visible light 

spectrum, compared to the other sensors it can give the least 

responsivity to incoming light variations. It has only a 300 nm 

range. This is the rationale for the lower 1 rank. The IR sensor has 

the widest useable range of all the sensors, most of them max out 

near the edges of visible light. This sensor can read above and 

below the standard visible spectrum quite far. The LUX(TSL2561) 

sensor has a comparable range to the photo resistor, but has a much 

more sensitive intensity readout. This can detect varying degrees of 

light intensity much better than the photo resistor. The range on the 

LUX(TSL2591) is comparable to the other LUX capable sensor 

(TSL2561). It access primarily the visible light spectrum with little 

overlap in the IR or UV sides. The spectrum for Analog sensor is 
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comparable to the photo resistor, hovering around the visible 

spectrum (Table 2). 

 

 

 

Figure 5. Trait Graph. 

 

Price 

The Photo Resistor is the cheapest sensor. Lower prices according 

to the criteria are valued, hence the rank 5. The IR sensor is the 

most expensive of the sensors, my best guess would be that the 

added cost is for the circuitry to detect the other spectrum sections. 

The high price is the rationale for the low rank. The 

LUX(TSL2561) sensor relative to the others is somewhat 

expensive, much higher than the photo resistor ($.99) but a few 

dollars short of the IR ($10.00). Its dollar cost is competitive for 

reasonability. The TSL2591 has a price point comparable to the 

mid-level sensors. The Analog’s price point is the second lowest in 

the sensor subset. This is the rationale for the rank 2 (Table 2). 

Simplicity 

The Photo Resistor has the least installation overhead of any of the 

tested sensors. No soldering, no library setup, just plug in the Photo 

Resistor, wire it to the board, and read from the analog pins. This is 

the rationale for the 5 rank. The UV/IR/Vis takes a library import, 

initialization, and you have to differentiate the voltage units coming 

in (Source Code 1) [7]. The design specs state that the values from 

the sensor when taken for visible spectrum are “unit less.” [7]  

 

The lack of a unit and the need for library imports with device 

initialization also lowers the final score. The TSL2561 sensor, 

similarly to the IR sensor, requires a library import, and some 

special functionality to work. It requires extra wiring on top of basic 

soldering.  This sensor requires one less step than the IR (Device 

initialization) (Appendix: Source Code 1). This sensor has virtually 

the same complexity of implementation as the TSL2561 

(Appendix: Source Code 1). The Analog device operates in a 

similar manner to the photo resistor, in that it is a device primarily 

intended to give output in voltages related to changing resistance 

from light intensity. This translates to a simple plug in, and read 

analog values, which requires no library imports or device 

initialization.  

Sensitivity 

For the simple light application, the photo resistor does the job of 

detecting a light or no light well. It can’t give intensity, and in side 

tests, ambient light runs the chance of maxing out the sensor’s low 

LUX cap (Table 2), rendering bright ambient conditions difficult 

when attempting to sense new light presence. It still has value in a 

wide numeric range, hence the rank 2 rating. 

The IR sensor is not very sensitive to visible light changes, the 

graph of sensor values is shaky a best (Appendix: Figure 7). 

Enough to do rudimentary work, but unless you are sampling along 

the larger spectrum it may be lost to ambient noise. One way to 

possibly mitigate this is to sample across the entire spectrum it is 

capable of, visible, IR, and UV, this may bulk up the sensitivity, 

but given the default load it is not sufficient. The TSL2561 sensor 

has a significant range reaction to light intensity. Not as strong as 

the TSL2591, but for basic applications it is more than enough. It 

far exceeds the maxed 10 LUX of the photo resistor, coming in 

between 3 and 55,000 LUX value. The LUX(TSL2591) sensor has 

the highest sensitivity of the sensors, recorded values easily 

outpaced the other sensors, and the stated LUX value is the highest. 

Unlike the photo resistor the Analog sensor can readily have its 

voltage value converted to LUX ratings. This sensor also has a 

wider range of values (Table 1-2).  

Light Turnover 

The Photo Resistor’s rise is consistent with the other sensors and 

there is not a noticeable difference at the tested speeds. It is fast 

enough for most applications in the common world. The fall 

however is significantly slower than the other sensors, and 

depending on the sensitivity of the job may result in miss read 

signals (Figure 5). This is the rationale for the rank 3 rating (Figure 

3). The IR sensor has a favorable light reaction time. Barring retest* 

it is competitive with the other sensors for good speed turnaround. 

The LUX(TSL2561) sensor rapidly reacts to changes in light, 

barring faster timing retests, it is consistent with the other sensors. 

The default device configuration for the LUX(TSL2591) seems to 

cap sample speeds at .001 Seconds. This means that it cannot match 

the defaults of the other devise in this type of testing. The Analog 

sensor has one of the best rise and fall values of the sensors, with 

rapid up and down, there is little wait to normalize. 
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The final values assessed and summed give the relative quality 

order from best to worst, assuming that all the traits are equally 

desired: Analog, TSL2561, Photo Resistor, IR/UV/Vis, and 

TSL4591 (Figure 6). 

 

Figure 6. Assessment values graphically. 

5. Conclusion and Future Work 
From our testing and assessment it seems that the Photo Resister 

fared well among the sensors. Its simplicity and cheapness 

overcame the small spectrum sensitivity and the inability to 

measure large lux values (Table 2). The Analog sensor may be the 

better choice, for just a few more dollars, you gain the ease of 

translating voltage to LUX, a wider spectrum, and better sensitivity 

rating, and better light turnover. For the more basic jobs the analog 

sensor proves more than adequate and preferable for its well-

rounded and responsive trait qualities (Table 3). 

This research is useful to those not technically capable, and to 

industries seeking to reach out to customers through better product 

education.  Possible gaps in my research include problems with 

how the wiring of each sensor is setup. The Arduino’s input 

capacity may be shortening some of the other sensor’s response 

times, the light source is a fixed value in the visible light spectrum 

and some sensors may not pick it up properly. The algorithm’s 

ambient light processing may be damaging the low values and the 

highs by adjusting the voltages incorrectly. The sensing apparatus 

is not a perfect Faraday cage and ambient light and noticeable shifts 

occur from outside sources. The different sensors sometimes use 

different base measurements. Optimizations of these light sensors, 

better testing environments, and a more thorough quality 

assessment may be undertaken in the future. Other possible avenues 

for research are testing across the spectrum sensitivity and testing 

with variable distances light sources, and testing readability of 

various documentation styles.  
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APPENDIX 

Table 1.  Manufacturer’s Specifications. 

Sensors 
Photo Resistor [1] [2] 

[3] 

IR/UV/Vis [7] [10-

11] 
LUX(TSL2561) [4] [5] LUX(TSL2591) [4] Analog [4][13-14] 

Dimensions 

(mm) 
4.46(L)*5(W)*2.09(H) 20*18*2 10*13*1.5 19*16*1 10*13*1.5 

Weight (g) .25 1.4 .2 1.1 .2 

Price ($) 1.00 9.95 5.95 6.95 3.95 

Operating 

Temp. (C) 
-30, 75 -40, 85 -30, 80, -30, 80 -30,70 

Spectrum 

(nm) 

400 (Min, Violet) - 

700 (Max, Orange) 

520 (Peak, Green) 

550–1000 

400-800 

200-400 

Measured LUX  (Vis) 
Measured LUX  

(Vis) 
555 

Sensitivity LUX 0 -10 Non Unit for Vis LUX 0.01 – 40,000 LUX .01 – 88,000 LUX 3-55,000 

 

Table 2. Result table from Apparatus testing. 

Sensors Photo Resistor IR/UV/Vis LUX(TSL2561) LUX(TSL2591) Analog 

Sensitivity Range  544 V/Unit 

~Maxes at 10 lux [2] 

11 Unit less 719 LUX 507 LUX 93 LUX 

Light Turnover (second) .04 (Fall) 

.0008 (Rise) 

.0006 (Rise)/ (Fall) .0006 (Rise)/(Fall) .02 (Rise/Fall) .0004 (Rise)/(Fall) 

 

Table 3. Assessment Values. 

Sensors Photo Resistor IR/UV/Visible LUX(TSL2561) LUX(TSL2591) Analog 

Spectrum Range 1 5 3 3 2 

Price 5 1 3 2 4 

Simplicity 5 3 2 1 4 

Sensitivity Range 2 1 4 5 3 

Light Turnover 2 3 4 1 5 

Final Score 15 13 16 12 18 

5



 

 
Figure 3. Photo Resistor sensor values during light activation. Light is on from sample 400, and off at 568~. 

 

Figure 4. Analog sensor values during testing. Light was activated between 5th-7th samples. Light deactivated around 155th-160th 

samples. 

 

Figure 7. IR/UV/VIS sensor values during testing. Light is activated twice, corresponding to jumps. 
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Figure 8. TSL 2561 sensor values during testing. 

 

Figure 9. TSL 2591 sensor values during testing. 
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ABSTRACT 

Since the MapReduce paradigm was introduced over a decade ago 

it has gained popularity and importance throughout the software 

development community due to ever-changing scalability 

requirements, and the need for easily deployable distributed 

computing. Hadoop is a popular open-source distribution of 

MapReduce and was used during research. Hadoop’s efficiency 

between different operating systems and their distributions has not 

had an in depth study done and is the main point in this research. 

The top Linux and Windows server distributions were tested 

within a 3-node cluster with six different benchmarks. Data 

analysis has provided evidence of greater efficiency on Linux.  

 

Keywords 

Hadoop, MapReduce, Efficiency, Comparison 

1. INTRODUCTION 
In recent years we have asked systems to process larger and larger 

sets of data.  The problem with handling such large amounts of 

data across thousands of machines is the near impossibility to 

efficiently distribute, process in a reasonable amount of time, and 

handle data failures.  In an effort to reduce the need to repeatedly 

implement parallel/distributing processing, Google created 

MapReduce. The fundamental idea can be abstracted into two 

separate functions, Map and Reduce, which were first introduced 

in Lisp and can be found in many other functional programming 

languages [6].   

The core concept of MapReduce is the ability to generate and 

process data sets using parallel and distributed processing within a 

computational cluster.  The fundamental procedures that 

implement and achieve this are: the Map() function and Reduce() 

function. The job of Map() is to perform the filtering and sorting 

on a given data set, while the job of Reduce() is to perform a 

summary operation on the data.  An example of the Map() 

procedure is sorting a list of students in a University by first name 

using queues, there is one queue for each name.  An example of 

the Reduce() procedure would be counting the number of students 

in each queue, which ultimately would return the number of times 

a given name occurs in the given text [6]. The major advantage of 

this is splitting up of tasks efficiently so that large data sets are 

processed in a reasonable amount of time. 

The MapReduce programming model was introduced in 2003 by 

Google in an academic paper, from that point on it has rapidly 

evolved due to a large amount of support received from both the 

Open Source community and the Apache Software Foundation 

[8]. Yahoo spearheaded development of the most popular 

MapReduce implementation, Hadoop in 2007 [8]. Hadoop as well 

as the MapReduce programming model’s adoption has been 

accelerated due to the need to be able to handle “Big Data” in 

today’s enterprises. Big data is the information all around us, it 

can be trivial statistics such as how many times you unlock your 

phone each day, to the important ones such as the IP address that 

is accessing a bank account. The collection of all this data is 

considered “Big Data” it is characterized by the sheer size of what 

it encompasses and the lack of structure present within [5]. The 

ability to process and make inferences from this unstructured and 

messy coagulation of data is where a system such as Hadoop can 

excel.  

The majority of servers worldwide are running either Windows or 

Linux as their operating system, functionality between the two is 

similar but differences are present. The server owner makes the 

choice, that being said, there are pros and cons to each. Windows 

Server gives users support should any problems arise, and is 

generally considered easier to configure. These benefits come 

with a price tag, literally. Window’s licenses can be prohibitively 

expensive to deploy across an entire cluster. In comparison, Linux 

is free and can be distributed and modified by anyone, it also has a 

lighter resource footprint that Windows. The benefits Linux 

provides come with the con of little to no support compared to 

Windows. Although these non-technical differences matter when 

deciding upon operating system there are many technical 

differences that differentiate Linux and Windows. Linux and 

Windows have completely different file structures, Linux does not 

have a C: Drive and instead relies on the user to setup drive 

access. Linux also does not have a registry, this is a master 

database that on Windows holds settings for all users and 

applications. Settings on Linux are stored on a program-by-

program basis under the user. This gives greater modularity when 

performing or duplicating installations. Linux may only run on 

some hardware configurations while Windows has very wide 

driver support and supports nearly any hardware. These 

characteristics give rise to a choice that a company must make 

between the two operating system. The conclusions reached in 

this paper can help provide proper insight into efficiency when 

making operating system choice.  

Hadoop is an application that requires the proper hardware 

resources to do its job properly. This can mean spending a 

considerable amount of a company's budget to have the correct 

hardware for Hadoop. In an attempt to minimize the cost, and/or 

maximize the money spent, a question can be raised and 

hypothesis given: What operating system will run Hadoop the 

most efficiently? The operating system that will run Hadoop most 

efficiently is a Linux server distribution. The ability to change the 

operating system is always possible and in the long run even 1% 

more efficiency can lead to large monetary and energy savings 

[1]. The investigation following compares efficiency between the 

most widely used Linux and Windows server distributions.  
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2. HYPOTHESIS 
I hypothesize the Linux server distribution will have greater 

efficiency metrics for Memory Usage, Network Usage, CPU 

Usage, I/O Usage, and Time for Job completion compared to its 

Windows counterpart.  

3. METHOD 
Testing involves running six tests and recording performance data 

on four-machine Hadoop cluster (3 nodes, 1 master). Operating 

systems compared are the most common server distributions for 

Linux and Windows. These are Ubuntu 14.04 (Linux) and 

Windows Server 2012. The following sections are an in-depth 

explanation of the testing, data gathering and data analysis 

methodology. 

3.1 Testing Environment 
The testing being done is meant to be as controlled, accurate and 

precise as possible. The environment was created with these 

principles in mind as well as the overall goals of minimizing 

unknowns and environmental variables that could skew data. The 

hardware configuration remained the same throughout testing 

while the software changed with the respective operating system. 

Hardware was provided by Winona State University Technical 

Support and comprised of four HP 8470w laptops that natively 

support Windows and Linux. Native support means the hardware 

within the machine specifically supports said operating system, in 

this case both Windows and Linux. It was important that both 

operating systems ran natively on the hardware. Non-native 

support would have caused confounding variables leading to 

inaccurate results. Table 1 is the hardware specifications for the 

machines used.  

The machines also had their BIOS updated to the most recent 

version. BIOS is the interface between the operating system and 

hardware, and is important to have updated to ensure no problems 

occur. The nodes will also be connected to a private local area 

network (LAN). A private LAN will not have any other 

computers connected and will not have a connection to the 

internet. The following figure is a visualization of cluster setup. 

Figure 1 shows a diagram of the closed network that was used for 

testing. Three machines considered nodes were configured to 

receive workload within the Hadoop cluster, one machine was 

configured to direct workload and is referred to as master. 

Commands throughout the testing process will be run on the 

master node to perform benchmarks and distribute the workload 

for the benchmarks. The operating systems tested were the top 

server distributions from both Linux and Windows, these were 

Ubuntu Server 14.04 for Linux and Windows Server 2012 for 

Windows. The software portion of the testing environment had 

many similarities but there were steps unique to each operating 

system. These differences are described but are not believed to 

have affected efficiency.  

The installation and setup process for Hadoop between Windows 

and Linux had several similarities and several differences. First 

both were installed from flash drives prepared with UNetbootin, 

the test machines had labels attached to ensure node1 was 

considered node1, node2 was node2, etc. for testing on both Linux 

and Windows. Operating systems were installed without difficulty 

and updates were run; using “apt-get upgrade” on the Linux 

machines and Windows Update on the Windows Machines.  The 

HOSTS files for each set of machines were configured to allow 

for easy network name resolution. This means instead of using an 

IP address to connect to another machine, a machine would be 

addressed with a plaintext name such as node1 or master. 

 

 

 

 

 

Java 7u76 JDK & SDK was installed on each set of machines. 

The differences between the setup processes began to surface 

here. The Hadoop installation process on Linux involved 

downloading the pre-compiled Hadoop 2.6.0 binaries and 

extracting. On Windows, Hadoop ran natively as of version 2.2.0 

but does not have pre-compiled binaries. cMake and the Windows 

SDK were used to compile Hadoop 2.6.0. Windows also needed 

access to a few of the basic Linux commands, to enable this 

Cygwin was installed. Cygwin is a collection of GNU and Open 

Source tools that provide functionality similar to a Linux 

distribution on Windows. Hadoop was added to the PATH 

variable on both sets of machines. SSH configured setup on both 

sets of systems, and keys were added to authorized key folders to 

allow for password-less connections between systems. BASH and 

Powershell terminal were used throughout the process for each 

 
Figure 1. Diagram of cluster setup.  

Table 1: Hardware Configuration for testing machines 

Computer HP 8470w 

Processor 2.90 Ghz Intel Core i7-3520M 

Hard Drive HGST HTS725959A7E630 500GB 7200 RPM 

Memory 2x4GB PC3L-12800S (8GB) RAM 

Network Intel 82579LM Gigabit Ethernet 

Graphics Card AMD FirePro M2000 
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respective operating system, this ensured that commands being 

run were the same, and provided uniformity throughout the setup 

process. 

3.2 Testing 
The benchmarks being used for testing purposes are built into 

Hadoop 2.6.0. This allows for exactly the same test to be run on 

both Linux and Windows without needing to worry about 

differences that may have sprung up if new code had needed to be 

written for each respective test. The tests are piTest(), 

DFSIOTest() and teraSort(). These three tests are comprised of 

one, two and three functions respectively.  

piTest() - This test will be a simple work delegation and data 

calculation. It is designed to have the digits of pi calculated to a 

specific decimal place. The CPU as well as network adapter will 

be taxed during this test, data collected should help provide data 

on the different between average CPU and network usage between 

the operating system [7]. This test is comprised of a single 

function and will be run from the master node. Results will be 

gathered from each of the nodes with data gathering commands. A 

sample command for piTest on Linux looks like this:  

“yarn jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-

mapreduce-examples-2.6.0.jar pi 16 500000000“ 

The configuration flags on the piTest() command are settings for a 

Monte-Carlo function that calculates pi. The command creates a 

job to distribute the drawing of 500,000,000 points 16 times 

across the three nodes [2]. The data is then reduced and given 

back to the master node for output.  

DFSIOTest() - This test will involve the writing and reading of 

data, it is largely I/O based and is a good indicator of  the read and 

write ability of each operating system. As discussed previously 

this test has two functions, these are: DFSIOwrite() which create a 

specified amount of files of a specific size, and the other being 

DFSIOread() which reads back these files [7]. This test also 

provides statistics on its job completion which were helpful for 

data gathering purposes. Figure 2 in the appendix is an example of 

output from this job. The commands for DFSIOtest looked like 

this: 

“yarn jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-

mapreduce-client-jobclient-2.6.0-tests.jar TestDFSIO -write  -

nrFiles 10 -fileSize 100 

yarn jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-

mapreduce-client-jobclient-2.6.0-tests.jar TestDFSIO -read  -

nrFiles 10 -fileSize 100” 

The configuration flags attached to the testDFSIO() commands 

first specify the amount of files to write, in this case it is 10, and 

the size of each file in megabytes, 100.  This test is largely I/O 

and network traffic based and not based off of calculation.  

teraSort() - The final test was an overall benchmark of 

performance as it uses a considerable amount of each resource 

including CPU, networking, storage, and I/O. All resources being 

used simultaneously give a good overall perspective of system 

activity and performance during load. TeraSort() similar to 

TestDFSIO() is comprised of multiple functions. These are 

teraGen() which is a write/generate command, teraSort() which 

sorts the data, and teraValidate() which reads the test data and 

verifies its validity [7]. An example of the commands necessary to 

run this benchmark are:  

“yarn jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-

mapreduce-examples-2.6.0.jar teragen 10000000 /teraInput  

yarn jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-

mapreduce-examples-2.6.0.jar terasort /teraInput /teraOutput 

yarn jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-

mapreduce-examples-2.6.0.jar teravalidate /teraOutput 

/teraValOut” 

The single numerical parameter used in the teraSort() command 

directs the creation of rows equal to that number. Each row has a 

size of 100 bytes. The amount of data being generated during this 

command is equal to 1 gigabyte. The additional parameters used 

are directories for data input and output.  

The testing environment (includes hardware and software) has 

been created to reduce any confounding variables. Operating 

systems were setup in as close to duplicate as possible fashion. 

This has been described in the previous two sections. Identical 

hardware was procured for the testing process, however small 

differences in how identical hardware performs will have to be 

dealt with through percent error and will be calculated into the 

metric values. As for confounding variables that can occur 

because of software, they will be minimized through having 

default installations of operating systems, with only the necessary 

runtimes installed for Hadoop to run. The benchmarks being run 

also were the same between the two operating system which helps 

reduce any inconsistencies we may have experienced using 

custom made tests for each operating system. 

3.3 Data Processing 
As the tests were being run, data was gathered related to system 

usage. The data needed for comparison purposes was utilization 

data for: CPU, network, I/O, and memory. Time for job 

completion was also a statistic gathered but was separate from the 

previous metrics in the collection process. The data gathering 

process gathered more data than necessary and needed further 

processing to eliminate unnecessary statistics and congregate 

necessary parts. 

The testing process involved running each benchmark three 

times. The performance data was gathered on the three nodes in 

each cluster. The operating systems were polled every 5 seconds 

for 60 seconds giving us 12 data entries for each node for each 

test for each trial. The testing generated 54 .csv files for each 

operating system (3 nodes * 6 functions * 3 repetitions) for a total 

of 108 .csv files that needed processing.  

The data gathering on Linux used the sysstat command. This 

command allows for all system data to be gathered at specific 

intervals. The command recorded more data than was needed, this 

excess was stripped during the data processing step. A sample 

command looked like this:  

“sar -u -r -d -q -b -n DEV 5 12 | grep -v Average | grep -v Linux 

|awk '{if ($0 ~ /[0-12]/) { print 

$1","$2","$4","$5","$6","$7","$8","$9","$10","$11","$12; }  }' > 

"$(hostname)pi1.csv"” 

This command is comprised of four parts: first, it is using 

sysstat with parameters that provide information about CPU, 

Memory, Network, Disk, and system load every five seconds 

twelve times over for a sample period of one minute. The 

command then uses grep to remove two columns containing 

unnecessary data from the output. Next awk is used to select the 
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columns and delimit them with commas, the final portion pipes 

this output to a text file named with the host name of the machine 

and the test being run.  

The data gathered on Windows used the built-in utility called 

Performance Monitor. This was manually configured using the 

Windows Server 2012 GUI on the master node. The data was also 

exported to a .csv file. The Windows data had even more 

information was unneeded and had a lot of processing done to 

extract the relevant data. Raw data is table 2 in the appendix.  

The raw files that were output from data gathering were not 

formatted in a fashion that would allow for data analysis. It was 

necessary to parse the many csv files generated and remove 

excess data as well as average out necessary data. Excel and 

Visual Basic were used to process the data and a sample of the 

scripts used are available in the appendix. Excel files for both 

Windows and Linux were formatted different and thus needed 

different processing was run on each. The large number of files 

made it necessary for the scripts to be written, they prevented 

errors and a lot of copying and pasting. Once data was correctly 

formatted, it was easily comparable between operating systems. 

Table 3 in the appendix is an example of properly formatted data.  

After the data was correctly formatted it was averaged. The 

averaging process took the data from each node and each trial and 

congregated it into six values along with the nine metrics. An 

example of this is table 4 in appendix. The data from each metric 

was the sorted and brought into separate sheets to prepare for a 

two-sample t-test with unequal variances. This was used because 

it was not known if the data would have equal variances.  

4. RESULTS 
The results provided are based off the statistical significance of 

each of the nine metrics. The null and alternative hypothesis for 

the results follows:  

Ho = Linux Efficiency is equal to Windows Efficiency  

Ha = Linux Efficiency is greater than Windows Efficiency 

The two-sample t-test with unequal variances was used. If the t 

stat value was greater than the t critical one-tail value the 

difference was considered significant. Three of the metrics tested 

were found to have a significant difference. These were %idle, 

%system and kbmemused. Six of the metrics were found to have 

no evidence of a statistical significant difference, these were: 

%memused, bwrtn/s, bread/s, txkB/s, rxkB/s, and job completion 

time. Table 5 in the appendix provides the values calculated from 

statistical analysis. The results showed a statistically significant 

difference in efficiency for the %system, %idle, and kbmemused 

metrics. There was not sufficient evidence to show a significant 

efficiency difference for the %memused, I/O, Job Completion 

time or Network utilization metrics. 

The metrics being used in measuring operating system efficiency 

were selected for the accurate measure of system performance 

they provide. The metrics following were compared between 

operating systems to find a statistically significant difference in 

efficiency. Each metric is important because anyone of them can 

cause bottlenecks in system performance, the entire system can 

become slower just because one part is not able to do its job fast 

enough [3].  

CPU utilization is a key performance and efficiency metric. It is 

often used to track CPU performance regressions and 

improvements, it also is directly correlated to energy usage of a 

system. %system is a metric that describes the amount of current 

CPU in use currently. %idle describes the amount the CPU is not 

being used during operation, it is directly correlated to %system. 

Memory footprint is another metric able to gauge system 

efficiency. It can be used to track performance hiccups and could 

be the cause of bottlenecks in a system. %memused is the 

amount of available memory currently used by applications 

currently running. Kbmemused is a discrete number describing 

the amount of memory in use. Network utilization is a vital 

efficiency metric used to troubleshoot bottlenecks that may occur 

in computing clusters. The local network is the primary form of 

communication in computing and is important to keep from 

becoming congested. txkB/s is the amount of kilobytes being sent 

per second by the network adapter. rxkB/s is the amount of 

kilobytes received per second by the network adapter. Disk 

utilization is important when processing and generating data, it is 

the rate at which data will be able to written as well as read. The 

I/O speed of a device is generally completely dependent upon the 

speed of hard drive within the system. bwrtn/s is the amount of 

bits written to the hard drive by the operating system per second. 

bread/s is the amount of bit read from the hard drive by the 

operating system per second. Job completion time is largely self-

explanatory. It is the amount of time it will take for a particular 

operation being run to finish. This may differ largely based off of 

OS. This metric is measured in seconds for each job. [4] 

5. ANALYSIS 
The results provide interesting insight into operating system 

efficiency. Both CPU metrics showed a significant difference 

between operating systems while memory was shown to only 

have a significant difference for one of its metrics. The two 

memory metrics should coincide as they are pulling from similar 

data sources. The fact that they are different does not necessarily 

mean that there was an error collecting data. The data says for 

%memused there was not significant evidence that it was different 

between the two operating systems. Differences between metric 

usage can be seen in table 6 in the appendix. 

The three significant and six non-significant metrics can lead to a 

few conclusions: 1. Hadoop on Linux has an overall lower CPU 

usage than on Windows. 2. Hadoop on Linux has lower memory 

usage than on Windows. 3. Network, I/O, and Job Completion do 

not have a significant difference between the two operating 

systems. With lower memory and CPU usage a system can do 

more at the same time, this across a large cluster can lead to very 

large savings in both time for completion and energy usage.  

6. CONCLUSION 
The Linux operating system was more efficient than its Windows 

counterpart in regard to memory used, %idle and %system. There 

was not sufficient evidence to show greater efficiency for 

Network Utilization, I/O Usage, and Job completion time. Though 

only three out of nine metrics displayed greater efficiency, the 

difference small gains can make in a normal sized computing 

cluster can lead to large energy and monetary savings. Further 

study could be directed towards configuration of Hadoop in an 

operating system specific manner. 
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Appendix 
 

Table 2: Raw data from performance monitor 

 
 

Table 3: Formatted data from processing 

 
 

 

Table 4: Averaged data 
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Table 5: Statistical Analysis Results 

Metric t stat t-Critical one-tail p-value 

%idle 2.496919931 1.724718243 0.010686812 

%system 4.423229218 1.739606726 0.000186085 

%memused -0.987264239 1.703288446 0.166139206 

kbmemused 5.624648547 1.690924255 .0000001324 

bwrtn/s -1.474419366 1.70561792 0.076187639 

bread/s 1.720597957 1.739606726 0.051736128 

txkB/s 1.650168435 1.690924255 0.054058994 

rxkB/s 0.756649403 1.701130934 0.227789925 

Job Time -0.118222423 1.690924255 0.453293561 

 

 

 

15/03/29 16:18:02 INFO fs.TestDFSIO: ----- TestDFSIO ----- : write 

15/03/29 16:18:02 INFO fs.TestDFSIO:            Date & time: Sun Mar 29 16:18:02 CDT 2015 

15/03/29 16:18:02 INFO fs.TestDFSIO:        Number of files: 10 

15/03/29 16:18:02 INFO fs.TestDFSIO: Total MBytes processed: 1000.0 

15/03/29 16:18:02 INFO fs.TestDFSIO:      Throughput mb/sec: 10.665415257943067 

15/03/29 16:18:02 INFO fs.TestDFSIO: Average IO rate mb/sec: 10.66562557220459 

15/03/29 16:18:02 INFO fs.TestDFSIO:  IO rate std deviation: 0.047367220052642704 

15/03/29 16:18:02 INFO fs.TestDFSIO:     Test exec time sec: 96.921 

15/03/29 16:18:02 INFO fs.TestDFSIO: 

 

15/03/29 16:21:00 INFO fs.TestDFSIO: ----- TestDFSIO ----- : read 

15/03/29 16:21:00 INFO fs.TestDFSIO:            Date & time: Sun Mar 29 16:21:00 CDT 2015 

15/03/29 16:21:00 INFO fs.TestDFSIO:        Number of files: 10 

15/03/29 16:21:00 INFO fs.TestDFSIO: Total MBytes processed: 1000.0 

15/03/29 16:21:00 INFO fs.TestDFSIO:      Throughput mb/sec: 11.087580800745085 

15/03/29 16:21:00 INFO fs.TestDFSIO: Average IO rate mb/sec: 11.08777141571045 

15/03/29 16:21:00 INFO fs.TestDFSIO:  IO rate std deviation: 0.04630139928117125 

15/03/29 16:21:00 INFO fs.TestDFSIO:     Test exec time sec: 92.653 

15/03/29 16:21:00 INFO fs.TestDFSIO: 

 

Figure 2: Data from DFSIOtest output 
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Figure 3: Usage percent between the different metrics. 
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ABSTRACT 

Cygnus is a flash X-ray generator that is used by National 

Security Technologies in Las Vegas, Nevada to record images of 

small-scale nuclear tests.  The nuclear tests going on take a lot of 

preparation and unfortunately sometimes the x-ray shot produced 

is of poor quality, which is unknown for several hours. 

Meanwhile, as the x-ray produces a shot, machine diagnostics 

data is captured containing voltage and current, which can be used 

right away.  Thus, signal-processing techniques such as cubic 

splines and filters can be applied along with general statistical 

methods to find trends and correlations for the machine 

diagnostics and x-ray images. These results will save ample time 

on Cygnus X-ray experiments. 

Keywords 

Cygnus, X-ray, Sub-critical nuclear, Cubic spline, Filter, Signal 

processing. 

1. INTRODUCTION 
The National Security Technologies LLC (NST) is a leader in 

research in homeland security, nuclear and nonnuclear 

experiments, physics modeling, and radiological detection.  They 

are contracted by the Department of Energy and these areas of 

research are very important as they relate to the nation’s security. 

As apart of the Defense Experimentation and Stockpile 

Stewardship Directorate, the NST conducts time-consuming, 

expensive sub-critical nuclear experiments at the Nevada testing 

site just outside of Las Vegas.  During these experiments they will 

use, high-speed diagnostic instruments to measure radiography.  

This instrument is called the Cygnus Flash X-ray.  Cygnus is a 

flash X-ray generator that is used by the NST to record images of 

small-scale nuclear tests.  The X-ray is pulsed through a scene 

where a scintillator (a substance that exhibits luminescence when 

struck by a light of certain wavelength; that produces a spark or 

flash) collects the unabsorbed X-ray pulses and the data is read 

using an oscillator (a circuit that produces an alternating output 

current of a certain frequency determined by characteristics of the 

circuit components) [1]. These measurements are used for the 

machine diagnostics (such as current and voltage readings) which 

are helpful and produced immediately, but do not measure 

performance.  The machine performance is a separate process that 

takes almost an hour to complete, which is a problem because bad 

X-ray shots can be produced.  Bad shots are typically due to a 

component in the X-ray failing but can take quite a bit of work to 

figure out.   

 

The NST would like to save time by figuring out if a part is 

failing and prevent a bad shot from being produced. There has 

been no work done on this particular project so far. So, the goal of 

this project is to characterize the performance of the Cygnus 

machine using machine diagnostic data. To achieve the goal each 

diagnostic is to be characterized as a function of time (shot), and 

each shot is to be characterized as a function of diagnostic. 

 

The diagnostic data includes current and voltage at roughly 

around 28 different sensors along each of the Cygnus X-ray 

machines.  Each of the sensors has a digitizer (used to convert to 

digital form for use in a computer) that captures a reading around 

every 5 nanoseconds. Below is a plot of the data given from one 

sensor for voltage readings.  The data follows the trend of have a 

spike of energy pass through followed by a ringing that the sensor 

captures.  The ringing is due to the energy that moves through 

leaves a rebound that bounces in the machine and slowly dampens 

to return to the baseline. The vertical lines on the plot indicate 

what is considered the start and stop of the peak; this will be 

discussed later. 

 

Figure 1. Data given by Cygnus x-ray machine diagnostics. 

2. Hypothesis 
Machine diagnostics from the Cygnus x-ray will correlate to a 

measurable radiation dose produced by the x-ray shot. 

3. Methods 
This research project incorporates some software development, in 

R, in data analysis. Specific areas of research will include how the 

Cygnus X-ray machine works with components correlating to 

diagnostic data.   Figure 2 shows a screen shot of R Studio 

(software for R) running. R Studio is a beneficial integrated 

development environment because it provides everything you 

need to use in one window, as depicted in figure 2. 
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Another benefit to R is the availability of packages to help speed 

up the statistical programming process. 

 

 

Figure 2. R Studio integrated development environment window. 

 

3.1 Prepare Data For De-noising 
First, before we even begin applying de-noising methods, we 

first need to eliminate the data from where the data plots where 

the sensor reading is unusable.  One example of unusable data is 

shown in figure 3, which includes only picking up the baseline 

noise and not reading the actual burst of energy passing through 

the Cygnus. This could be due to the time of the sensor was not 

started and stopped at the correct time.  Figure 4 is when the 

sensor picks up the spike, but then the ringing never returns to 

baseline.  This could be due to remaining energy still rebounding 

in the x-ray.  Figure 5 is when the sensor shows more than one 

spike, which is not what should be shown.  

 

Figure 3. Unusable data, only baseline is picked up. 

 

 

Figure 4. Unusable data, ringing never returns to baseline. 

 

Figure 5. Unusable data, more than one spike. 

 

The data is then checked to see if the noise is background noise or 

if it is random.  To do this, we graphed the values of how far the 

data is away from where the average value. Figure 6 shows the 

distribution of noise. This graph shows that the distribution of the 

noise is slightly positive, and evenly distributed.  The digitizer of 

the sensor causes the positive average. The digitizer is constantly 

picking up energy so the ground zero is actually slightly positive. 

Thus, this means that the noise is background noise is not to be 

included in the data. 

 

Figure 6. Column graph showing the noise is approximately 

Gaussian (even distribution). 

 

Before the data can be de-noised, we must find where the spike 

starts and ends since that is the important part of the data we want 

to examine.  To do this, we find the beginning and ending of the 

peak by finding where it jumps above and returns to the baseline.   

 

3.2 Apply De-noising Filter and Cubic Splines  
Machine diagnostics must be cleaned since there is a lot of noise 

in the data. This is important to get a “clean” set of data, since it 

is hard to know right away if the data is deviating because of 

noise or not [2]. In de-nosing the data we used a few different 

methods, which include cubic splines, moving average filter, and 

a weighted-binomial filter.  
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The moving average and binomial filters analyze data by 

calculating a series of averages of different subsets of the full data 

set. The difference between the two filters is the weighted value 

distributed to the points being evaluated. These filters are crucial 

for removing the noise and these filters will be discussed in 

further detail in Adam Grupa’s (partner) paper. 

 

After one of the filters is applied to the noisy data, we applied a 

cubic spline.  Cubic splines apply polynomial curves the data; 

where the polynomials curves are connected at evenly distributed 

points among the data, called knots.  At each knot where both 

polynomial curves meet, both cubic polynomials on each side of 

the knot must have matching signs of their first three derivatives 

[3]. This means if one cubic polynomial has the signs 1: +, 2: -, 3: 

+, then the other cubic polynomial must have the signs 1: +, 2: -, 

3: +.  Having matching signs ensures that when one polynomial 

connects to the other they are continuous and smooth.   

 

Figure 7 shows a cubic spline applied to noisy data.  To apply the 

cubic splines we used smooth.spline(), which is a built-in function 

in R. The vertical lines on the plot indicate the start and end of the 

spike.  Identifying the spike is crucial when using cubic splines 

because if the spline is applied to the baseline and spike, the 

curves do not fit very well. But, when applied just to the spike, 

the curve came out to be very close.   The cubic spline are 

important because they reduce the mean square error and so we 

will be apply the splines after we apply the moving average or 

binomial filter.  

 

Figure 7. Cubic spline applied to noisy data excluding baseline, 

the smooth curve is blue. 

 

3.3 Analysis of Filter Choices 
To compare the 2 data de-noising methods, we used three metrics- 

full-width half-height, area under the curve, and rise time, all of 

which will be explained later.  To compare these un-filtered, 

moving average filter, and binomial filter, we made graphs 

showing the percent of total of what the metrics came out to be 

for all shots on one specific sensor.  From this comparison it was 

found that the filters concentrated the data more to the spike of 

the data. Also the binomial and moving average filter produce 

very curves. Thus, these results show the filters are doing what we 

need. The comparison of filter choices is discussed in greater 

detail in Adam Grupa’s (partner) paper. 

4. Metrics Collected for Analysis 
For pages other than the first page, start at the top of the page, and 

continue in double-column format.  The two columns on the last 

page should be as close to equal length as possible. 

Full-width half-height is important because it will show us the 

general shape of the peak, without including the extra ringing 

before returning back to baseline.  It calculates the area under the 

curve from the top of the spike, down to half the height of the 

peak. 

Area under the curve tells us how large the spike is and is found 

by using a trapezoidal sum function.   

Rise time is the amount of time it takes to reach the peak.   

Baseline is the value of which nothing is happening in the data 

being required, so this any data a part of the baseline is set to zero 

because we do not want that included in the data being evaluated.  

Standard deviation is included for the noise.   

Peak is indicating whether the spike was positive or negative, 

which is important for calculating other metrics. Some sensors 

recorded negative spikes and are still usable. 

Max and Min height is the maximum height and minimum 

height of the data. 

Range is the range of time values for start to end of the spike. 

 

5. Results 
To see if the machine diagnostics correlate to a shot radiation 

dose, we developed a model using linear regression (independent 

variables being used to linearly predict the dependent variables).  

The model uses area under the curve and full-width half-height, 

because those two metrics were found to have the lowest percent 

error.  The model resulted in reasonable shot radiation dose 

predictions with a few outliers.  This model will continue to be 

improved and the analysis is discussed in detail in Adam Grupa’s 

(partner) paper. 

6. Future Work 
Correlations will be tested against data but it will not be a 

complete model because we are given a limited data set. If we 

believe we have found a reasonable model we may also decide to 

use cross-validation to improve the model.  Solutions found by 

our research group will be given to the NST where they will 

continue researching the solutions in the future.  One thing to note 

is when analyzing make sure the data from one sensor can be 

compared to other sensors.  For example, at different sensors, the 

value of the voltage and current readings is scaled as a security 

precaution of NST.  Thus, when comparing data the data can only 

be compared for each specific sensor with the same scale. The 

NST should be able to eliminate the various scales and then 

compare across multiple sensors. 
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9. Appendix 
 

The source code includes not the complete program, but a 

generalized version to show the essential components. 

 

spike6: 
Purpose: Driver function of the program, which switches between 

using the data as unfiltered, moving average filtered, and 

binomially filtered.  It then applies the cubic spline and 

assigns the metrics using external functions.   

Input: list- a list of all shots containing a specified sensor name. 

dataset- the complete data set containing shot values 

corresponding to shot times. 

 

spike6=function(list,dataset) 

{ 

   for(h in 1:length(list)){ 

       data=dataset[dataset$Sensor.Name==list[h],] 

       value=data$Value 

       time=data$Time 

       for(aaa in 1:3){ 

           switch(aaa, 

                  value <- value, 

                  value <- avgFilter(value, 10), 

                  value <- binFilter(value, 6)) 

 

 #apply cubic spline to curve  

smooth=smooth.spline(time[start:end],value[start:end]) 

fit=smooth$y 

fittime=smooth$x 

start=0 

end=length(value) 

  

#calculate metrics 

fwhh=calcFwhh(fittime,fit) 

int=integrate(fittime,fit) 

risetime=fittime[which.max(fit)]-fittime[1] 

baseline = findBaseline(fit[1:100]) 

standarddev=sd(noise) 

max=max(fit)-mean(noise) 

min=min(fit)-mean(noise) 

peak=calcPeak(value,max,min) 

range=time[end]-time[start]  

    }     

}    

} 

 

integrate: 
Purpose: Calculates area under the curve of the function by using 

a trapezoidal sum.   

Input: shotTimes- time values for data in the shot. shotValues- 

values corresponding to shot times. 

Output: int- the floating point value of  area under the curve. 

 

integrate=function(shotTimes,shotValues) 

{ 

 install.packages("zoo") 

library("zoo") 

 id <- order(shotTimes) 

int <- sum(diff(shotTimes[id])* 

rollmean(shotValues[id],2)) 

 return(int) 

} 

 

calcFwhh: 
Purpose: Calculates the full-width half-height of the curve.  

Input: fittime- time values for data in the shot. fit- values 

corresponding to shot times. 

Output: int2- the floating point value of area under the curve of 

the peak of the curve. 

 

calcFwhh=function(fittime,fit){ 

midend=findEnd(fittime,fit) 

midstart=findStart(fittime,fit) 

 

fwhh=fittime[midend]-fittime[midstart] 

fwhhfit=fit[midstart:midend] 

fwhhfittime=fittime[midstart:midend] 

int2 = integrate(fwhhfittime,fwhhfit) 

return(int2)    

} 

 

calcPeak: 
Purpose: Calculates the sign of the peak.  

Input: value- value of the peak point. tempmax- the highest value 
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found on the curve. tempmin- the lowest value found on the 

curve. 

Output: Peak- the string indicating whether the curve is “Positive” 

or “Negative”. 

 

calcPeak(value, tempmax, tempmin) 

baseline=mean(value)+sd(value) 

baseline2=mean(value)-sd(value) 

if(baseline<tempmax | baseline2>tempmin){ 

Peak = “Negative” 

} 

else{ 

Peak="Positive" 

} 

return(Peak) 

} 

 

findNoise: 
Purpose: find the start and end of the noise.  

Input: shotValue- values of data points. 

Output: noise- number of data points ranging from the start of the 

noise to the end of the noise. 

 

findNoise = function(shotValues){ 

upperThreshold = mean(values) + sd(values) 

lowerThreshold = mean(values) - sd(values) 

noiseBegin = 1 

signalBegin = 1 

while((values[signalBegin]<upperThreshold)&& 

(values[signalBegin] >  lowerThreshold)){ 

signalBegin = signalBegin + 1 

} 

noiseEnd = signalBegin - 100 

if(noiseEnd > 300){ 

noise = values[noiseBegin:noiseEnd] 

return(noise) 

} 

else { 

return(NULL) 

} 

} 

 

findBaseline: 
Purpose: calculate the baseline of the curve. 

Input: shotValue- values of data points. 

Output: baseline- the average of the filtered data 

 

findBaseline = function(shotValues){ 

noise = findNoise(values) 

filt = avgFilter(noise, 10) 

baseline = mean(filt) 

return(baseline) 

} 

 

findStart: 
Purpose: calculate where the spike starts and jumps above the 

baseline. 

Input: fittime- time values of the shot. fit- values corresponding to 

time values. 

Output: midStart- time value where the spike starts. 

 

findStart(fittime,fit){ 

midstart=0 

max=max(fit) 

mid=max/2 

k=1 

while(midstart==0){ 

if(fit[k]>mid){ 

midstart=k 

for(l in 1:5){ 

if(is.na(fit[k+l])){ } 

else{ 

if(fit[k+l]<mid){ 

 midstart=0 

} 

} 

} 

} 

} 

return(midstart) 

} 

 

findEnd: 
Purpose: calculate where the spike ends and returns to the 

baseline. 

Input: fittime- time values of the shot. fit- values corresponding to 

time values. 

Output: midEnd- time value where the spike ends. 

 

findEnd(fittime,fit){ 

midend=0 

max=max(fit) 

mid=max/2 

k=1 

while(midend==0){ 

if(fit[k]>mid){ 

midend=k-1 

} 

k=k+1 

if(k==length(fit)){ 

midend=k 

} 

} 

} 
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ABSTRACT
Cygnus is a flash X-ray generator used by National Secu-
rity Technologies at the Nevada National Security Site to
record images of subcritical nuclear experiments in support
of the U.S. Stockpile Stewardship program. Experiments
performed with Cygnus are expensive and must be sched-
uled far in advance, so it is critical Cygnus performs correctly
during each experiment. However, the process used to de-
termine the usability of an experiment takes several hours.
During the course of an experiment, machine diagnostics are
collected from electrical sensors along Cygnus. These diag-
nostics are available immediately, so it would be useful if
experiment usability could be determined from them. We
analyze these electrical diagnostics using signal processing
techniques to determine characteristics that exist in the sig-
nals, and then use those characteristics to create a predictive
model that allows us to infer the usability of an experiment.

Keywords
Cygnus, flash X-ray radiography, signal processing, filters,
smoothing splines, linear regression

1. INTRODUCTION AND HISTORY
1.1 Supercritical Nuclear Testing
In 1945, the United States (US) government began testing
nuclear weapons, starting with Trinity test in New Mexico,
which arose from the Manhattan Project [1]. These super-
critical tests were mainly focused on figuring out the military
applications of the weapons, as well as experimenting with
new weapon designs. Until 1963, most of the nuclear tests
that were conducted were atmospheric or exoatmospheric
[1]. Even though precautions were taken to test weapons
in unpopulated areas, such as the Nevada Test Site, the
atmospheric nature of the tests often meant radioactive fall-
out would be dispersed far from the detonation zone of the
weapon. Coupled with unpredictable weather patterns, tests
would lead to unintended contamination of inhabited areas
or water and food supplies.

Figure 1: Upshot-Knothole Grable Test

A prime example of this was the Castle Bravo test in 1954,
where the US detonated a fusion hydrogen weapon in the
Marshall Islands. Researchers underestimated the yield of
the bomb and the amount of radioactive fallout it would
produce. In addition, the weather pattern changed, leading
to the spread of fallout over nearby populated islands. Even
though the islands were evacuated as soon as possible, many
of the inhabitants suffered from radiation burns and poison-
ing, resulting in an increase in radiation related illnesses,
such as cancer and birth defects.

The negative effects of unabated atmospheric testing were
cause for concern for many of the worlds countries, eventu-
ally resulting in the Partial Test Ban Treaty in 1963, which
the US signed. As part of the treaty, the US halted all atmo-
spheric tests and moved testing underground [1]. Instead of
open air detonations, holes would be drilled hundreds of me-
ters into the ground and nuclear weapons would be placed
in them. The resulting explosions excavated huge amounts
of earth, creating large subsidence craters up to a kilometer
in diameter.

1.2 Subcritical Nuclear Testing
Part of the impetus for continuing nuclear testing in the
US was the arms race between them and the Soviet Union
during the Cold War. With the end of the Cold War in
sight around 1991, aggression between the two blocs was
rapidly declining, so the Soviet Union declared a moratorium
on all future nuclear weapons testing. This led the US to
reexamine its own nuclear testing policy, resulting in the US’
nuclear testing moratorium of 1992, after which no nuclear
weapons have been produced or tested. In addition, the
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US signed (but did not ratify) the Comprehensive Test Ban
Treaty in 1996 [1], which ended nuclear testing for most
countries around the world. However, this created a problem
for the caretakers of the US aging nuclear stockpile. How
could they be sure the weapons will still perform as expected
if they cannot conduct supercritical tests?

To solve this problem, the US Department of Energy (DOE)
began the Stockpile Stewardship program, which employs
national laboratories overseen by the National Nuclear Se-
curity Administration (NNSA), such as Los Alamos National
Laboratory and Sandia National Laboratory, to test and
maintain the current stockpile of nuclear weapons without
conducting any supercritical tests [5]. Part of the solution
to this problem involved the use of computers for computa-
tional modeling. Computer simulations of nuclear tests are
used to verify the reliability of the stockpile. But this of
course creates another problem. How do researchers know
that the models are correct?

The answer to this question lies in breaking the use of the
model into separate stages and performing small-scale phys-
ical tests analogous to the simulation created by the model.
First, the model is used to create a small-scale subcritical
nuclear test simulation. Second, focused experimentation
with physical subcritical tests are conducted to verify the
model. If the physical experiments agree with the computa-
tional model, then the model is scaled up and used to create
simulations of full supercritical nuclear tests.

National Security Technologies (NSTec) is a company that
is contracted by the DOE and, as part of its contract, helps
perform the focused experiments used to verify the compu-
tational models produced through the Stockpile Stewardship
program [1]. These experiments involve performing subcrit-
ical nuclear tests and using flash X-ray radiography to help
analyze the results. X-rays are useful since not only can they
be used to capture images of subcritical explosions, they can
also reveal the internal structure of the explosion, which is
not available using regular photography.

1.3 Cygnus
The machine that generates the X-rays used for these ex-
periments at NSTec is called Cygnus (Figure 2), which is
actually two X-ray generators that run in parallel (Cygnus
1 and Cygnus 2), meaning there are two X-ray shots per
experiment, resulting in two images [5]. The quality and us-
ability of the produced images is correlated with the dose of
radiation produced by the X-rays for an experiment. This
dose is often called shot quality, and is recorded separately
for both machines. Cygnus must maintain a high degree of
accuracy in order to provide useful information for verifying
the computational models and must produce usable results
in 199 out of every 200 experiments. When an experiment
is unusable, the images that it produced are unclear and the
corresponding shot quality is low.

A problem faced by the researchers working with Cygnus
is that the process used to determine the shot quality can
take up to several hours to complete, meaning they must
wait after an experiment to determine if it has produced
usable information or not. As might be expected, it takes
a substantial amount of time and money to schedule and

Figure 2: Technicians working on Cygnus

perform an experiment on Cygnus, so it would be benefi-
cial if researchers could tell if an experiment was usable or
not immediately, without having to determine shot quality.
Luckily, Cygnus produces a series of machine diagnostics for
each experiment which are available immediately after the
experiment is conducted.

These machine diagnostics are discrete electrical signals pro-
duced by a battery of approximately 28 sensors (sensors are
sometimes added or taken away) that measure voltage or
current and are placed along Cygnus at various points until
the point where X-rays are produced. Sensors near the end
of Cygnus tend to be more important, since they are close
to the point of X-ray production. In addition, the sensors
are digitizers, meaning they have a finite resolution and are
only capable of producing certain values, so certain signals
may be quantized to values that do not represent the true
signal values.

We worked with NSTec to see if it was possible to predict
the shot quality of an experiment based upon these machine
diagnostics. We were given machine diagnostic data for 100
experiments from both Cygnus 1 and Cygnus 2 along with
the corresponding shot quality for the experiment. The data
was also separated into two time periods, with the first being
before Cygnus underwent significant maintenance, and the
second being after the maintenance was finished. Therefore,
the data can be divided into four distinct subsets indexed by
what machine was used and time period. Using techniques
from signal processing, we were able to obtain useful met-
rics from the diagnostics generated during the experiments.
These metrics were then applied to a linear regression model
which had moderate success at predicting shot quality.

In section 2, we give a brief overview of the characteristics
of the data we worked with. In section 3, we go over the
details of the methods we used to remove noise from the
data. Finally, in section 4, we present the predictive model
we created to predict shot quality and analyze the results of
the model.

2. DATA DESCRIPTION
Examples that are characteristic of the signals obtained from
the machine diagnostics are given in Figure 3. Note the gen-
eral trend of the signals is to begin with pure noise, rapidly
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increase or decrease in value, and then return to some base-
line. The noise is caused by fluctuations of energy in the
sensor circuit primarily due to thermal agitation or defects.
What this means is that even when the machine is not pro-
ducing X-rays, the sensors are still reading some electrical
values. Once Cygnus is activated, this noise is then com-
pounded on top of the actual signal which distorts it slightly.

In addition, since the sensors never stop recording electrical
noise and settle down, there is no true zero for the sensors.
Instead, we must determine what an appropriate baseline
is for each signal based on its noise distribution and use
this as the zero. We can see in the examples that the noise
hovers around a zero value before the spike in the signal,
where the spike is the first time the signal rapidly increases
or decreases and then returns to baseline. Some signals,
such as the second example in Figure 3, never returned to
a baseline value, which made them harder to use in our
analysis. In addition, not all of the spikes begin and end at
the same time, instead occurring as electricity moves along
Cygnus to eventually produce X-rays.

Since the signals are digital, they are made up of a discrete
number of points which represent the value of the signal
at a certain place in time. We have added lines connecting
each point to its adjacent neighbor to make the graphs more
visually pleasing, but this is not necessary. We want to be
able to refer to the value of any particular point in a signal,
so we define notation to do so. Given a signal y, then y[i]
refers to the value of the ith point in the signal. For example,
if y = (4, 6, 2, 8), then y[1] = 4 and y[3] = 2.

3. NOISE REMOVAL TECHNIQUES
Because the inherent noise in the signals was affecting the
signal values, statistics and metrics we wanted to calculate
from the signals would be changed, so we looked for ways
to remove the noise while keeping the signal intact. We
primarily used two methods to remove the noise; digital sig-
nal filters and smoothing splines. These would in turn help
us determine an appropriate baseline for each signal which
could then be used to calculate metrics on the signal.

3.1 Digital Signal Filters
Digital signal filters are essentially any process that removes
an unwanted feature from a signal. In general, the most
common filters are those that attempt to remove noise from a
signal, thereby revealing the true values of the signal. Other
common filters include bandpass filters, such as high-pass
and low-pass filters, which attenuate parts of a signal with
certain frequencies while letting other frequencies pass [4].
A direct application of this kind of filter would be a radio
tuner, which filters out all radio frequencies except the one
being tuned to.

In signal processing, filters take the form of functions de-
signed with a specific purpose in mind which are then ap-
plied to an input signal to produce an output signal [6]. To
apply the filter to a signal, the signal is represented as a
function and convoluted with the filter. For an analog sig-
nal f and an analog filter g, their continuous convolution is
defined as
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Figure 3: Example Signals

(f ∗ g)(t) =
∫ ∞

−∞
f(x)g(t− x)dx. (1)

Here, x is some dummy variable for use in the functions and
t usually represents time, but it does not have to. What
is essentially happening in the convolution operation is that
the function f , the input signal, is being weighted by the
function g(t − x), the filter, where g has been horizontally
shifted along the x-axis by some amount t. Increasing or
decreasing t ‘slides”g along the x-axis and emphasizes where
it overlaps with f due to f(x) and g(t−x) being multiplied.
Since our signals are discrete, however, we use the discrete
convolution, which is defined as

(f ∗ g)[n] =
∞∑

m=−∞

f [m]g[n−m] (2)

for some input signal f and filter g and where m and n
are integers [4]. In addition, our input signal and filters are
represented by a finite sequence of values, so we can imagine
padding the sequences with zeros in order to use them in the
infinite definition of the discrete convolution. However, this
is not necessary, since whenever the two sequences do not
overlap, they will multiply to zero anyway. Thus, we need
only evaluate the sum in the convolution from the lower
bound of g to its upper bound. This gives us the definition
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(f ∗ g)[n] =
B∑

m=A

f [m]g[n−m] (3)

where A and B are the locations of the first and last non-zero
values of g [4].

The filters we examined were a moving average (MA) filter
and a binomial filter.

3.1.1 Moving Average Filter
The MA filter is one of the simplest filters that can be im-
plemented. The general idea of a moving average filter is to
take in an input signal, x, and for each data point x[i] take
the average value of the data points of the signal in a small
band around that point [6]. The definition of a MA filter is

y[i] =
1

2M + 1

M∑
j=−M

x[i+ j] (4)

where x is the input signal, y is the output, or filtered, signal,
and 2M +1, the width, is the number of data points around
the ith data point that are being averaged, where M is the
number of data points to look ahead or behind. Notice we
can also define the MA filter as

y[i] =
1

2M + 1
x[i−M ] + · · ·+ 1

2M + 1
x[i]

+ · · ·+ 1

2M + 1
x[i+M ].

Here, it is apparent the filter is just assigning weights to the
points and taking their sum. This means we can also define
a MA filter by the weights it places on data points, listed as
( 1
2M+1

, . . . , 1
2M+1

) where the number of weights is 2M + 1.
This also means we generalize the MA filter to a weighted av-
erage filter, with weights ai listed as (a−M , . . . , ai, . . . , aM )
[6].

As an example, consider the signal represented by the se-
quence x = (0, 5, 1, 9, 2, 7). We would like to apply an MA
filter of width 3 to x. This means, for each data point i,

y[i] =
1

3

1∑
j=−1

x[i+ j]

=
1

3
(x[i− 1] + x[i] + [i+ 1])

=
1

3
x[i− 1] +

1

3
x[i] +

1

3
[i+ 1].

For example, the third data point in y is y[3] = 1
3
(5 + 1 +

9) = 5. The stem plots of x and the filtered signal y are
given in Figure 4. Notice the missing values near the edges.
This is always a problem when using filters on finite signals
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Figure 4: Moving Average Example

that attempt look ahead or behind the current data point.
Eventually, they will reach the end of the signal and will not
be able to compute a new value. Usually this is remedied
by padding the signal with extra data points with value 0
on both ends that are as wide as the filter being used.

In Figure 5 is an example of a MA filter being applied to
one of the signals in our dataset. Notice that the filter does
a good job of reducing the variance of the baseline noise
before and after the spike in the signal, however, it does not
accurately follow the curve of the spike, and even reduces
the peak value of the spike significantly. The reduction in
peak value occurs because the filter is picking up some of
the values in the baseline noise, which are near zero. We
would like to use a filter that helps to eliminate the variance
in the signal caused by noise, but that also does not affect
the true value of the signal too much. Because of this, we
examined binomial filters.

3.1.2 Binomial Filter
A binomial filter is fairly similar to a moving average filter, in
that, instead of weighting each data point evenly, it applies
more weight to data point closer to the input point, and
less weight to those point farther away. A binomial filter is
defined as

y[i] =

M∑
j=−M

x[i+ j]

2|j|+1
(5)
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Figure 5: Effects of Moving Average Filter on Signal

Thus, the weights for the binomial filter look like

(
1

2M
, . . . ,

1

22
,
1

21
,
1

22
, . . . ,

1

2M
).

The binomial filter is more useful than the normal MA filter
for two reasons. First, it weighs points more heavily that are
closer to the point being calculated. This means that the fil-
tered peak value of a signal will not be as affected by data
points that are drastically different in value but far away.
Second, the weights in the binomial filter approximately fol-
low the probability density of a Gaussian distribution. The
distribution of the noise in our signals is Gaussian, so the
binomial filter will do a good job of removing that noise.
Figure 6 shows an example of how the binomial filter affects
our signals, using the same signal as in Figure 5. Notice that
the variance of the noise is reduced significantly, but the fil-
tered signal still closely follows the values of the original
signal.

3.2 Cubic Splines
Cubic splines apply polynomial curves to continuous subsets
of the data. The polynomials curves are connected at evenly
distributed points among the data, called knots. At each
knot, the two cubic polynomials on each side of the knot
must have matching signs of their first three derivatives [3].
This means if one cubic polynomial has the signs 1: +, 2: -,
3: +, then the other cubic polynomial must have the signs
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Figure 6: Effects of Binomial Filter on Signal

1: +, 2: -, 3: +. The reason for this is to ensure that the
entire fit is continuous and smooth.

Figure 7 shows a cubic spline applied to noisy data. The
vertical lines on the plot indicate the calculated start and
end of the spike. It is crucial to find these when using cubic
splines. When the spline is applied to the baseline and spike,
the curves do not fit very well. But, when applied just to the
spike, the curve came out to be very close. Cubic splines are
useful because they minimize the mean square error while
retaining the original characteristics of the curve.

4. MODEL AND ANALYSIS
Using the metrics that we calculated on the signals, we pro-
duced a simple linear regression model to try and predict the
shot quality of the experiments [3]. The data we used to fit
our model came from the subset of experiments for the first
Cygnus machine in the earlier time period. For the features
of our model, we decided to use two important sensors near
the end of the Cygnus machine.

We chose these two because these sensors are closer to where
the X-rays are being produced and we believe this means the
signals captured by those sensors will have higher correlation
with the shot quality. From those two sensors, we used the
full-width half-height (FWHH) and the area under the curve
(AOC) values calculated on those signals as the features of
the model. In this case, FWHH is the width or range of
the first spike of the signal, where the value of the spike is
greater than half the maximum value for the entire signal.
AOC is simply the area under the spike using the calculated
baseline. We also include an interaction term between the
FWHH and AOC, since part of the calculations for FWHH
and AOC deal with deciding where the spike of a signal
begins and ends.

The full model looks like

yi = β0 + β1FWHH1i + β2AOC1i

+ β3(FWHH1i ×AOC1i)

+ β4FWHH2i + β5AOCi2

+ β6(FWHH2i ×AOC2i),

(6)
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Figure 7: Cubic Spline Fitted to Spike

where yi is the predicted shot quality of the ith experiment,
the βn are the coefficients for the features, a subscript of 1
indicates a metrics from the first sensor, and a subscript of
2 indicates a metric from the second sensor.

We attempted to fit this model using metrics calculated from
both unfiltered signals and signals filtered with a binomial
filter to see if the filtering offered any appreciable difference
in the fit of the model. Surprisingly, when we applied the
model to the unfiltered metrics, we observed that the model
performed fairly well.

4.1 Unfiltered Model
All of the p-values associated with the model feature coeffi-
cients were below 0.05, suggesting that the coefficients are all
close to their true value, assuming the model is correct [3].
Notable features were AOC1 and FWHH1 ×AOC1, whose
associated coefficients both had p-values below 1.0 × 10−7.
The multiple R-squared statistic calculated for the model
was approximately 0.9, indicating the model was able to pre-
dict shot quality fairly well [3]. In addition, the p-value of the
F-statistic associated with the model was below 5.0× 10−9.

Looking at the residual plot for the model in Figure 8, we can
see that there is no discernible pattern occurring in the resid-
uals, indicating that a linear relationship probably models
the true relationship between sensor values and shot quality
well.

4.2 Binomial Filtered Model
We next attempted to fit the model using metrics that had
been calculated from signal that were filtered with a bi-
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Figure 8: Residual Plot for Unfiltered Model

nomial filter. All of the p-values associated with the fea-
ture coefficients were still below 0.05, however, most of the
p-values increased slightly, meaning there is less certainty
that the calculated values are closer to the true values for
the coefficients [3]. In particular, the p-values for AOC1 and
FWHH1 × AOC1 were now below 1.0 × 10−8, an increase
by an order of magnitude. Additionally, the p-value associ-
ated with the F-statistic decreased slightly and was below
3.0 × 10−9. Finally, the multiple R-squared value also in-
creased slightly, and was approximately 0.9049, indicating
that the model based on the filtered metrics was slightly
better at predicting shot quality [3].

In Figure 9, we have the residual plot associated with the
binomial filtered model. It is fairly similar to the residual
plot for the unfiltered model, with the main difference being
that most of the residuals have moved closer to 0, echoing
the increased multiple R-squared value.

4.3 Analysis
The failure of binomial filtering to create a significantly su-
perior model to the unfiltered model suggests a few things.
First, is that the metrics we chose and the way we calcu-
lated them turned out to be robust to noise, meaning that
filtering the signals would have little effect on the calcula-
tions of the metrics anyway. Second, is that the noise may
not be having as strong of an effect on the signal as we sup-
posed, so the filtering isn’t actually removing a deleterious
feature that is obscuring the true signal. Third, is that we
have failed to verify some assumptions with regards to the
model we have produced and so we are observing a spurious
correlation between this signals and the shot quality.

5. CONCLUSION
We attempted to produce a model based on Cygnus’ elec-
trical machine diagnostics that can predict the shot quality
of an experiment performed by Cygnus. After smoothing
out the signals of the machine diagnostics using digital sig-
nal filters and smoothing splines, we calculated metrics from
the signals with which to create a simple linear regression
model. Surprisingly, the model we created was able to pre-
dict the shot quality of an experiment fairly well, even when
fit using metrics from unfiltered signals. This shows that
there is at least some correlation between the machine di-
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Figure 9: Residual Plot for Binomial Filtered Model

agnostics collected from Cygnus during an experiment, the
experiment’s shot quality and, by extension, the quality of
the image captured during the experiment.

6. FUTURE WORK
There is still much work to be done regarding Cygnus and
its machine diagnostics. We will further examine our model
to see if it holds up under scrutiny. Notice that in Figure 8,
there exist some points that seem like outliers, due to high
leverage or high residual value [3]. We will see if the model
remains intact after removing outliers that might cause bias
in the fit of the linear regression. We will also apply the
model we have created to the other remaining data subsets
to see if it has the same degree of predictive ability. Finally,
we will also try modifying the model by adding or removing
other possible features or metrics to see how they affect the
fit of the regression line.
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ABSTRACT 

The AR.Drone 2.0 is a remote-controlled quadcopter that is 

operated by computer instruction via Wireless Ad Hoc Network. 

There are existing API’s to reduce the complexity of 

communications between the AR.Drone 2.0 and the computer. 

Developers have achieved impressive autonomous flight software 

using existing AR.Drone SDK’s and OpenCV. However, 

implementing this software requires experience in computer 

graphics and computer vision, as well as the configuration of 

multiple independent libraries. This can be a difficult process for 

someone unfamiliar with the chosen toolsets. The wARriorDrone 

API provides the core functionality to access the pixel data of the 

AR Drone’s video stream, and provides an interface for mapping 

specified colors to common drone flight commands. 

 

1. INTRODUCTION 

The AR.Drone 2.0 is a remote-controlled quadcopter that is 

operated by computer instruction via Wireless Ad Hoc Network. 

The drone comes equipped with two video recording cameras that 

can be read and processed by an application server. Because of the 

ability to control the drone over a wireless network, it has a great 

sum of applications, surveillance, natural disaster monitoring and 

relief, even package delivery with more advanced drone hardware. 

[1] Programming the AR.Drone provides learning opportunities in 

a variety of new programming languages and technologies, 

WebGL, Computer Vision (OpenCV), UDP Networking, 

Accelerometers, Gyroscopes, and experience with reverse 

engineering the drones base SDK. [2] Its very important to 

understand how drones function and are programed, they are 

already a huge part of military defense systems around the world, 

and are slowly becoming more widespread in private industry as 

first of their kind regulations are being defined by the Federal 

Aviation Administration.  

There are several SDK’s/API’s that are available for a variety of 

programing languages, these provide an interface to send and 

receive data to and from the AR Drone 2.0. The API’s that support 

autonomous flight and image processing, almost all use OpenCV. 

OpenCV or Open Source Computer Vision, is a very popular open 

source library that supports real time computer vision applications. 

These algorithms can be used to detect and recognize faces, identify 

objects, classify human actions in videos, track camera movements, 

track moving objects, and more [5-7]. Two of the more interesting 

uses of OpenCV I came across were node-copterface and ardrone-

panorama. Node-copterface uses OpenCV to detect faces and 

attempt to keep the detected face in the center of drones view. 

Panorama allows for the creation of 360 degree panoramic photos 

using OpenCV photo stitching libraries.  Both showcase the power 

of processing the AR Drone video stream with OpenCV. But, 

between installing and configuring the API and independent 

OpenCV library you are looking at a lengthy set up process even 

for someone with system administration and computer graphics 

experience. [2-3, 5] 

 

The DronePilot.NET SDK supports building AR Drone 

applications using C# and Visual Basic, the API provides a great 

coverage of all the available commands available to the Drone, and 

supports advanced image processing through OpenCV.  It was 

created in Japan by researchers at Niigata University in an effort to 

simplify the process of creating a GUI and sending commands to 

the AR Drone, as compared to using the C/C++ SDK released by 

the AR Drone manufacturer Parrot.  It successfully achieved this, 

but, is dependent on having OpenCV installed and set up to do any 

image processing. One big downfall of the DronePilot.NET SDK 

is that the amount of available open source code for programing the 

drone with C#/Visual Basic does not even compare to the number 

of open source packages available for Node.js [2, 5].  

Figure 1.  AR.Drone 2.0 Power Edition 

 

Because the proposed API is built using Node.js, installation is 

quick and a verbose set of open-source libraries can be easily 

installed and managed via NPM (Node Package Manager). Making 

the API great for quickly getting a feel for programming the drone 

and basic image processing without having to configure complex 

computer vision libraries. I have measured the performance of my 

proposed API for processing the AR Drone’s video stream and have 

verified its satisfactory performance, to detect and follow colored 

objects. 
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One of the biggest reasons for node’s popularity with AR Drone 

developers is the NodeCopter community. NodeCopter is a full day 

event where fifteen to sixty developers team up in groups of three, 

and are given one Parrot AR.Drone 2.0 and spends the day 

programming and having fun with it. At the end of the day each 

team presents a demo of their work to the other attendees. 

NodeCopter was founded by Felix Geisendorfer and the first event 

was held in Berlin, Germany on October 5th, 2012. It gained 

support quickly, and twenty-six more NodeCopter events have 

occurred across Europe and the United States since. Felix is also 

the author of node-ar-drone a Client API for interacting with the 

drone, which was the foundation for coding at NodeCopter events. 

The node-ar-drone library is available on GitHub and provides a 

great API for programing the drone at both high and low levels. 

However, unlike my proposed API it does not have any tools to 

simplify image processing, and the few plugins available require 

OpenCV set up in your development environment [3-4]. 

Felix Geisendorfer founder of NodeCopter, giving the 

wARriorDrone API a shout out on twitter 

  

2. HYPOTHESIS 

An AR Drone 2.0 quadcopter can be programmed to recognize and 

autonomously follow a colored object in a controlled environment. 

 

3. METHODS 

I expressed my interest and submitted a proposal to the Computer 

Science Department requesting funding to purchase an AR.Drone 

2.0. After successfully gaining the Computer Science Department’s 

support an AR Drone 2.0 Power Edition was ordered online through 

the WSU CS Department, which came with 2 HD Batteries, 4 sets 

of propellers, as well as tools for any needed repairs. At the end of 

the semester I will be returning the drone to the Computer Science 

department making it available for future student projects. 

3.1 Specifications 

Dependencies: 

   Node.js: v0.12.0 

 node-ar-drone: v0.3.3 

    node-dronestream: v1.1.1 

 Angular.js: v1.3.15 

Drone Specs: 

Model: AR.Drone 2.0 Power Edition 

Network: Wi-Fi (802.11) 

Processor: 1 Ghz CPU 

Memory: 125MB 

OS: Linux (BusyBox) 

Cameras: 720p front, 480p bottom 

 

Machine Specs: 

OS: Windows 7 Enterprise 

Processor: Intel(R) Core i7-4820k CPU @ 3.7GHz 

RAM: 8 GB 

System: 64 bit 

 IDE: JetBrains: WebStorm (JavaScript IDE) 

AR.Drone Features Diagram [10] 

 

3.2 Software Design and Implementation 

The wARriorDrone API extends two open source node libraries, 

node-ar-drone, and node-dronestream [4].The node-ar-drone 

library developed by Felix Geisendorfer, provides a client API for 

sending movement commands and reading the drone video stream 

and navigation data.  The node-dronestream handles rendering the 

drone’s video stream in a WebGL canvas using broadway.js.  Great 

open source libraries like these are the primary reason I chose Node 

over languages like Java or C#.  On the other hand Node.js is not 

built for CPU-intensive operations; in fact, using it for heavy 

computation will annul nearly all of its advantages. However, Node 

excels in building fast, scalable applications, and has the capability 

to handle a large number of simultaneous connections with high 

throughput, which equates to high scalability. As a result Node is 

very efficient at maintaining and reading video and data streams, 

making it great for reading the AR.Drone’s two video streams and 

the navigation data all asynchronously.  

 

To avoid configuring any external libraries such as OpenCV all 

image processing and autonomous flight algorithms are written in 
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JavaScript within the API. This makes the API and example 

application ready to use as soon as it is installed with no need for 

additional setup.  Making the application great for someone who 

has little experience in computer graphics but also is a great 

platform to start from to gain experience with the core concepts of 

computer vision and autonomous flight in the simplest and quickest 

way possible.  In addition to my personal preference and 

familiarity, I use Angular.js primarily to take advantage of the built 

in two way data-binding for keeping the various control variables 

in the front and backend in sync without any extra code.  

 

3.2.1 Demo Application 

 I have developed a web application using my proposed API and 

Angular.js to demonstrate its proficiency as well as visualize the 

data being processed by the server to aid in understanding the 

underlying algorithms. The application allows the user to track a 

colored object by clicking the video stream to define the desired 

color range. An overview of the applications functionality can be 

seen below in Figure 2. 

 

Figure 2. wARriorDrone Web App 

 

In the center of the application interface, the AR.Drone’s video 

stream is rendered in the user’s browser of choice using 

broadway.js and a WebGL canvas. The HTML5 canvas below 

renders any pixels that match the detected color range and estimates 

the center of the object by calculating the average x/y coordinate of 

all detected pixels.  The visualization provided by the bottom 

canvas was crucial to debugging the color detection algorithms 

early on, and provides instant feedback when adjusting color 

detection settings ensuring you are detecting the most possible 

pixels on the object without detecting undesired pixels outside the 

object. 

 

The application provides the user with controls to optimize color 

detection and several options to modify how the drone will interact 

with the detected color.  Initially I planned to allow the user to 

choose between a few pre-defined colors (red, blue, yellow, etc.) 

that the drone could detect.  This approach had two major flaws. 

First it is difficult to find an RGB color range that will consistently 

detect the object without picking up other unwanted pixels.  Second 

the color of an object will change midflight from something as 

simple as a shadow or change in lightning, causing the drone to lose 

the object regularly.  To solve this I have implemented three color 

detection settings (Figure 3) that may be adjusted at any time while 

using the application.  The Color Sensitivity slider allows the user 

to adjust how closely a pixels color must match the detected color.  

This is extremely useful allowing you to hone down to very specific 

color range, or be extend the color range to detect more of the object 

when no similar colors are in the environment.  The Accuracy slider 

is used to determine how many pixels from the drone’s stream are 

processed (1 = every pixel, 2 = every other pixel, etc.).  Allowing a 

user to increase accuracy when using a computer with enough 

processing power, or reduce accuracy to free up CPU on a slower 

machine.  The Speed slider Controls how often in milliseconds the 

program computes the detected pixels and sends commands to the 

drone.  Setting the speed slider to the fastest speed twenty-five 

milliseconds will cause the drone to react faster to movement of the 

object, but even more importantly adjusts the color range more 

often decreasing the chance of losing the detected object.  A slow 

speed like five-hundred (two times per second) will not be as 

effective when tracking the drone, but allows for each tick of the 

dynamic color detection algorithm can be seen frame by frame, an 

extremely useful feature when debugging or improving the color 

detection algorithms.  
 

My goal was to enable any AR.Drone owner, to be able to 

experiment with computer vision and autonomous flight quickly 

and without a lengthy and complex configuration process. The 

application meets both these goals, assuming Node is already 

configured it can be installed with NPM (Node Package Manager) 

that comes bundled with Node.js on all major OS (Windows, Linux, 

IOS) with one command. 

 

Figure 3. Color Detection Settings 

 

3.2.2 Color Detection 

As I have mentioned previously, choosing to manually code the 

color detection algorithms in JavaScript eliminates the dependency 

on OpenCV or another computer vision library.  Details on the 

functionality of the color detection algorithm can be seen in Figure 

2.  As the drone is tracking an object around a room the lighting on 

the object and available to the drone change frequently, this also 

changes the shade of the object being detected which can cause total 

loss or inconsistent detection of the object.  To solve this, the 

algorithm automatically adjusts the color range the drone is 

detecting by moving the RGB values slightly towards the average 
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of all detected pixels each frame. This provides a level of 

consistency and flexibility that far surpasses attempting to track a 

set color range that does not adjust to a changing environment. 

  

Figure 4. Dynamic Color Detection Algorithm 

Figure 5. Autonomous Flight Algorithms 

 

The section of code that adjusts the color range is included in the 

Appendix Figure A. The averagePixel is a temporary object that at 

this point is populated with the average of each of the r, b and g 

values of all currently detected pixels (count = # of detected pixels).  

The RGB values of the computed averagePixel and the current 

color being tracked (pickedColor) are compared one at a time, and 

the RGB range is modified to be slightly closer to the average color 

that was computed.  By only incrementing or decrementing the 

RGB values by 1 each iteration the adjustment is smooth and will 

not overreact to quick temporary changes in the detected color.  

This combined with tweaking the Color Sensitivity settings seen in 

Figure $, allows for optimized detection no matter the environment.  

The object rendering on the white canvas gives you immediate 

feedback as you adjust the sliders, allowing you to easily see how 

effectively the object’s color is being detected.   

3.2.3 Autonomous Flight 

To achieve autonomous flight I used only pixel data from the video 

stream and navigation data gathered by the drone’s sensors.  Basic 

drone movement commands take in a speed argument between one 

and negative one. The speed arguments are based on the distance 

as a percentage between the detected objects center, and the center 

of the drone’s field of view (Figure 5: xVal, yVal). I divide by 

/6/determine how fast the drone should move in the required 

direction determining the speed and direction the drone will move. 

The demo application supports three tracking modes. When the 

default mode, follow-front is active, the drone will track the 

detected object using the front camera, while maintaining a 

consistent distance and keeping the object in the center of its view.  

 

 

Figure 6.  Example AR.Drone 2.0 Navigation Data [4] 

 

 

Figure 7. Battery Meter and Flight Commands 

 

The second mode follow-bottom, is activated by pressing the 

“switch camera” button shown in Figure 7. This mode utilizes the 

drones down facing 480p camera to track an object from above. 

The drone will hover at an adjustable altitude (Figure 3) above the 

detected object. An on board Altimeter that measures atmospheric 

pressure is used to determine the drone’s current altitude. The 

greater the altitude the lower the pressure [2]. This can be retrieved 

through the drone’s real-time navigation data, as well as the fields 

shown in Figure 6.  The battery meter in Figure 7 created using an 
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HTML5 progress bar that is updated automatically by parsing the 

navigation data (Figure 6: batteryPercentage).  And third, “orbit” 

mode, commands the drone to circle the detected object while 

keeping the camera centered on the object.  Movement along the 

x/y axis (up, down, left, and right) is based on the calculated center 

of the object, calculated by taking the average location of all 

detected pixels.   

 

Figure 8. Distance Metrics 

 

Keeping a set distance from the detected object is not quite as 

straight forward.  I use two metrics to determine distance, first I get 

a general size of the object based total pixels detected, more pixels 

than previously detected indicates the object is closer, the inverse 

is true for less.  Unfortunately the total pixels detected alone is not 

consistent enough to maintain distance, so I introduce a second 

metric, a rough width, or “radius” of the detected object.  Illustrated 

by Figure 8, I obtain a rough estimate of the radius, starting at the 

detected center of the object I read the row of pixels to the right one 

at a time.  The distance between the location of the last pixel to 

match the detected color and the center of the object is the radius. 

While the drone is tracking an object the originally detected radius 

is compared to the current radius (Figure 5: radidiff) based on the 

live video, moving forward or backwards to remain at the correct 

distance.  

Figure 9. Autonomous Flight Trial 

 

4. TESTING PHASES 

4.1 Color Detection Algorithm Optimization 

To avoid damage to the AR Drone and my early testing 

environment, most of the color detection development and testing 

was completed without the need to fly the drone.  For my own 

convenience while testing different color sensitivities and how 

often I process the current video buffer, (every 25 ms-500ms), I 

added the slider controls that became a major feature of the finished 

application. For test objects to detect I used mostly discs I use when 

playing disc golf, for their variety of colors and consistent size 

(Figure 2). 

4.2 wARriorDrone Trials 

Four autonomous flight sessions were conducted.  The first two 

tests focused on tracking with the front camera (Figure 9), and 

switching between colors while flying using the three colored 

squares in Figure 10. At first the drone over compensated the 

distance required to center the object. To correct this I lowered the 

speed of the movement commands sent to the drone. Another 

common issue I experienced was inverting or forgetting to invert 

the movement commands which would send the drone the opposite 

direction of the detected object. The last two rounds tested 

improvements to the front tracking algorithm as well as showcased 

the bottom tracking functionality and orbit mode for the first time. 

I use Camestia Studio to capture the Application view during tests, 

and Google Chromes built in profiling tools to evaluate how much 

CPU I had to spare for additional processing or features [10]. 

 

Figure 10. Racquetball Test Environment 

 

Tests were conducted in a standard racquetball court that measures 

40 feet long, 20 feet wide, and 20 feet high with red lines defining 

the service and serve reception areas. This provides multiple 

advantages, first it is an open but enclosed space, to have room to 

fly but if the program has errors the drone can’t damage itself or 

others. Second it provides a consistent white background in all 

directions, perfect for detecting colored objects against. Last the 

striped lines in the service area give the drone a good pattern on the 

ground to stabilize against. 

5. CONCLUSION 

I have successfully implemented a demo application using the 

wARriorDrone API, which supports autonomous flight through 

color tracking. To aid potential users I have also created a website 

with documentation on how to get started working with the drone, 

and videos of the three main trials. The application is open source 

and is published to NPM, making installation and configuration, 

faster and easier than any existing AR.Drone API. As continued 

research I would like to implement more detection modes as well 

as implement PID controllers, a common data structure used in 

autonomous flight systems to improve tracking accuracy and 

consistency. Programming the AR.Drone 2.0 is a great way to start 

experimenting with cutting edge Computer Science and 

Engineering. On top of that, the hands on nature of the 
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programming makes it a great way to get younger generations 

excited about programming and robotics. As new drone 

technologies continue to improve drones will quickly integrate 

themselves into our daily lives. Making drone and computer vision 

research crucial to taking advantage of new opportunities they 

provide, and equally if not more importantly understand their flaws, 

for situations when they will inevitably be used for the wrong 

reasons. My hope is that Winona State Computer Science students 

will continue to develop applications using the drone and continue 

to update the website with their new projects.   
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8. APPENDIX 
 

Source Code: https://github.com/JBrookshaw/node-

wARriorDrone 

Videos/Documentation: https://warrior-drone-

web.herokuapp.com/#!/ 

WebStorm: https://www.jetbrains.com/webstorm/ 
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