

The 15th Winona Computer Science

Undergraduate Research Symposium

April 28, 2015

11:00am to 1:00pm

Watkins 105

Winona State University
Winona, MN

Sponsored by the Department of Computer Science at

Winona State University

ii

Table of Contents

 Title Author Page

Light Sensor Performance Comparisons Jason Carpenter 1
 Winona State University

MapReduce Efficiency between Operating Robert Rutscher 8
Systems Winona State University

Cygnus Flash X-Ray Performance Alex Hanneman 16
 Winona State University

Analysis and Inference of Cygnus Shot Adam Grupa 21
Quality Using Machine Diagnostics Winona State University

wARriorDrone API Development: AR.Drone 2.0 Jeff Brookshaw 28
Node.js API Supporting Color Detection Winona State University

Energy Use Implications of Responsive Design Sean Kelley (Oral)
Websites on Mobile Devices Winona State University

Light Sensor Performance Comparisons
Jason Carpenter

Computer Science Department
Winona State University

Winona, MN 55987

JCarpenter11@winona.edu

ABSTRACT

This paper gives a consumer focused review of several commercial

grade light sensors: A Photo resistor, UV/IR/Visible

Light(SI1145), High Dynamic Range LUX(TSL2591), Digital

Luminosity LUX(TSL2561), and an Analog

Light(GA1A1S202WP). Many consumer reviews for sensors exist

and continue to grow, as the market expands in the area of home

automation. This paper examined a subset of sensors for a specific

micro controller and assess their qualities with an approximation of

what an average consumer may use them for, in an attempt to create

a more consumer friendly quality assessment. The assessment is

based on many traits present in the sensors, one such quality is light

sensitivity. The assessment points to the Analog sensor as

preferable for basic level applications.

Keywords

Light Sensing, Light sensors, Light spectrum.

1. INTRODUCTION
In the modern digital age, home-automation with small micro-

computers is a common sight. Many of these devices operate using

basic sensors, for example, light sensors. A light sensor is a device

that responds to changes in light. Most detect light changes through

changes in voltage coming through the circuit. Light hits the sensor,

and the photosensitive materials change the resistance offered by

the sensor. This change in resistance can be coded to represent data.

Light sensors come in a variety of types, ranging from UV capable,

analog based, digital based, simple, and complex. Light Sensors are

present in light fixtures, burglar alarms, garage doors, solar panels,

and various other devices and applications [8-12]. Advance

applications of light sensors such as, fiber optic cables, optical

computers, wireless direct-line-of-sight devices, and bar code

scanners have been around for several decades. The versatility of

light makes sensors that use it popular with home-automation

individuals. As a result, many light sensors have come into the

market and finding the best one for a job may be difficult. One such

light sensor is the photo resistor. It is a device that costs less than

$1.00 that decreases electrical resistance when sensing light [1]. It

is simple in all respects: cost, complexity, and light spectrum

capability. Some sites like AdaFruit.com, provide detailed

specifications for each sensor. These traits are esoteric and may not

well indicate the quality of the sensor in an approachable way. Price

may not always indicate quality, and you may make an unnecessary

expenditure. Taking more variables into account, like

implementation complexity, library dependency, and traits not

stated in the manufacturer’s specs can give consumers a more

complete assessment of the light sensor from a consumer

prospective. My research gives manufacturers better insight into

what consumers need or want. It is common for researchers to

tackle this type of project, but uncommon to attempt to address it

from a beginner perspective [7-8].

2. Hypothesis
The Photo resistor, based on traits compared among a subset of

selected sensors, is the highest performing light sensor, given the

quality criteria.

Using an assessment based on cost, complexity, light capabilities,

and other traits, among the subset of selected sensors, we

determined the quality criteria of the sensor. The Photo resistor was

the control due to its simplicity.

3. Methodology

3.1 Sensors
We obtained a set of light sensors from the distributor

Adafruit.com: The Photo resistor, UV/IR/Visible Light(SI1145),

High Dynamic Range LUX(TSL2591), Digital Luminosity

LUX(TSL2561), and Analog Light(GA1A1S202WP).

3.2 Sensor Specifications
The sensor manufacturers provide data on each sensor.

Temperature range, dynamic range, voltage range, are a few

examples. Information used for assessment from manufacturers is

recorded in Table 1. This was recorded and factored into the later

quality criteria calculation. Some information present in the

manufacturer specs is not present because of the beginner

perspective limitation. Information sampled with our testing

methodology is present in the documentation for each sensor

already. This test retested these in an effort to standardize and

simplify the data for the lower level perspective.

3.3 Sensor Testing
For the quality assessment, there are two important variables for a

standard light sensing application: light turnover and light

sensitivity range. Both of these specs are provided by the

manufacturers, but retested to simplify and standardize the

environment variables. To approximate a common application of a

light sensor, we build a simple light mount and sensor holder

(Figure 2), the process of constructing this mount, and programing

the sensor processor, gives us the same steps a common user may

follow. This helps build a consumer perspective: purchase, receive,

prepare sensor, implement hardware, program for hardware, and

finally run.

We constructed our light mount’s light sensor processor

using an Arduino Uno microcontroller, purchased from

AdaFruit.com (Figure 1). We used a White LED inside a (Samsung

Galaxy S4 Assistive light) for our light source. We used an

algorithm written specifically for this project for assessing light

values. The algorithm attempted to correct for ambient light values

by first taking ten samples of ambient light and then using the

average of those lights to adjust the incoming sensor value before

actual sensing begins. We used the Arduino to sample a light value

from the sensor once every .0001 seconds. The light range

1

sensitivity was measured by how high and low the sensor value

changes with respect to a light. Light turnover was measured by the

speed of the sensor adjusting to a changed light value. Simply, start

with a light off, turn it on, and measure the time it takes to reach the

high. All the sensors were implemented using their defaults or

minimum required setup process.

Figure 1. Arduino Microcontroller, Arduino Uno.

Starting with the photo resistor as the control (For it is the

simplest sensor), we test each sensor against it. The apparatus

indicated in figure 2 acted as a stand in for a generic sensor

application a common person may use. Measuring light intensity

readings and responding to rapid changes in intensity can indicates

the capability of the sensor. This process was repeated a number of

times for each sensor.

Process

1. Install Light Sensor into apparatus

2. Collect light range

3. Calculate light turnover

4. Repeat for each Sensor

Figure 2: Test Apparatus Diagram.

3.4 Quality Criteria
We took the results from our test and the values from the constants

together and created the assessment of a sensor’s quality. The

quality factor assumed that spectrum range, cheapness, sensitivity

range, light turnover, command read accuracy, and simplicity of

sensor implementation was regarded as ideal. The final number

calculated was an aggregate of all these traits, rated, and summed

on a ranking 0-5, 0 is not ideal, 5 is ideal. The following are some

definitions of what is ideal in a sensor from our set quality

assessment. Explanations for each rating was given in the analysis,

much of this was relative to the sensors.

3.5 Quality Criteria Definitions
Spectrum Range: Quality was be measured in how wide the

sensible spectrum of light is. Price: The lower the price the more

ideal. Simplicity of Implementation: How difficult is setting up the

sensor, wiring it up, fitting it to the devices, and implementing code

for it. Less steps of implementation and a smaller easier to

manipulate are ideal. This is the least empirical trait, the ratings for

this trait was accompanied by an explanation. The basic assessment

looked at number of steps to go from receiving the device to

receiving values from it. Sensitivity Range: How much the sensor

reacts to light changes. A wider range indicated a greater degree of

sensitivity. Each sensor measures light differently, the Photo

Resistor measures in the change in voltage, the Arduino maps the

voltage output as given by the Arduino page as, 5 Volts/1024 units

yielding a .0049 Volts/unit [6], the LUX sensors output a lux value

which is a fairly complex unit of light intensity over an area; the

IR/UV/VS sensor gives a unit less value for visible light; the analog

sensor operates similarly to the Photo resistor, but it can be

converted to LUX given the log-scale nature of the resistor. This

trait was analyzed separately due to the difference in units of

measurement. Light Turnover: How fast does the sensor detect

change when the light changes. The Arduino can read in an analog

voltage at a rate of .1 ms [6]. The formula for calculating the

rise/fall values are stated in formula 1. Some of the sensors may

need to be sampled at different rates, the actual numbers for the

turnover calculation is included in the data table.

Formula 1: (.0001 second + sample rate (.0001 second) * number

of samples). The Arduino’s input speed plus the sample rate times

the number of samples that indicate a light change [15-16].

4. Results and Analysis
These explanations are the basis for the scores given to the sensor

traits. If a consumer places a greater emphasis on a certain trait

apply a multiplier.

Spectrum Range

The Photo Resistor is not sensitive to other parts of the visible light

spectrum, compared to the other sensors it can give the least

responsivity to incoming light variations. It has only a 300 nm

range. This is the rationale for the lower 1 rank. The IR sensor has

the widest useable range of all the sensors, most of them max out

near the edges of visible light. This sensor can read above and

below the standard visible spectrum quite far. The LUX(TSL2561)

sensor has a comparable range to the photo resistor, but has a much

more sensitive intensity readout. This can detect varying degrees of

light intensity much better than the photo resistor. The range on the

LUX(TSL2591) is comparable to the other LUX capable sensor

(TSL2561). It access primarily the visible light spectrum with little

overlap in the IR or UV sides. The spectrum for Analog sensor is

2

comparable to the photo resistor, hovering around the visible

spectrum (Table 2).

Figure 5. Trait Graph.

Price

The Photo Resistor is the cheapest sensor. Lower prices according

to the criteria are valued, hence the rank 5. The IR sensor is the

most expensive of the sensors, my best guess would be that the

added cost is for the circuitry to detect the other spectrum sections.

The high price is the rationale for the low rank. The

LUX(TSL2561) sensor relative to the others is somewhat

expensive, much higher than the photo resistor ($.99) but a few

dollars short of the IR ($10.00). Its dollar cost is competitive for

reasonability. The TSL2591 has a price point comparable to the

mid-level sensors. The Analog’s price point is the second lowest in

the sensor subset. This is the rationale for the rank 2 (Table 2).

Simplicity

The Photo Resistor has the least installation overhead of any of the

tested sensors. No soldering, no library setup, just plug in the Photo

Resistor, wire it to the board, and read from the analog pins. This is

the rationale for the 5 rank. The UV/IR/Vis takes a library import,

initialization, and you have to differentiate the voltage units coming

in (Source Code 1) [7]. The design specs state that the values from

the sensor when taken for visible spectrum are “unit less.” [7]

The lack of a unit and the need for library imports with device

initialization also lowers the final score. The TSL2561 sensor,

similarly to the IR sensor, requires a library import, and some

special functionality to work. It requires extra wiring on top of basic

soldering. This sensor requires one less step than the IR (Device

initialization) (Appendix: Source Code 1). This sensor has virtually

the same complexity of implementation as the TSL2561

(Appendix: Source Code 1). The Analog device operates in a

similar manner to the photo resistor, in that it is a device primarily

intended to give output in voltages related to changing resistance

from light intensity. This translates to a simple plug in, and read

analog values, which requires no library imports or device

initialization.

Sensitivity

For the simple light application, the photo resistor does the job of

detecting a light or no light well. It can’t give intensity, and in side

tests, ambient light runs the chance of maxing out the sensor’s low

LUX cap (Table 2), rendering bright ambient conditions difficult

when attempting to sense new light presence. It still has value in a

wide numeric range, hence the rank 2 rating.

The IR sensor is not very sensitive to visible light changes, the

graph of sensor values is shaky a best (Appendix: Figure 7).

Enough to do rudimentary work, but unless you are sampling along

the larger spectrum it may be lost to ambient noise. One way to

possibly mitigate this is to sample across the entire spectrum it is

capable of, visible, IR, and UV, this may bulk up the sensitivity,

but given the default load it is not sufficient. The TSL2561 sensor

has a significant range reaction to light intensity. Not as strong as

the TSL2591, but for basic applications it is more than enough. It

far exceeds the maxed 10 LUX of the photo resistor, coming in

between 3 and 55,000 LUX value. The LUX(TSL2591) sensor has

the highest sensitivity of the sensors, recorded values easily

outpaced the other sensors, and the stated LUX value is the highest.

Unlike the photo resistor the Analog sensor can readily have its

voltage value converted to LUX ratings. This sensor also has a

wider range of values (Table 1-2).

Light Turnover

The Photo Resistor’s rise is consistent with the other sensors and

there is not a noticeable difference at the tested speeds. It is fast

enough for most applications in the common world. The fall

however is significantly slower than the other sensors, and

depending on the sensitivity of the job may result in miss read

signals (Figure 5). This is the rationale for the rank 3 rating (Figure

3). The IR sensor has a favorable light reaction time. Barring retest*

it is competitive with the other sensors for good speed turnaround.

The LUX(TSL2561) sensor rapidly reacts to changes in light,

barring faster timing retests, it is consistent with the other sensors.

The default device configuration for the LUX(TSL2591) seems to

cap sample speeds at .001 Seconds. This means that it cannot match

the defaults of the other devise in this type of testing. The Analog

sensor has one of the best rise and fall values of the sensors, with

rapid up and down, there is little wait to normalize.

3

The final values assessed and summed give the relative quality

order from best to worst, assuming that all the traits are equally

desired: Analog, TSL2561, Photo Resistor, IR/UV/Vis, and

TSL4591 (Figure 6).

Figure 6. Assessment values graphically.

5. Conclusion and Future Work
From our testing and assessment it seems that the Photo Resister

fared well among the sensors. Its simplicity and cheapness

overcame the small spectrum sensitivity and the inability to

measure large lux values (Table 2). The Analog sensor may be the

better choice, for just a few more dollars, you gain the ease of

translating voltage to LUX, a wider spectrum, and better sensitivity

rating, and better light turnover. For the more basic jobs the analog

sensor proves more than adequate and preferable for its well-

rounded and responsive trait qualities (Table 3).

This research is useful to those not technically capable, and to

industries seeking to reach out to customers through better product

education. Possible gaps in my research include problems with

how the wiring of each sensor is setup. The Arduino’s input

capacity may be shortening some of the other sensor’s response

times, the light source is a fixed value in the visible light spectrum

and some sensors may not pick it up properly. The algorithm’s

ambient light processing may be damaging the low values and the

highs by adjusting the voltages incorrectly. The sensing apparatus

is not a perfect Faraday cage and ambient light and noticeable shifts

occur from outside sources. The different sensors sometimes use

different base measurements. Optimizations of these light sensors,

better testing environments, and a more thorough quality

assessment may be undertaken in the future. Other possible avenues

for research are testing across the spectrum sensitivity and testing

with variable distances light sources, and testing readability of

various documentation styles.

6. ACKNOWLEDGMENT
Thanks to Dr. Debnath, Dr. Cichanowski, Dr. Zhang, of the

Computer Science Department and Christopher Bischke for their

active help in preparing this manuscript.

7. REFERENCES
[1] Advanced Photonix, Inc., “CdS Photoconductive Photocells

PDV-P8001,” 18 2 2015. [Online]. Available:

http://www.advancedphotonix.com/wp-content/uploads/PDV-

P8001.pdf. [Accessed 18 2 2015].

[2] l. ada, “Photocells,” 29 7 2012. [Online]. Available:

https://learn.adafruit.com/. [Accessed 18 2 2015].

[3] PerkinElmer Optoelectronics, “Photocells A 9950, A 7060, B

9060 Epoxy encapsulated Series,” PerkinElmer Optoelectronics,

Vaudreauil-Dorion, 2008.

[4] AdaFruit, “Products Page,” 18 2 2015. [Online]. Available:

http://www.adafruit.com/products/439. [Accessed 18 2 2015].

[5] TAOS | Texas Advanced Optoelectronic Solutions, “TSL256,”

2009. [Online]. Available:

http://www.adafruit.com/datasheets/TSL256x.pdf. [Accessed 25

2 2015].

[6] Arduino, “analogRead,” 9 3 2015. [Online]. Available:

http://arduino.cc/en/Reference/analogRead. [Accessed 9 3 2015].

[7] L. Ada, "si1145-breakout-board-uv-ir-visible-sensor/overview,"

21 3 2014. [Online]. Available:

https://learn.adafruit.com/adafruit-si1145-breakout-board-uv-ir-

visible-sensor/overview. [Accessed 10 3 2015].

[8] A. a. K. T. a. K. Y. a. S. S. Yamawaki, "A Method Using the

Same Light Sensor for Detecting Multiple Events Near a

Window in Crimes Involving Intrusion into a Home," Artif. Life

Robot., vol. 15, no. 1433-5298, pp. 30--32, August 2010.

[9] J. a. B. D. a. W. K. Lu, "Using Simple Light Sensors to Achieve

Smart Daylight Harvesting," in Proceedings of the 2Nd ACM

Workshop on Embedded Sensing Systems for Energy-Efficiency,

New York, NY, USA, ACM, 2010, pp. 73--78.

[10] S. a. P. F. Makonin, "An Intelligent Agent for Determining

Home Occupancy Using Power Monitors and Light Sensors," in

Proceedings of the 9th International Conference on Toward

Useful Services for Elderly and People with Disabilities: Smart

Homes and Health Telematics, Berlin, Heidelberg, Springer-

Verlag, 2011, pp. 236--240.

[11] J. C. a. D. P. H. a. M.-A. D. a. R. R. a. H. S. E. Lee, "Automatic

Projector Calibration with Embedded Light Sensors," in

Proceedings of the 17th Annual ACM Symposium on User

Interface Software and Technology, New York, NY, USA,

ACM, 2004, pp. 123--126.

[12] Z. a. Z. F. a. W. Q. Cao, "Size Measurement Based on Structured

Light Sensor," in Proceedings of the 2011 Second International

Conference on Digital Manufacturing \& Automation,

Washington, DC, USA, IEEE Computer Society, 2011, pp. 1098-

-1101.

[13] Oda, Y. Sharp Corporation, "GA1A1S202WP OPIC Light

Detector," November 2007. [Online]. Available:

http://www.adafruit.com/datasheets/GA1A1S202WP_Spec.pdf.

[Accessed 25 2 2015].

4

[14] Silicon Labortories, "Proximity/UV/Ambient Light Sensor IC

with I^2C Interface," Silicon Labortories, 2013.

[15] Arduino, "Learning Delay," 9 3 2015. [Online]. Available:

http://arduino.cc/en/Reference/Delay. [Accessed 9 3 2015].

[16] B. Earl, "Adafruit GA1A12S202 Log-scale Analog Light Sensor

Overview," 16 3 2013. [Online]. Available:

https://learn.adafruit.com/adafruit-ga1a12s202-log-scale-analog-

light-sensor. [Accessed 16 3 2015].

[17] Y. Oda, "Device specifications for OPIC Light Detector Model

No. GA1A1S202WP," Sharp Corporation, Camas, 2007.

APPENDIX

Table 1. Manufacturer’s Specifications.

Sensors
Photo Resistor [1] [2]

[3]

IR/UV/Vis [7] [10-

11]
LUX(TSL2561) [4] [5] LUX(TSL2591) [4] Analog [4][13-14]

Dimensions

(mm)
4.46(L)*5(W)*2.09(H) 20*18*2 10*13*1.5 19*16*1 10*13*1.5

Weight (g) .25 1.4 .2 1.1 .2

Price ($) 1.00 9.95 5.95 6.95 3.95

Operating

Temp. (C)
-30, 75 -40, 85 -30, 80, -30, 80 -30,70

Spectrum

(nm)

400 (Min, Violet) -

700 (Max, Orange)

520 (Peak, Green)

550–1000

400-800

200-400

Measured LUX (Vis)
Measured LUX

(Vis)
555

Sensitivity LUX 0 -10 Non Unit for Vis LUX 0.01 – 40,000 LUX .01 – 88,000 LUX 3-55,000

Table 2. Result table from Apparatus testing.

Sensors Photo Resistor IR/UV/Vis LUX(TSL2561) LUX(TSL2591) Analog

Sensitivity Range 544 V/Unit

~Maxes at 10 lux [2]

11 Unit less 719 LUX 507 LUX 93 LUX

Light Turnover (second) .04 (Fall)

.0008 (Rise)

.0006 (Rise)/ (Fall) .0006 (Rise)/(Fall) .02 (Rise/Fall) .0004 (Rise)/(Fall)

Table 3. Assessment Values.

Sensors Photo Resistor IR/UV/Visible LUX(TSL2561) LUX(TSL2591) Analog

Spectrum Range 1 5 3 3 2

Price 5 1 3 2 4

Simplicity 5 3 2 1 4

Sensitivity Range 2 1 4 5 3

Light Turnover 2 3 4 1 5

Final Score 15 13 16 12 18

5

Figure 3. Photo Resistor sensor values during light activation. Light is on from sample 400, and off at 568~.

Figure 4. Analog sensor values during testing. Light was activated between 5th-7th samples. Light deactivated around 155th-160th

samples.

Figure 7. IR/UV/VIS sensor values during testing. Light is activated twice, corresponding to jumps.

Light Activated

Light Turned off

-200

0

200

400

600

1
2

0
3

9
5

8
7

7
9

6
1

1
5

1
3

4
1

5
3

1
7

2
1

9
1

2
1

0
2

2
9

2
4

8
2

6
7

2
8

6
3

0
5

3
2

4
3

4
3

3
6

2
3

8
1

4
0

0
4

1
9

4
3

8
4

5
7

4
7

6
4

9
5

5
1

4
5

3
3

5
5

2
5

7
1

5
9

0
6

0
9

6
2

8
6

4
7

6
6

6
6

8
5

7
0

4
7

2
3

7
4

2
7

6
1

V
o

lt
s/

U
n

it

Samples / .0001

Photo Resistor

Light Activated

Light Turned off

0

20

40

60

80

100

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1

3

1
2

7

1
4

1

1
5

5

1
6

9

1
8

3

1
9

7

2
1

1

2
2

5

2
3

9

2
5

3

2
6

7

2
8

1
2

9
5

3
0

9

3
2

3

3
3

7

3
5

1

3
6

5

3
7

9

3
9

3

4
0

7

4
2

1

4
3

5

4
4

9

4
6

3

4
7

7

4
9

1

5
0

5
5

1
9

LU
X

Samples / .0001 Second

Analog

-5

0

5

10

15

1

4
1

8
1

1
2

1

1
6

1

2
0

1

2
4

1

2
8

1

3
2

1

3
6

1

4
0

1

4
4

1

4
8

1

5
2

1

5
6

1

6
0

1

6
4

1

6
8

1

7
2

1

7
6

1

8
0

1

8
4

1

8
8

1

9
2

1

9
6

1

1
0

0
1

1
0

4
1

1
0

8
1

1
1

2
1

1
1

6
1

1
2

0
1

1
2

4
1

1
2

8
1

1
3

2
1

1
3

6
1

1
4

0
1

1
4

4
1

1
4

8
1

Se
n

so
r

V
al

u
e

Sample / .0001

IR/UV/VIS

6

Figure 8. TSL 2561 sensor values during testing.

Figure 9. TSL 2591 sensor values during testing.

0

500

1000
1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6
1

1
3

1
2

0

1
2

7
1

3
4

1
4

1
1

4
8

1
5

5

1
6

2
1

6
9

1
7

6
1

8
3

1
9

0
1

9
7

2
0

4
2

1
1

2
1

8

2
2

5
2

3
2

2
3

9
2

4
6

2
5

3

2
6

0

Se
n

so
rV

al
u

e

Samples/.0001 of a second

TSL 2561

0

200

400

600

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57

Se
n

so
r

V
al

u
e

Sample/ .01

TSL2591

7

MapReduce Efficiency Between Operating Systems.
Robert Rutscher

Computer Science Department

rrutscher11@winona.edu

ABSTRACT

Since the MapReduce paradigm was introduced over a decade ago

it has gained popularity and importance throughout the software

development community due to ever-changing scalability

requirements, and the need for easily deployable distributed

computing. Hadoop is a popular open-source distribution of

MapReduce and was used during research. Hadoop’s efficiency

between different operating systems and their distributions has not

had an in depth study done and is the main point in this research.

The top Linux and Windows server distributions were tested

within a 3-node cluster with six different benchmarks. Data

analysis has provided evidence of greater efficiency on Linux.

Keywords

Hadoop, MapReduce, Efficiency, Comparison

1. INTRODUCTION
In recent years we have asked systems to process larger and larger

sets of data. The problem with handling such large amounts of

data across thousands of machines is the near impossibility to

efficiently distribute, process in a reasonable amount of time, and

handle data failures. In an effort to reduce the need to repeatedly

implement parallel/distributing processing, Google created

MapReduce. The fundamental idea can be abstracted into two

separate functions, Map and Reduce, which were first introduced

in Lisp and can be found in many other functional programming

languages [6].

The core concept of MapReduce is the ability to generate and

process data sets using parallel and distributed processing within a

computational cluster. The fundamental procedures that

implement and achieve this are: the Map() function and Reduce()

function. The job of Map() is to perform the filtering and sorting

on a given data set, while the job of Reduce() is to perform a

summary operation on the data. An example of the Map()

procedure is sorting a list of students in a University by first name

using queues, there is one queue for each name. An example of

the Reduce() procedure would be counting the number of students

in each queue, which ultimately would return the number of times

a given name occurs in the given text [6]. The major advantage of

this is splitting up of tasks efficiently so that large data sets are

processed in a reasonable amount of time.

The MapReduce programming model was introduced in 2003 by

Google in an academic paper, from that point on it has rapidly

evolved due to a large amount of support received from both the

Open Source community and the Apache Software Foundation

[8]. Yahoo spearheaded development of the most popular

MapReduce implementation, Hadoop in 2007 [8]. Hadoop as well

as the MapReduce programming model’s adoption has been

accelerated due to the need to be able to handle “Big Data” in

today’s enterprises. Big data is the information all around us, it

can be trivial statistics such as how many times you unlock your

phone each day, to the important ones such as the IP address that

is accessing a bank account. The collection of all this data is

considered “Big Data” it is characterized by the sheer size of what

it encompasses and the lack of structure present within [5]. The

ability to process and make inferences from this unstructured and

messy coagulation of data is where a system such as Hadoop can

excel.

The majority of servers worldwide are running either Windows or

Linux as their operating system, functionality between the two is

similar but differences are present. The server owner makes the

choice, that being said, there are pros and cons to each. Windows

Server gives users support should any problems arise, and is

generally considered easier to configure. These benefits come

with a price tag, literally. Window’s licenses can be prohibitively

expensive to deploy across an entire cluster. In comparison, Linux

is free and can be distributed and modified by anyone, it also has a

lighter resource footprint that Windows. The benefits Linux

provides come with the con of little to no support compared to

Windows. Although these non-technical differences matter when

deciding upon operating system there are many technical

differences that differentiate Linux and Windows. Linux and

Windows have completely different file structures, Linux does not

have a C: Drive and instead relies on the user to setup drive

access. Linux also does not have a registry, this is a master

database that on Windows holds settings for all users and

applications. Settings on Linux are stored on a program-by-

program basis under the user. This gives greater modularity when

performing or duplicating installations. Linux may only run on

some hardware configurations while Windows has very wide

driver support and supports nearly any hardware. These

characteristics give rise to a choice that a company must make

between the two operating system. The conclusions reached in

this paper can help provide proper insight into efficiency when

making operating system choice.

Hadoop is an application that requires the proper hardware

resources to do its job properly. This can mean spending a

considerable amount of a company's budget to have the correct

hardware for Hadoop. In an attempt to minimize the cost, and/or

maximize the money spent, a question can be raised and

hypothesis given: What operating system will run Hadoop the

most efficiently? The operating system that will run Hadoop most

efficiently is a Linux server distribution. The ability to change the

operating system is always possible and in the long run even 1%

more efficiency can lead to large monetary and energy savings

[1]. The investigation following compares efficiency between the

most widely used Linux and Windows server distributions.

8

2. HYPOTHESIS
I hypothesize the Linux server distribution will have greater

efficiency metrics for Memory Usage, Network Usage, CPU

Usage, I/O Usage, and Time for Job completion compared to its

Windows counterpart.

3. METHOD
Testing involves running six tests and recording performance data

on four-machine Hadoop cluster (3 nodes, 1 master). Operating

systems compared are the most common server distributions for

Linux and Windows. These are Ubuntu 14.04 (Linux) and

Windows Server 2012. The following sections are an in-depth

explanation of the testing, data gathering and data analysis

methodology.

3.1 Testing Environment
The testing being done is meant to be as controlled, accurate and

precise as possible. The environment was created with these

principles in mind as well as the overall goals of minimizing

unknowns and environmental variables that could skew data. The

hardware configuration remained the same throughout testing

while the software changed with the respective operating system.

Hardware was provided by Winona State University Technical

Support and comprised of four HP 8470w laptops that natively

support Windows and Linux. Native support means the hardware

within the machine specifically supports said operating system, in

this case both Windows and Linux. It was important that both

operating systems ran natively on the hardware. Non-native

support would have caused confounding variables leading to

inaccurate results. Table 1 is the hardware specifications for the

machines used.

The machines also had their BIOS updated to the most recent

version. BIOS is the interface between the operating system and

hardware, and is important to have updated to ensure no problems

occur. The nodes will also be connected to a private local area

network (LAN). A private LAN will not have any other

computers connected and will not have a connection to the

internet. The following figure is a visualization of cluster setup.

Figure 1 shows a diagram of the closed network that was used for

testing. Three machines considered nodes were configured to

receive workload within the Hadoop cluster, one machine was

configured to direct workload and is referred to as master.

Commands throughout the testing process will be run on the

master node to perform benchmarks and distribute the workload

for the benchmarks. The operating systems tested were the top

server distributions from both Linux and Windows, these were

Ubuntu Server 14.04 for Linux and Windows Server 2012 for

Windows. The software portion of the testing environment had

many similarities but there were steps unique to each operating

system. These differences are described but are not believed to

have affected efficiency.

The installation and setup process for Hadoop between Windows

and Linux had several similarities and several differences. First

both were installed from flash drives prepared with UNetbootin,

the test machines had labels attached to ensure node1 was

considered node1, node2 was node2, etc. for testing on both Linux

and Windows. Operating systems were installed without difficulty

and updates were run; using “apt-get upgrade” on the Linux

machines and Windows Update on the Windows Machines. The

HOSTS files for each set of machines were configured to allow

for easy network name resolution. This means instead of using an

IP address to connect to another machine, a machine would be

addressed with a plaintext name such as node1 or master.

Java 7u76 JDK & SDK was installed on each set of machines.

The differences between the setup processes began to surface

here. The Hadoop installation process on Linux involved

downloading the pre-compiled Hadoop 2.6.0 binaries and

extracting. On Windows, Hadoop ran natively as of version 2.2.0

but does not have pre-compiled binaries. cMake and the Windows

SDK were used to compile Hadoop 2.6.0. Windows also needed

access to a few of the basic Linux commands, to enable this

Cygwin was installed. Cygwin is a collection of GNU and Open

Source tools that provide functionality similar to a Linux

distribution on Windows. Hadoop was added to the PATH

variable on both sets of machines. SSH configured setup on both

sets of systems, and keys were added to authorized key folders to

allow for password-less connections between systems. BASH and

Powershell terminal were used throughout the process for each

Figure 1. Diagram of cluster setup.

Table 1: Hardware Configuration for testing machines

Computer HP 8470w

Processor 2.90 Ghz Intel Core i7-3520M

Hard Drive HGST HTS725959A7E630 500GB 7200 RPM

Memory 2x4GB PC3L-12800S (8GB) RAM

Network Intel 82579LM Gigabit Ethernet

Graphics Card AMD FirePro M2000

9

respective operating system, this ensured that commands being

run were the same, and provided uniformity throughout the setup

process.

3.2 Testing
The benchmarks being used for testing purposes are built into

Hadoop 2.6.0. This allows for exactly the same test to be run on

both Linux and Windows without needing to worry about

differences that may have sprung up if new code had needed to be

written for each respective test. The tests are piTest(),

DFSIOTest() and teraSort(). These three tests are comprised of

one, two and three functions respectively.

piTest() - This test will be a simple work delegation and data

calculation. It is designed to have the digits of pi calculated to a

specific decimal place. The CPU as well as network adapter will

be taxed during this test, data collected should help provide data

on the different between average CPU and network usage between

the operating system [7]. This test is comprised of a single

function and will be run from the master node. Results will be

gathered from each of the nodes with data gathering commands. A

sample command for piTest on Linux looks like this:

“yarn jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-

mapreduce-examples-2.6.0.jar pi 16 500000000“

The configuration flags on the piTest() command are settings for a

Monte-Carlo function that calculates pi. The command creates a

job to distribute the drawing of 500,000,000 points 16 times

across the three nodes [2]. The data is then reduced and given

back to the master node for output.

DFSIOTest() - This test will involve the writing and reading of

data, it is largely I/O based and is a good indicator of the read and

write ability of each operating system. As discussed previously

this test has two functions, these are: DFSIOwrite() which create a

specified amount of files of a specific size, and the other being

DFSIOread() which reads back these files [7]. This test also

provides statistics on its job completion which were helpful for

data gathering purposes. Figure 2 in the appendix is an example of

output from this job. The commands for DFSIOtest looked like

this:

“yarn jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-

mapreduce-client-jobclient-2.6.0-tests.jar TestDFSIO -write -

nrFiles 10 -fileSize 100

yarn jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-

mapreduce-client-jobclient-2.6.0-tests.jar TestDFSIO -read -

nrFiles 10 -fileSize 100”

The configuration flags attached to the testDFSIO() commands

first specify the amount of files to write, in this case it is 10, and

the size of each file in megabytes, 100. This test is largely I/O

and network traffic based and not based off of calculation.

teraSort() - The final test was an overall benchmark of

performance as it uses a considerable amount of each resource

including CPU, networking, storage, and I/O. All resources being

used simultaneously give a good overall perspective of system

activity and performance during load. TeraSort() similar to

TestDFSIO() is comprised of multiple functions. These are

teraGen() which is a write/generate command, teraSort() which

sorts the data, and teraValidate() which reads the test data and

verifies its validity [7]. An example of the commands necessary to

run this benchmark are:

“yarn jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-

mapreduce-examples-2.6.0.jar teragen 10000000 /teraInput

yarn jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-

mapreduce-examples-2.6.0.jar terasort /teraInput /teraOutput

yarn jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-

mapreduce-examples-2.6.0.jar teravalidate /teraOutput

/teraValOut”

The single numerical parameter used in the teraSort() command

directs the creation of rows equal to that number. Each row has a

size of 100 bytes. The amount of data being generated during this

command is equal to 1 gigabyte. The additional parameters used

are directories for data input and output.

The testing environment (includes hardware and software) has

been created to reduce any confounding variables. Operating

systems were setup in as close to duplicate as possible fashion.

This has been described in the previous two sections. Identical

hardware was procured for the testing process, however small

differences in how identical hardware performs will have to be

dealt with through percent error and will be calculated into the

metric values. As for confounding variables that can occur

because of software, they will be minimized through having

default installations of operating systems, with only the necessary

runtimes installed for Hadoop to run. The benchmarks being run

also were the same between the two operating system which helps

reduce any inconsistencies we may have experienced using

custom made tests for each operating system.

3.3 Data Processing
As the tests were being run, data was gathered related to system

usage. The data needed for comparison purposes was utilization

data for: CPU, network, I/O, and memory. Time for job

completion was also a statistic gathered but was separate from the

previous metrics in the collection process. The data gathering

process gathered more data than necessary and needed further

processing to eliminate unnecessary statistics and congregate

necessary parts.

The testing process involved running each benchmark three

times. The performance data was gathered on the three nodes in

each cluster. The operating systems were polled every 5 seconds

for 60 seconds giving us 12 data entries for each node for each

test for each trial. The testing generated 54 .csv files for each

operating system (3 nodes * 6 functions * 3 repetitions) for a total

of 108 .csv files that needed processing.

The data gathering on Linux used the sysstat command. This

command allows for all system data to be gathered at specific

intervals. The command recorded more data than was needed, this

excess was stripped during the data processing step. A sample

command looked like this:

“sar -u -r -d -q -b -n DEV 5 12 | grep -v Average | grep -v Linux

|awk '{if ($0 ~ /[0-12]/) { print

$1","$2","$4","$5","$6","$7","$8","$9","$10","$11","$12; } }' >

"$(hostname)pi1.csv"”

This command is comprised of four parts: first, it is using

sysstat with parameters that provide information about CPU,

Memory, Network, Disk, and system load every five seconds

twelve times over for a sample period of one minute. The

command then uses grep to remove two columns containing

unnecessary data from the output. Next awk is used to select the

10

columns and delimit them with commas, the final portion pipes

this output to a text file named with the host name of the machine

and the test being run.

The data gathered on Windows used the built-in utility called

Performance Monitor. This was manually configured using the

Windows Server 2012 GUI on the master node. The data was also

exported to a .csv file. The Windows data had even more

information was unneeded and had a lot of processing done to

extract the relevant data. Raw data is table 2 in the appendix.

The raw files that were output from data gathering were not

formatted in a fashion that would allow for data analysis. It was

necessary to parse the many csv files generated and remove

excess data as well as average out necessary data. Excel and

Visual Basic were used to process the data and a sample of the

scripts used are available in the appendix. Excel files for both

Windows and Linux were formatted different and thus needed

different processing was run on each. The large number of files

made it necessary for the scripts to be written, they prevented

errors and a lot of copying and pasting. Once data was correctly

formatted, it was easily comparable between operating systems.

Table 3 in the appendix is an example of properly formatted data.

After the data was correctly formatted it was averaged. The

averaging process took the data from each node and each trial and

congregated it into six values along with the nine metrics. An

example of this is table 4 in appendix. The data from each metric

was the sorted and brought into separate sheets to prepare for a

two-sample t-test with unequal variances. This was used because

it was not known if the data would have equal variances.

4. RESULTS
The results provided are based off the statistical significance of

each of the nine metrics. The null and alternative hypothesis for

the results follows:

Ho = Linux Efficiency is equal to Windows Efficiency

Ha = Linux Efficiency is greater than Windows Efficiency

The two-sample t-test with unequal variances was used. If the t

stat value was greater than the t critical one-tail value the

difference was considered significant. Three of the metrics tested

were found to have a significant difference. These were %idle,

%system and kbmemused. Six of the metrics were found to have

no evidence of a statistical significant difference, these were:

%memused, bwrtn/s, bread/s, txkB/s, rxkB/s, and job completion

time. Table 5 in the appendix provides the values calculated from

statistical analysis. The results showed a statistically significant

difference in efficiency for the %system, %idle, and kbmemused

metrics. There was not sufficient evidence to show a significant

efficiency difference for the %memused, I/O, Job Completion

time or Network utilization metrics.

The metrics being used in measuring operating system efficiency

were selected for the accurate measure of system performance

they provide. The metrics following were compared between

operating systems to find a statistically significant difference in

efficiency. Each metric is important because anyone of them can

cause bottlenecks in system performance, the entire system can

become slower just because one part is not able to do its job fast

enough [3].

CPU utilization is a key performance and efficiency metric. It is

often used to track CPU performance regressions and

improvements, it also is directly correlated to energy usage of a

system. %system is a metric that describes the amount of current

CPU in use currently. %idle describes the amount the CPU is not

being used during operation, it is directly correlated to %system.

Memory footprint is another metric able to gauge system

efficiency. It can be used to track performance hiccups and could

be the cause of bottlenecks in a system. %memused is the

amount of available memory currently used by applications

currently running. Kbmemused is a discrete number describing

the amount of memory in use. Network utilization is a vital

efficiency metric used to troubleshoot bottlenecks that may occur

in computing clusters. The local network is the primary form of

communication in computing and is important to keep from

becoming congested. txkB/s is the amount of kilobytes being sent

per second by the network adapter. rxkB/s is the amount of

kilobytes received per second by the network adapter. Disk

utilization is important when processing and generating data, it is

the rate at which data will be able to written as well as read. The

I/O speed of a device is generally completely dependent upon the

speed of hard drive within the system. bwrtn/s is the amount of

bits written to the hard drive by the operating system per second.

bread/s is the amount of bit read from the hard drive by the

operating system per second. Job completion time is largely self-

explanatory. It is the amount of time it will take for a particular

operation being run to finish. This may differ largely based off of

OS. This metric is measured in seconds for each job. [4]

5. ANALYSIS
The results provide interesting insight into operating system

efficiency. Both CPU metrics showed a significant difference

between operating systems while memory was shown to only

have a significant difference for one of its metrics. The two

memory metrics should coincide as they are pulling from similar

data sources. The fact that they are different does not necessarily

mean that there was an error collecting data. The data says for

%memused there was not significant evidence that it was different

between the two operating systems. Differences between metric

usage can be seen in table 6 in the appendix.

The three significant and six non-significant metrics can lead to a

few conclusions: 1. Hadoop on Linux has an overall lower CPU

usage than on Windows. 2. Hadoop on Linux has lower memory

usage than on Windows. 3. Network, I/O, and Job Completion do

not have a significant difference between the two operating

systems. With lower memory and CPU usage a system can do

more at the same time, this across a large cluster can lead to very

large savings in both time for completion and energy usage.

6. CONCLUSION
The Linux operating system was more efficient than its Windows

counterpart in regard to memory used, %idle and %system. There

was not sufficient evidence to show greater efficiency for

Network Utilization, I/O Usage, and Job completion time. Though

only three out of nine metrics displayed greater efficiency, the

difference small gains can make in a normal sized computing

cluster can lead to large energy and monetary savings. Further

study could be directed towards configuration of Hadoop in an

operating system specific manner.

7. ACKNOWLEDGMENTS
Thanks to Dr. Zhang and Dr. Debnath for guidance throughout the

research process, also thank you to Winona State Technical

Support for access to test systems.

11

8. REFERENCES
[1] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy

Katz, and Ion Stoica. 2008. Improving MapReduce

performance in heterogeneous environments. In Proceedings

of the 8th USENIX conference on Operating systems design

and implementation (OSDI'08). USENIX Association,

Berkeley, CA, USA, 29-42.

[2] Dawei Jiang, Beng Chin Ooi, Lei Shi, and Sai Wu. 2010. The

performance of MapReduce: an in-depth study. Proc. VLDB

Endow. 3, 1-2 (September 2010), 472-483.

DOI=10.14778/1920841.1920903

http://dx.doi.org.wsuproxy.mnpals.net/10.14778/1920841.19

20903

[3] Greg Malewicz. 2011. Beyond MapReduce. In Proceedings

of the second international workshop on MapReduce and its

applications (MapReduce '11). ACM, New York, NY, USA,

25-26. DOI=10.1145/1996092.1996098

http://doi.acm.org.wsuproxy.mnpals.net/10.1145/1996092.19

96098

[4] Michael Cardosa, Chenyu Wang, Anshuman Nangia,

Abhishek Chandra, and Jon Weissman. 2011. Exploring

MapReduce efficiency with highly-distributed data.

In Proceedings of the second international workshop on

MapReduce and its applications (MapReduce '11). ACM,

New York, NY, USA, 27-34.

DOI=10.1145/1996092.1996100

http://doi.acm.org.wsuproxy.mnpals.net/10.1145/1996092.19

96100

[5] Kyong-Ha Lee, Yoon-Joon Lee, Hyunsik Choi, Yon Dohn

Chung, and Bongki Moon. 2012. Parallel data processing

with MapReduce: a survey. SIGMOD Rec. 40, 4 (January

2012), 11-20. DOI=10.1145/2094114.2094118

http://doi.acm.org.wsuproxy.mnpals.net/10.1145/2094114.20

94118

[6] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce:

simplified data processing on large clusters. Commun. ACM

51, 1 (January 2008), 107-113.

DOI=10.1145/1327452.1327492

http://doi.acm.org.wsuproxy.mnpals.net/10.1145/1327452.13

27492Conger., S., and Loch, K.D. (eds.). Ethics and

computer use. Commun. ACM 38, 12 (entire issue).

[7] MSIT SES Enterprise Data Architect Team. 2013.

Performance of Hadoop on Windows in Hyper-V, Microsoft

Inc.

http://download.microsoft.com/download/1/C/6/1C66D134-

1FD5-4493-90BD-

98F94A881626/Performance%20of%20Hadoop%20on%20

Windows%20in%20Hyper-

V%20Environments%20%28Microsoft%20IT%20white%20

paper%29.docxSchwartz, M., and Task Force on Bias-Free

Language. Guidelines for Bias-Free Writing. Indiana

University Press, Bloomington IN, 1995.

[8] Darrick Harris. 2013. The history of Hadoop: From 4 nodes

to the future of data. Gigacom (March 2013).

https://gigaom.com/2013/03/04/the-history-of-hadoop-from-

4-nodes-to-the-future-of-data/

12

http://dx.doi.org.wsuproxy.mnpals.net/10.14778/1920841.1920903
http://dx.doi.org.wsuproxy.mnpals.net/10.14778/1920841.1920903
http://doi.acm.org.wsuproxy.mnpals.net/10.1145/1996092.1996098
http://doi.acm.org.wsuproxy.mnpals.net/10.1145/1996092.1996098
http://doi.acm.org.wsuproxy.mnpals.net/10.1145/1996092.1996100
http://doi.acm.org.wsuproxy.mnpals.net/10.1145/1996092.1996100
http://doi.acm.org.wsuproxy.mnpals.net/10.1145/2094114.2094118
http://doi.acm.org.wsuproxy.mnpals.net/10.1145/2094114.2094118

Appendix

Table 2: Raw data from performance monitor

Table 3: Formatted data from processing

Table 4: Averaged data

13

Table 5: Statistical Analysis Results

Metric t stat t-Critical one-tail p-value

%idle 2.496919931 1.724718243 0.010686812

%system 4.423229218 1.739606726 0.000186085

%memused -0.987264239 1.703288446 0.166139206

kbmemused 5.624648547 1.690924255 .0000001324

bwrtn/s -1.474419366 1.70561792 0.076187639

bread/s 1.720597957 1.739606726 0.051736128

txkB/s 1.650168435 1.690924255 0.054058994

rxkB/s 0.756649403 1.701130934 0.227789925

Job Time -0.118222423 1.690924255 0.453293561

15/03/29 16:18:02 INFO fs.TestDFSIO: ----- TestDFSIO ----- : write

15/03/29 16:18:02 INFO fs.TestDFSIO: Date & time: Sun Mar 29 16:18:02 CDT 2015

15/03/29 16:18:02 INFO fs.TestDFSIO: Number of files: 10

15/03/29 16:18:02 INFO fs.TestDFSIO: Total MBytes processed: 1000.0

15/03/29 16:18:02 INFO fs.TestDFSIO: Throughput mb/sec: 10.665415257943067

15/03/29 16:18:02 INFO fs.TestDFSIO: Average IO rate mb/sec: 10.66562557220459

15/03/29 16:18:02 INFO fs.TestDFSIO: IO rate std deviation: 0.047367220052642704

15/03/29 16:18:02 INFO fs.TestDFSIO: Test exec time sec: 96.921

15/03/29 16:18:02 INFO fs.TestDFSIO:

15/03/29 16:21:00 INFO fs.TestDFSIO: ----- TestDFSIO ----- : read

15/03/29 16:21:00 INFO fs.TestDFSIO: Date & time: Sun Mar 29 16:21:00 CDT 2015

15/03/29 16:21:00 INFO fs.TestDFSIO: Number of files: 10

15/03/29 16:21:00 INFO fs.TestDFSIO: Total MBytes processed: 1000.0

15/03/29 16:21:00 INFO fs.TestDFSIO: Throughput mb/sec: 11.087580800745085

15/03/29 16:21:00 INFO fs.TestDFSIO: Average IO rate mb/sec: 11.08777141571045

15/03/29 16:21:00 INFO fs.TestDFSIO: IO rate std deviation: 0.04630139928117125

15/03/29 16:21:00 INFO fs.TestDFSIO: Test exec time sec: 92.653

15/03/29 16:21:00 INFO fs.TestDFSIO:

Figure 2: Data from DFSIOtest output

14

Figure 3: Usage percent between the different metrics.

0

20

40

60

80

100

120

% Usage

Metric

Usage between OS

Windows

Linux

15

Cygnus Flash X-Ray Performance
Alex Hanneman

ABHanneman10@winona.edu
Winona State University- Computer Science/Math

ABSTRACT

Cygnus is a flash X-ray generator that is used by National

Security Technologies in Las Vegas, Nevada to record images of

small-scale nuclear tests. The nuclear tests going on take a lot of

preparation and unfortunately sometimes the x-ray shot produced

is of poor quality, which is unknown for several hours.

Meanwhile, as the x-ray produces a shot, machine diagnostics

data is captured containing voltage and current, which can be used

right away. Thus, signal-processing techniques such as cubic

splines and filters can be applied along with general statistical

methods to find trends and correlations for the machine

diagnostics and x-ray images. These results will save ample time

on Cygnus X-ray experiments.

Keywords

Cygnus, X-ray, Sub-critical nuclear, Cubic spline, Filter, Signal

processing.

1. INTRODUCTION
The National Security Technologies LLC (NST) is a leader in

research in homeland security, nuclear and nonnuclear

experiments, physics modeling, and radiological detection. They

are contracted by the Department of Energy and these areas of

research are very important as they relate to the nation’s security.

As apart of the Defense Experimentation and Stockpile

Stewardship Directorate, the NST conducts time-consuming,

expensive sub-critical nuclear experiments at the Nevada testing

site just outside of Las Vegas. During these experiments they will

use, high-speed diagnostic instruments to measure radiography.

This instrument is called the Cygnus Flash X-ray. Cygnus is a

flash X-ray generator that is used by the NST to record images of

small-scale nuclear tests. The X-ray is pulsed through a scene

where a scintillator (a substance that exhibits luminescence when

struck by a light of certain wavelength; that produces a spark or

flash) collects the unabsorbed X-ray pulses and the data is read

using an oscillator (a circuit that produces an alternating output

current of a certain frequency determined by characteristics of the

circuit components) [1]. These measurements are used for the

machine diagnostics (such as current and voltage readings) which

are helpful and produced immediately, but do not measure

performance. The machine performance is a separate process that

takes almost an hour to complete, which is a problem because bad

X-ray shots can be produced. Bad shots are typically due to a

component in the X-ray failing but can take quite a bit of work to

figure out.

The NST would like to save time by figuring out if a part is

failing and prevent a bad shot from being produced. There has

been no work done on this particular project so far. So, the goal of

this project is to characterize the performance of the Cygnus

machine using machine diagnostic data. To achieve the goal each

diagnostic is to be characterized as a function of time (shot), and

each shot is to be characterized as a function of diagnostic.

The diagnostic data includes current and voltage at roughly

around 28 different sensors along each of the Cygnus X-ray

machines. Each of the sensors has a digitizer (used to convert to

digital form for use in a computer) that captures a reading around

every 5 nanoseconds. Below is a plot of the data given from one

sensor for voltage readings. The data follows the trend of have a

spike of energy pass through followed by a ringing that the sensor

captures. The ringing is due to the energy that moves through

leaves a rebound that bounces in the machine and slowly dampens

to return to the baseline. The vertical lines on the plot indicate

what is considered the start and stop of the peak; this will be

discussed later.

Figure 1. Data given by Cygnus x-ray machine diagnostics.

2. Hypothesis
Machine diagnostics from the Cygnus x-ray will correlate to a

measurable radiation dose produced by the x-ray shot.

3. Methods
This research project incorporates some software development, in

R, in data analysis. Specific areas of research will include how the

Cygnus X-ray machine works with components correlating to

diagnostic data. Figure 2 shows a screen shot of R Studio

(software for R) running. R Studio is a beneficial integrated

development environment because it provides everything you

need to use in one window, as depicted in figure 2.

16

Another benefit to R is the availability of packages to help speed

up the statistical programming process.

Figure 2. R Studio integrated development environment window.

3.1 Prepare Data For De-noising
First, before we even begin applying de-noising methods, we

first need to eliminate the data from where the data plots where

the sensor reading is unusable. One example of unusable data is

shown in figure 3, which includes only picking up the baseline

noise and not reading the actual burst of energy passing through

the Cygnus. This could be due to the time of the sensor was not

started and stopped at the correct time. Figure 4 is when the

sensor picks up the spike, but then the ringing never returns to

baseline. This could be due to remaining energy still rebounding

in the x-ray. Figure 5 is when the sensor shows more than one

spike, which is not what should be shown.

Figure 3. Unusable data, only baseline is picked up.

Figure 4. Unusable data, ringing never returns to baseline.

Figure 5. Unusable data, more than one spike.

The data is then checked to see if the noise is background noise or

if it is random. To do this, we graphed the values of how far the

data is away from where the average value. Figure 6 shows the

distribution of noise. This graph shows that the distribution of the

noise is slightly positive, and evenly distributed. The digitizer of

the sensor causes the positive average. The digitizer is constantly

picking up energy so the ground zero is actually slightly positive.

Thus, this means that the noise is background noise is not to be

included in the data.

Figure 6. Column graph showing the noise is approximately

Gaussian (even distribution).

Before the data can be de-noised, we must find where the spike

starts and ends since that is the important part of the data we want

to examine. To do this, we find the beginning and ending of the

peak by finding where it jumps above and returns to the baseline.

3.2 Apply De-noising Filter and Cubic Splines
Machine diagnostics must be cleaned since there is a lot of noise

in the data. This is important to get a “clean” set of data, since it

is hard to know right away if the data is deviating because of

noise or not [2]. In de-nosing the data we used a few different

methods, which include cubic splines, moving average filter, and

a weighted-binomial filter.

17

The moving average and binomial filters analyze data by

calculating a series of averages of different subsets of the full data

set. The difference between the two filters is the weighted value

distributed to the points being evaluated. These filters are crucial

for removing the noise and these filters will be discussed in

further detail in Adam Grupa’s (partner) paper.

After one of the filters is applied to the noisy data, we applied a

cubic spline. Cubic splines apply polynomial curves the data;

where the polynomials curves are connected at evenly distributed

points among the data, called knots. At each knot where both

polynomial curves meet, both cubic polynomials on each side of

the knot must have matching signs of their first three derivatives

[3]. This means if one cubic polynomial has the signs 1: +, 2: -, 3:

+, then the other cubic polynomial must have the signs 1: +, 2: -,

3: +. Having matching signs ensures that when one polynomial

connects to the other they are continuous and smooth.

Figure 7 shows a cubic spline applied to noisy data. To apply the

cubic splines we used smooth.spline(), which is a built-in function

in R. The vertical lines on the plot indicate the start and end of the

spike. Identifying the spike is crucial when using cubic splines

because if the spline is applied to the baseline and spike, the

curves do not fit very well. But, when applied just to the spike,

the curve came out to be very close. The cubic spline are

important because they reduce the mean square error and so we

will be apply the splines after we apply the moving average or

binomial filter.

Figure 7. Cubic spline applied to noisy data excluding baseline,

the smooth curve is blue.

3.3 Analysis of Filter Choices
To compare the 2 data de-noising methods, we used three metrics-

full-width half-height, area under the curve, and rise time, all of

which will be explained later. To compare these un-filtered,

moving average filter, and binomial filter, we made graphs

showing the percent of total of what the metrics came out to be

for all shots on one specific sensor. From this comparison it was

found that the filters concentrated the data more to the spike of

the data. Also the binomial and moving average filter produce

very curves. Thus, these results show the filters are doing what we

need. The comparison of filter choices is discussed in greater

detail in Adam Grupa’s (partner) paper.

4. Metrics Collected for Analysis
For pages other than the first page, start at the top of the page, and

continue in double-column format. The two columns on the last

page should be as close to equal length as possible.

Full-width half-height is important because it will show us the

general shape of the peak, without including the extra ringing

before returning back to baseline. It calculates the area under the

curve from the top of the spike, down to half the height of the

peak.

Area under the curve tells us how large the spike is and is found

by using a trapezoidal sum function.

Rise time is the amount of time it takes to reach the peak.

Baseline is the value of which nothing is happening in the data

being required, so this any data a part of the baseline is set to zero

because we do not want that included in the data being evaluated.

Standard deviation is included for the noise.

Peak is indicating whether the spike was positive or negative,

which is important for calculating other metrics. Some sensors

recorded negative spikes and are still usable.

Max and Min height is the maximum height and minimum

height of the data.

Range is the range of time values for start to end of the spike.

5. Results
To see if the machine diagnostics correlate to a shot radiation

dose, we developed a model using linear regression (independent

variables being used to linearly predict the dependent variables).

The model uses area under the curve and full-width half-height,

because those two metrics were found to have the lowest percent

error. The model resulted in reasonable shot radiation dose

predictions with a few outliers. This model will continue to be

improved and the analysis is discussed in detail in Adam Grupa’s

(partner) paper.

6. Future Work
Correlations will be tested against data but it will not be a

complete model because we are given a limited data set. If we

believe we have found a reasonable model we may also decide to

use cross-validation to improve the model. Solutions found by

our research group will be given to the NST where they will

continue researching the solutions in the future. One thing to note

is when analyzing make sure the data from one sensor can be

compared to other sensors. For example, at different sensors, the

value of the voltage and current readings is scaled as a security

precaution of NST. Thus, when comparing data the data can only

be compared for each specific sensor with the same scale. The

NST should be able to eliminate the various scales and then

compare across multiple sensors.

7. Acknowledgements
Dr. Luttman (Industry contact), Dr. Schmidt (Mathematics), Dr.

Zhang (Computer Science), and Dr. Debnath (Computer Science)

for direction on the project. The Mathematical Association of

America, National Science Foundation, and Society for Industrial

Applied Math for funding of PIC Math program.

18

8. References
[1] B. V. Oliver, et al., “Characterization of the rod-pinch diode

X-ray source on Cygnus," In: Pulsed power conference 2009,

2009, p. 11-16.

[2] Prandoni, Paolo. Vetterli, Martin. “Signal Processing for

Communications,” EPFL Press, 2008. P. 19-143.

[3] Gareth, James, et al. “An Introduction to Statistical Learning

with Applications in R,” Springer, p. 59-297.

[4] B. West et al., “Linear Mixed Models: A Practical Guide

Using Statistical Software," Second Edition, CRC Press,

2014.

[5] D. Mosher, et al., “Rod-pinch X-radiography for diagnosis

of material response," in: 42nd Annual Meeting of the APS

Division of Plasma Physics combined with the 10th

International Congress on Plasma Physics. #PO2.001.

[6] J. Smith, R. Carlson, et al., “Cygnus dual beam radiography

source," In: Pulsed power conference, 2005 IEEE, 2005, p.

334-337.

[7] C. Courtois, et al., “Characterization of an MeV

Bremsstrahlung X-ray source produced from a high intensity

laser for high areal density object radiography," Physics of

Plasmas, 2013, p. 20.

9. Appendix

The source code includes not the complete program, but a

generalized version to show the essential components.

spike6:
Purpose: Driver function of the program, which switches between

using the data as unfiltered, moving average filtered, and

binomially filtered. It then applies the cubic spline and

assigns the metrics using external functions.

Input: list- a list of all shots containing a specified sensor name.

dataset- the complete data set containing shot values

corresponding to shot times.

spike6=function(list,dataset)

{

 for(h in 1:length(list)){

 data=dataset[dataset$Sensor.Name==list[h],]

 value=data$Value

 time=data$Time

 for(aaa in 1:3){

 switch(aaa,

 value <- value,

 value <- avgFilter(value, 10),

 value <- binFilter(value, 6))

 #apply cubic spline to curve

smooth=smooth.spline(time[start:end],value[start:end])

fit=smooth$y

fittime=smooth$x

start=0

end=length(value)

#calculate metrics

fwhh=calcFwhh(fittime,fit)

int=integrate(fittime,fit)

risetime=fittime[which.max(fit)]-fittime[1]

baseline = findBaseline(fit[1:100])

standarddev=sd(noise)

max=max(fit)-mean(noise)

min=min(fit)-mean(noise)

peak=calcPeak(value,max,min)

range=time[end]-time[start]

 }

}

}

integrate:
Purpose: Calculates area under the curve of the function by using

a trapezoidal sum.

Input: shotTimes- time values for data in the shot. shotValues-

values corresponding to shot times.

Output: int- the floating point value of area under the curve.

integrate=function(shotTimes,shotValues)

{

 install.packages("zoo")

library("zoo")

 id <- order(shotTimes)

int <- sum(diff(shotTimes[id])*

rollmean(shotValues[id],2))

 return(int)

}

calcFwhh:
Purpose: Calculates the full-width half-height of the curve.

Input: fittime- time values for data in the shot. fit- values

corresponding to shot times.

Output: int2- the floating point value of area under the curve of

the peak of the curve.

calcFwhh=function(fittime,fit){

midend=findEnd(fittime,fit)

midstart=findStart(fittime,fit)

fwhh=fittime[midend]-fittime[midstart]

fwhhfit=fit[midstart:midend]

fwhhfittime=fittime[midstart:midend]

int2 = integrate(fwhhfittime,fwhhfit)

return(int2)

}

calcPeak:
Purpose: Calculates the sign of the peak.

Input: value- value of the peak point. tempmax- the highest value

19

found on the curve. tempmin- the lowest value found on the

curve.

Output: Peak- the string indicating whether the curve is “Positive”

or “Negative”.

calcPeak(value, tempmax, tempmin)

baseline=mean(value)+sd(value)

baseline2=mean(value)-sd(value)

if(baseline<tempmax | baseline2>tempmin){

Peak = “Negative”

}

else{

Peak="Positive"

}

return(Peak)

}

findNoise:
Purpose: find the start and end of the noise.

Input: shotValue- values of data points.

Output: noise- number of data points ranging from the start of the

noise to the end of the noise.

findNoise = function(shotValues){

upperThreshold = mean(values) + sd(values)

lowerThreshold = mean(values) - sd(values)

noiseBegin = 1

signalBegin = 1

while((values[signalBegin]<upperThreshold)&&

(values[signalBegin] > lowerThreshold)){

signalBegin = signalBegin + 1

}

noiseEnd = signalBegin - 100

if(noiseEnd > 300){

noise = values[noiseBegin:noiseEnd]

return(noise)

}

else {

return(NULL)

}

}

findBaseline:
Purpose: calculate the baseline of the curve.

Input: shotValue- values of data points.

Output: baseline- the average of the filtered data

findBaseline = function(shotValues){

noise = findNoise(values)

filt = avgFilter(noise, 10)

baseline = mean(filt)

return(baseline)

}

findStart:
Purpose: calculate where the spike starts and jumps above the

baseline.

Input: fittime- time values of the shot. fit- values corresponding to

time values.

Output: midStart- time value where the spike starts.

findStart(fittime,fit){

midstart=0

max=max(fit)

mid=max/2

k=1

while(midstart==0){

if(fit[k]>mid){

midstart=k

for(l in 1:5){

if(is.na(fit[k+l])){ }

else{

if(fit[k+l]<mid){

 midstart=0

}

}

}

}

}

return(midstart)

}

findEnd:
Purpose: calculate where the spike ends and returns to the

baseline.

Input: fittime- time values of the shot. fit- values corresponding to

time values.

Output: midEnd- time value where the spike ends.

findEnd(fittime,fit){

midend=0

max=max(fit)

mid=max/2

k=1

while(midend==0){

if(fit[k]>mid){

midend=k-1

}

k=k+1

if(k==length(fit)){

midend=k

}

}

}

20

Analysis and Inference of Cygnus Shot Quality Using
Machine Diagnostics

Adam Grupa
Winona State University

agrupa06@winona.edu

ABSTRACT
Cygnus is a flash X-ray generator used by National Secu-
rity Technologies at the Nevada National Security Site to
record images of subcritical nuclear experiments in support
of the U.S. Stockpile Stewardship program. Experiments
performed with Cygnus are expensive and must be sched-
uled far in advance, so it is critical Cygnus performs correctly
during each experiment. However, the process used to de-
termine the usability of an experiment takes several hours.
During the course of an experiment, machine diagnostics are
collected from electrical sensors along Cygnus. These diag-
nostics are available immediately, so it would be useful if
experiment usability could be determined from them. We
analyze these electrical diagnostics using signal processing
techniques to determine characteristics that exist in the sig-
nals, and then use those characteristics to create a predictive
model that allows us to infer the usability of an experiment.

Keywords
Cygnus, flash X-ray radiography, signal processing, filters,
smoothing splines, linear regression

1. INTRODUCTION AND HISTORY
1.1 Supercritical Nuclear Testing
In 1945, the United States (US) government began testing
nuclear weapons, starting with Trinity test in New Mexico,
which arose from the Manhattan Project [1]. These super-
critical tests were mainly focused on figuring out the military
applications of the weapons, as well as experimenting with
new weapon designs. Until 1963, most of the nuclear tests
that were conducted were atmospheric or exoatmospheric
[1]. Even though precautions were taken to test weapons
in unpopulated areas, such as the Nevada Test Site, the
atmospheric nature of the tests often meant radioactive fall-
out would be dispersed far from the detonation zone of the
weapon. Coupled with unpredictable weather patterns, tests
would lead to unintended contamination of inhabited areas
or water and food supplies.

Figure 1: Upshot-Knothole Grable Test

A prime example of this was the Castle Bravo test in 1954,
where the US detonated a fusion hydrogen weapon in the
Marshall Islands. Researchers underestimated the yield of
the bomb and the amount of radioactive fallout it would
produce. In addition, the weather pattern changed, leading
to the spread of fallout over nearby populated islands. Even
though the islands were evacuated as soon as possible, many
of the inhabitants suffered from radiation burns and poison-
ing, resulting in an increase in radiation related illnesses,
such as cancer and birth defects.

The negative effects of unabated atmospheric testing were
cause for concern for many of the worlds countries, eventu-
ally resulting in the Partial Test Ban Treaty in 1963, which
the US signed. As part of the treaty, the US halted all atmo-
spheric tests and moved testing underground [1]. Instead of
open air detonations, holes would be drilled hundreds of me-
ters into the ground and nuclear weapons would be placed
in them. The resulting explosions excavated huge amounts
of earth, creating large subsidence craters up to a kilometer
in diameter.

1.2 Subcritical Nuclear Testing
Part of the impetus for continuing nuclear testing in the
US was the arms race between them and the Soviet Union
during the Cold War. With the end of the Cold War in
sight around 1991, aggression between the two blocs was
rapidly declining, so the Soviet Union declared a moratorium
on all future nuclear weapons testing. This led the US to
reexamine its own nuclear testing policy, resulting in the US’
nuclear testing moratorium of 1992, after which no nuclear
weapons have been produced or tested. In addition, the

21

US signed (but did not ratify) the Comprehensive Test Ban
Treaty in 1996 [1], which ended nuclear testing for most
countries around the world. However, this created a problem
for the caretakers of the US aging nuclear stockpile. How
could they be sure the weapons will still perform as expected
if they cannot conduct supercritical tests?

To solve this problem, the US Department of Energy (DOE)
began the Stockpile Stewardship program, which employs
national laboratories overseen by the National Nuclear Se-
curity Administration (NNSA), such as Los Alamos National
Laboratory and Sandia National Laboratory, to test and
maintain the current stockpile of nuclear weapons without
conducting any supercritical tests [5]. Part of the solution
to this problem involved the use of computers for computa-
tional modeling. Computer simulations of nuclear tests are
used to verify the reliability of the stockpile. But this of
course creates another problem. How do researchers know
that the models are correct?

The answer to this question lies in breaking the use of the
model into separate stages and performing small-scale phys-
ical tests analogous to the simulation created by the model.
First, the model is used to create a small-scale subcritical
nuclear test simulation. Second, focused experimentation
with physical subcritical tests are conducted to verify the
model. If the physical experiments agree with the computa-
tional model, then the model is scaled up and used to create
simulations of full supercritical nuclear tests.

National Security Technologies (NSTec) is a company that
is contracted by the DOE and, as part of its contract, helps
perform the focused experiments used to verify the compu-
tational models produced through the Stockpile Stewardship
program [1]. These experiments involve performing subcrit-
ical nuclear tests and using flash X-ray radiography to help
analyze the results. X-rays are useful since not only can they
be used to capture images of subcritical explosions, they can
also reveal the internal structure of the explosion, which is
not available using regular photography.

1.3 Cygnus
The machine that generates the X-rays used for these ex-
periments at NSTec is called Cygnus (Figure 2), which is
actually two X-ray generators that run in parallel (Cygnus
1 and Cygnus 2), meaning there are two X-ray shots per
experiment, resulting in two images [5]. The quality and us-
ability of the produced images is correlated with the dose of
radiation produced by the X-rays for an experiment. This
dose is often called shot quality, and is recorded separately
for both machines. Cygnus must maintain a high degree of
accuracy in order to provide useful information for verifying
the computational models and must produce usable results
in 199 out of every 200 experiments. When an experiment
is unusable, the images that it produced are unclear and the
corresponding shot quality is low.

A problem faced by the researchers working with Cygnus
is that the process used to determine the shot quality can
take up to several hours to complete, meaning they must
wait after an experiment to determine if it has produced
usable information or not. As might be expected, it takes
a substantial amount of time and money to schedule and

Figure 2: Technicians working on Cygnus

perform an experiment on Cygnus, so it would be benefi-
cial if researchers could tell if an experiment was usable or
not immediately, without having to determine shot quality.
Luckily, Cygnus produces a series of machine diagnostics for
each experiment which are available immediately after the
experiment is conducted.

These machine diagnostics are discrete electrical signals pro-
duced by a battery of approximately 28 sensors (sensors are
sometimes added or taken away) that measure voltage or
current and are placed along Cygnus at various points until
the point where X-rays are produced. Sensors near the end
of Cygnus tend to be more important, since they are close
to the point of X-ray production. In addition, the sensors
are digitizers, meaning they have a finite resolution and are
only capable of producing certain values, so certain signals
may be quantized to values that do not represent the true
signal values.

We worked with NSTec to see if it was possible to predict
the shot quality of an experiment based upon these machine
diagnostics. We were given machine diagnostic data for 100
experiments from both Cygnus 1 and Cygnus 2 along with
the corresponding shot quality for the experiment. The data
was also separated into two time periods, with the first being
before Cygnus underwent significant maintenance, and the
second being after the maintenance was finished. Therefore,
the data can be divided into four distinct subsets indexed by
what machine was used and time period. Using techniques
from signal processing, we were able to obtain useful met-
rics from the diagnostics generated during the experiments.
These metrics were then applied to a linear regression model
which had moderate success at predicting shot quality.

In section 2, we give a brief overview of the characteristics
of the data we worked with. In section 3, we go over the
details of the methods we used to remove noise from the
data. Finally, in section 4, we present the predictive model
we created to predict shot quality and analyze the results of
the model.

2. DATA DESCRIPTION
Examples that are characteristic of the signals obtained from
the machine diagnostics are given in Figure 3. Note the gen-
eral trend of the signals is to begin with pure noise, rapidly

22

increase or decrease in value, and then return to some base-
line. The noise is caused by fluctuations of energy in the
sensor circuit primarily due to thermal agitation or defects.
What this means is that even when the machine is not pro-
ducing X-rays, the sensors are still reading some electrical
values. Once Cygnus is activated, this noise is then com-
pounded on top of the actual signal which distorts it slightly.

In addition, since the sensors never stop recording electrical
noise and settle down, there is no true zero for the sensors.
Instead, we must determine what an appropriate baseline
is for each signal based on its noise distribution and use
this as the zero. We can see in the examples that the noise
hovers around a zero value before the spike in the signal,
where the spike is the first time the signal rapidly increases
or decreases and then returns to baseline. Some signals,
such as the second example in Figure 3, never returned to
a baseline value, which made them harder to use in our
analysis. In addition, not all of the spikes begin and end at
the same time, instead occurring as electricity moves along
Cygnus to eventually produce X-rays.

Since the signals are digital, they are made up of a discrete
number of points which represent the value of the signal
at a certain place in time. We have added lines connecting
each point to its adjacent neighbor to make the graphs more
visually pleasing, but this is not necessary. We want to be
able to refer to the value of any particular point in a signal,
so we define notation to do so. Given a signal y, then y[i]
refers to the value of the ith point in the signal. For example,
if y = (4, 6, 2, 8), then y[1] = 4 and y[3] = 2.

3. NOISE REMOVAL TECHNIQUES
Because the inherent noise in the signals was affecting the
signal values, statistics and metrics we wanted to calculate
from the signals would be changed, so we looked for ways
to remove the noise while keeping the signal intact. We
primarily used two methods to remove the noise; digital sig-
nal filters and smoothing splines. These would in turn help
us determine an appropriate baseline for each signal which
could then be used to calculate metrics on the signal.

3.1 Digital Signal Filters
Digital signal filters are essentially any process that removes
an unwanted feature from a signal. In general, the most
common filters are those that attempt to remove noise from a
signal, thereby revealing the true values of the signal. Other
common filters include bandpass filters, such as high-pass
and low-pass filters, which attenuate parts of a signal with
certain frequencies while letting other frequencies pass [4].
A direct application of this kind of filter would be a radio
tuner, which filters out all radio frequencies except the one
being tuned to.

In signal processing, filters take the form of functions de-
signed with a specific purpose in mind which are then ap-
plied to an input signal to produce an output signal [6]. To
apply the filter to a signal, the signal is represented as a
function and convoluted with the filter. For an analog sig-
nal f and an analog filter g, their continuous convolution is
defined as

0.0e+00 5.0e−06 1.0e−05 1.5e−05

0
5

10
15

Example Signal

Time

V
al

ue

0e+00 1e−06 2e−06 3e−06 4e−06

−
3e

+
05

−
2e

+
05

−
1e

+
05

0e
+

00

Example Signal

Time

V
al

ue

−1e−05 −5e−06 0e+00 5e−06 1e−05

−
50

00
0

50
00

10
00

0

Example Signal

Time

V
al

ue

Figure 3: Example Signals

(f ∗ g)(t) =
∫ ∞

−∞
f(x)g(t− x)dx. (1)

Here, x is some dummy variable for use in the functions and
t usually represents time, but it does not have to. What
is essentially happening in the convolution operation is that
the function f , the input signal, is being weighted by the
function g(t − x), the filter, where g has been horizontally
shifted along the x-axis by some amount t. Increasing or
decreasing t ‘slides”g along the x-axis and emphasizes where
it overlaps with f due to f(x) and g(t−x) being multiplied.
Since our signals are discrete, however, we use the discrete
convolution, which is defined as

(f ∗ g)[n] =
∞∑

m=−∞

f [m]g[n−m] (2)

for some input signal f and filter g and where m and n
are integers [4]. In addition, our input signal and filters are
represented by a finite sequence of values, so we can imagine
padding the sequences with zeros in order to use them in the
infinite definition of the discrete convolution. However, this
is not necessary, since whenever the two sequences do not
overlap, they will multiply to zero anyway. Thus, we need
only evaluate the sum in the convolution from the lower
bound of g to its upper bound. This gives us the definition

23

(f ∗ g)[n] =
B∑

m=A

f [m]g[n−m] (3)

where A and B are the locations of the first and last non-zero
values of g [4].

The filters we examined were a moving average (MA) filter
and a binomial filter.

3.1.1 Moving Average Filter
The MA filter is one of the simplest filters that can be im-
plemented. The general idea of a moving average filter is to
take in an input signal, x, and for each data point x[i] take
the average value of the data points of the signal in a small
band around that point [6]. The definition of a MA filter is

y[i] =
1

2M + 1

M∑
j=−M

x[i+ j] (4)

where x is the input signal, y is the output, or filtered, signal,
and 2M +1, the width, is the number of data points around
the ith data point that are being averaged, where M is the
number of data points to look ahead or behind. Notice we
can also define the MA filter as

y[i] =
1

2M + 1
x[i−M] + · · ·+ 1

2M + 1
x[i]

+ · · ·+ 1

2M + 1
x[i+M].

Here, it is apparent the filter is just assigning weights to the
points and taking their sum. This means we can also define
a MA filter by the weights it places on data points, listed as
(1
2M+1

, . . . , 1
2M+1

) where the number of weights is 2M + 1.
This also means we generalize the MA filter to a weighted av-
erage filter, with weights ai listed as (a−M , . . . , ai, . . . , aM)
[6].

As an example, consider the signal represented by the se-
quence x = (0, 5, 1, 9, 2, 7). We would like to apply an MA
filter of width 3 to x. This means, for each data point i,

y[i] =
1

3

1∑
j=−1

x[i+ j]

=
1

3
(x[i− 1] + x[i] + [i+ 1])

=
1

3
x[i− 1] +

1

3
x[i] +

1

3
[i+ 1].

For example, the third data point in y is y[3] = 1
3
(5 + 1 +

9) = 5. The stem plots of x and the filtered signal y are
given in Figure 4. Notice the missing values near the edges.
This is always a problem when using filters on finite signals

1 2 3 4 5 6

0
2

4
6

8

Stem Plot of Unfiltered Signal

Time

V
al

ue
1 2 3 4 5 6

2
3

4
5

6

Stem Plot of Signal Filtered with MA 3

Time

V
al

ue

Figure 4: Moving Average Example

that attempt look ahead or behind the current data point.
Eventually, they will reach the end of the signal and will not
be able to compute a new value. Usually this is remedied
by padding the signal with extra data points with value 0
on both ends that are as wide as the filter being used.

In Figure 5 is an example of a MA filter being applied to
one of the signals in our dataset. Notice that the filter does
a good job of reducing the variance of the baseline noise
before and after the spike in the signal, however, it does not
accurately follow the curve of the spike, and even reduces
the peak value of the spike significantly. The reduction in
peak value occurs because the filter is picking up some of
the values in the baseline noise, which are near zero. We
would like to use a filter that helps to eliminate the variance
in the signal caused by noise, but that also does not affect
the true value of the signal too much. Because of this, we
examined binomial filters.

3.1.2 Binomial Filter
A binomial filter is fairly similar to a moving average filter, in
that, instead of weighting each data point evenly, it applies
more weight to data point closer to the input point, and
less weight to those point farther away. A binomial filter is
defined as

y[i] =

M∑
j=−M

x[i+ j]

2|j|+1
(5)

24

1.170e−05 1.175e−05 1.180e−05 1.185e−05 1.190e−05 1.195e−05

Unfiltered Signal

Time

V
al

ue

1.170e−05 1.175e−05 1.180e−05 1.185e−05 1.190e−05 1.195e−05

Signal Overlayed with MA 31

Time

V
al

ue

Unfiltered Signal
Signal Filtered with MA 31

Figure 5: Effects of Moving Average Filter on Signal

Thus, the weights for the binomial filter look like

(
1

2M
, . . . ,

1

22
,
1

21
,
1

22
, . . . ,

1

2M
).

The binomial filter is more useful than the normal MA filter
for two reasons. First, it weighs points more heavily that are
closer to the point being calculated. This means that the fil-
tered peak value of a signal will not be as affected by data
points that are drastically different in value but far away.
Second, the weights in the binomial filter approximately fol-
low the probability density of a Gaussian distribution. The
distribution of the noise in our signals is Gaussian, so the
binomial filter will do a good job of removing that noise.
Figure 6 shows an example of how the binomial filter affects
our signals, using the same signal as in Figure 5. Notice that
the variance of the noise is reduced significantly, but the fil-
tered signal still closely follows the values of the original
signal.

3.2 Cubic Splines
Cubic splines apply polynomial curves to continuous subsets
of the data. The polynomials curves are connected at evenly
distributed points among the data, called knots. At each
knot, the two cubic polynomials on each side of the knot
must have matching signs of their first three derivatives [3].
This means if one cubic polynomial has the signs 1: +, 2: -,
3: +, then the other cubic polynomial must have the signs

1.170e−05 1.175e−05 1.180e−05 1.185e−05 1.190e−05 1.195e−05

Signal Overlayed with Binomial 31

Time

V
al

ue

Unfiltered Signal
Signal Filtered with Binomial 31

Figure 6: Effects of Binomial Filter on Signal

1: +, 2: -, 3: +. The reason for this is to ensure that the
entire fit is continuous and smooth.

Figure 7 shows a cubic spline applied to noisy data. The
vertical lines on the plot indicate the calculated start and
end of the spike. It is crucial to find these when using cubic
splines. When the spline is applied to the baseline and spike,
the curves do not fit very well. But, when applied just to the
spike, the curve came out to be very close. Cubic splines are
useful because they minimize the mean square error while
retaining the original characteristics of the curve.

4. MODEL AND ANALYSIS
Using the metrics that we calculated on the signals, we pro-
duced a simple linear regression model to try and predict the
shot quality of the experiments [3]. The data we used to fit
our model came from the subset of experiments for the first
Cygnus machine in the earlier time period. For the features
of our model, we decided to use two important sensors near
the end of the Cygnus machine.

We chose these two because these sensors are closer to where
the X-rays are being produced and we believe this means the
signals captured by those sensors will have higher correlation
with the shot quality. From those two sensors, we used the
full-width half-height (FWHH) and the area under the curve
(AOC) values calculated on those signals as the features of
the model. In this case, FWHH is the width or range of
the first spike of the signal, where the value of the spike is
greater than half the maximum value for the entire signal.
AOC is simply the area under the spike using the calculated
baseline. We also include an interaction term between the
FWHH and AOC, since part of the calculations for FWHH
and AOC deal with deciding where the spike of a signal
begins and ends.

The full model looks like

yi = β0 + β1FWHH1i + β2AOC1i

+ β3(FWHH1i ×AOC1i)

+ β4FWHH2i + β5AOCi2

+ β6(FWHH2i ×AOC2i),

(6)

25

4.0e−07 8.0e−07 1.2e−06 1.6e−06

Time

V
al

ue

5.0e−07 1.0e−06 1.5e−06

Time

V
al

ue

Figure 7: Cubic Spline Fitted to Spike

where yi is the predicted shot quality of the ith experiment,
the βn are the coefficients for the features, a subscript of 1
indicates a metrics from the first sensor, and a subscript of
2 indicates a metric from the second sensor.

We attempted to fit this model using metrics calculated from
both unfiltered signals and signals filtered with a binomial
filter to see if the filtering offered any appreciable difference
in the fit of the model. Surprisingly, when we applied the
model to the unfiltered metrics, we observed that the model
performed fairly well.

4.1 Unfiltered Model
All of the p-values associated with the model feature coeffi-
cients were below 0.05, suggesting that the coefficients are all
close to their true value, assuming the model is correct [3].
Notable features were AOC1 and FWHH1 ×AOC1, whose
associated coefficients both had p-values below 1.0 × 10−7.
The multiple R-squared statistic calculated for the model
was approximately 0.9, indicating the model was able to pre-
dict shot quality fairly well [3]. In addition, the p-value of the
F-statistic associated with the model was below 5.0× 10−9.

Looking at the residual plot for the model in Figure 8, we can
see that there is no discernible pattern occurring in the resid-
uals, indicating that a linear relationship probably models
the true relationship between sensor values and shot quality
well.

4.2 Binomial Filtered Model
We next attempted to fit the model using metrics that had
been calculated from signal that were filtered with a bi-

−16 −14 −12 −10 −8 −6 −4 −2

−
1

0
1

2
3

Residual Plot of Unfiltered Model

Fitted Values

R
es

id
ua

ls

Figure 8: Residual Plot for Unfiltered Model

nomial filter. All of the p-values associated with the fea-
ture coefficients were still below 0.05, however, most of the
p-values increased slightly, meaning there is less certainty
that the calculated values are closer to the true values for
the coefficients [3]. In particular, the p-values for AOC1 and
FWHH1 × AOC1 were now below 1.0 × 10−8, an increase
by an order of magnitude. Additionally, the p-value associ-
ated with the F-statistic decreased slightly and was below
3.0 × 10−9. Finally, the multiple R-squared value also in-
creased slightly, and was approximately 0.9049, indicating
that the model based on the filtered metrics was slightly
better at predicting shot quality [3].

In Figure 9, we have the residual plot associated with the
binomial filtered model. It is fairly similar to the residual
plot for the unfiltered model, with the main difference being
that most of the residuals have moved closer to 0, echoing
the increased multiple R-squared value.

4.3 Analysis
The failure of binomial filtering to create a significantly su-
perior model to the unfiltered model suggests a few things.
First, is that the metrics we chose and the way we calcu-
lated them turned out to be robust to noise, meaning that
filtering the signals would have little effect on the calcula-
tions of the metrics anyway. Second, is that the noise may
not be having as strong of an effect on the signal as we sup-
posed, so the filtering isn’t actually removing a deleterious
feature that is obscuring the true signal. Third, is that we
have failed to verify some assumptions with regards to the
model we have produced and so we are observing a spurious
correlation between this signals and the shot quality.

5. CONCLUSION
We attempted to produce a model based on Cygnus’ elec-
trical machine diagnostics that can predict the shot quality
of an experiment performed by Cygnus. After smoothing
out the signals of the machine diagnostics using digital sig-
nal filters and smoothing splines, we calculated metrics from
the signals with which to create a simple linear regression
model. Surprisingly, the model we created was able to pre-
dict the shot quality of an experiment fairly well, even when
fit using metrics from unfiltered signals. This shows that
there is at least some correlation between the machine di-

26

−16 −14 −12 −10 −8 −6 −4 −2

−
1

0
1

2
3

Residual Plot of Binomial Model

Fitted Values

R
es

id
ua

ls

Figure 9: Residual Plot for Binomial Filtered Model

agnostics collected from Cygnus during an experiment, the
experiment’s shot quality and, by extension, the quality of
the image captured during the experiment.

6. FUTURE WORK
There is still much work to be done regarding Cygnus and
its machine diagnostics. We will further examine our model
to see if it holds up under scrutiny. Notice that in Figure 8,
there exist some points that seem like outliers, due to high
leverage or high residual value [3]. We will see if the model
remains intact after removing outliers that might cause bias
in the fit of the linear regression. We will also apply the
model we have created to the other remaining data subsets
to see if it has the same degree of predictive ability. Finally,
we will also try modifying the model by adding or removing
other possible features or metrics to see how they affect the
fit of the regression line.

7. ACKNOWLEDGEMENTS
We would like to thank Dr. Aaron Luttman from NSTec for
providing us with the problem, the data to solve it, and sug-
gesting possible avenues for research, Dr. Samuel Schmidt
from Winona State University for finding the problem and
administering the PIC Math course in which we worked on
this problem, and the NSF, MAA, and SIAM for helping
fund the PIC Math program.

8. REFERENCES
[1] United states nuclear tests july 1945 through september

1992. Tech. Rep. DOE/NV–209-REV 15, U.S.
Department of Energy Nevada Operations Office,
December 2000.

[2] de Boor, C. A Practical Guide to Splines. No. v. 27 in
Applied Mathematical Sciences. Springer-Verlag, 1978.

[3] James, G., Witten, D., Hastie, T., and
Tibshirani, R. An Introduction to Statistical Learning:
with Applications in R. Springer Texts in Statistics.
Springer, 2013.

[4] Prandoni, P., and Vetterli, M. Signal Processing
for Communications. Communication and information
sciences. EFPL Press, 2008.

[5] Smith, J., Carlson, R., Fulton, R., Chavez, J.,
Ortega, P., O’Rear, R., Quicksilver, R.,
Anderson, B., Henderson, D., Mitton, C.,

Owens, R., Cordova, S., Maenchen, J., Molina,
I., Nelson, D., and Ormond, E. Cygnus dual beam
radiography source. In Pulsed Power Conference, 2005
IEEE (June 2005), pp. 334–337.

[6] Smith, S. W. The Scientist and Engineer’s Guide to
Digital Signal Processing. California Technical Pub.,
1997.

27

wARriorDrone API Development: AR.Drone 2.0 Node.js API

Supporting Color Detection
Jeff Brookshaw, Joan Francioni, Mingrui Zhang, Narayan Debnath

Winona State University

715 338 5217

JBrookshaw09@winona.edu

ABSTRACT

The AR.Drone 2.0 is a remote-controlled quadcopter that is

operated by computer instruction via Wireless Ad Hoc Network.

There are existing API’s to reduce the complexity of

communications between the AR.Drone 2.0 and the computer.

Developers have achieved impressive autonomous flight software

using existing AR.Drone SDK’s and OpenCV. However,

implementing this software requires experience in computer

graphics and computer vision, as well as the configuration of

multiple independent libraries. This can be a difficult process for

someone unfamiliar with the chosen toolsets. The wARriorDrone

API provides the core functionality to access the pixel data of the

AR Drone’s video stream, and provides an interface for mapping

specified colors to common drone flight commands.

1. INTRODUCTION

The AR.Drone 2.0 is a remote-controlled quadcopter that is

operated by computer instruction via Wireless Ad Hoc Network.

The drone comes equipped with two video recording cameras that

can be read and processed by an application server. Because of the

ability to control the drone over a wireless network, it has a great

sum of applications, surveillance, natural disaster monitoring and

relief, even package delivery with more advanced drone hardware.

[1] Programming the AR.Drone provides learning opportunities in

a variety of new programming languages and technologies,

WebGL, Computer Vision (OpenCV), UDP Networking,

Accelerometers, Gyroscopes, and experience with reverse

engineering the drones base SDK. [2] Its very important to

understand how drones function and are programed, they are

already a huge part of military defense systems around the world,

and are slowly becoming more widespread in private industry as

first of their kind regulations are being defined by the Federal

Aviation Administration.

There are several SDK’s/API’s that are available for a variety of

programing languages, these provide an interface to send and

receive data to and from the AR Drone 2.0. The API’s that support

autonomous flight and image processing, almost all use OpenCV.

OpenCV or Open Source Computer Vision, is a very popular open

source library that supports real time computer vision applications.

These algorithms can be used to detect and recognize faces, identify

objects, classify human actions in videos, track camera movements,

track moving objects, and more [5-7]. Two of the more interesting

uses of OpenCV I came across were node-copterface and ardrone-

panorama. Node-copterface uses OpenCV to detect faces and

attempt to keep the detected face in the center of drones view.

Panorama allows for the creation of 360 degree panoramic photos

using OpenCV photo stitching libraries. Both showcase the power

of processing the AR Drone video stream with OpenCV. But,

between installing and configuring the API and independent

OpenCV library you are looking at a lengthy set up process even

for someone with system administration and computer graphics

experience. [2-3, 5]

The DronePilot.NET SDK supports building AR Drone

applications using C# and Visual Basic, the API provides a great

coverage of all the available commands available to the Drone, and

supports advanced image processing through OpenCV. It was

created in Japan by researchers at Niigata University in an effort to

simplify the process of creating a GUI and sending commands to

the AR Drone, as compared to using the C/C++ SDK released by

the AR Drone manufacturer Parrot. It successfully achieved this,

but, is dependent on having OpenCV installed and set up to do any

image processing. One big downfall of the DronePilot.NET SDK

is that the amount of available open source code for programing the

drone with C#/Visual Basic does not even compare to the number

of open source packages available for Node.js [2, 5].

Figure 1. AR.Drone 2.0 Power Edition

Because the proposed API is built using Node.js, installation is

quick and a verbose set of open-source libraries can be easily

installed and managed via NPM (Node Package Manager). Making

the API great for quickly getting a feel for programming the drone

and basic image processing without having to configure complex

computer vision libraries. I have measured the performance of my

proposed API for processing the AR Drone’s video stream and have

verified its satisfactory performance, to detect and follow colored

objects.

28

One of the biggest reasons for node’s popularity with AR Drone

developers is the NodeCopter community. NodeCopter is a full day

event where fifteen to sixty developers team up in groups of three,

and are given one Parrot AR.Drone 2.0 and spends the day

programming and having fun with it. At the end of the day each

team presents a demo of their work to the other attendees.

NodeCopter was founded by Felix Geisendorfer and the first event

was held in Berlin, Germany on October 5th, 2012. It gained

support quickly, and twenty-six more NodeCopter events have

occurred across Europe and the United States since. Felix is also

the author of node-ar-drone a Client API for interacting with the

drone, which was the foundation for coding at NodeCopter events.

The node-ar-drone library is available on GitHub and provides a

great API for programing the drone at both high and low levels.

However, unlike my proposed API it does not have any tools to

simplify image processing, and the few plugins available require

OpenCV set up in your development environment [3-4].

Felix Geisendorfer founder of NodeCopter, giving the

wARriorDrone API a shout out on twitter

2. HYPOTHESIS

An AR Drone 2.0 quadcopter can be programmed to recognize and

autonomously follow a colored object in a controlled environment.

3. METHODS

I expressed my interest and submitted a proposal to the Computer

Science Department requesting funding to purchase an AR.Drone

2.0. After successfully gaining the Computer Science Department’s

support an AR Drone 2.0 Power Edition was ordered online through

the WSU CS Department, which came with 2 HD Batteries, 4 sets

of propellers, as well as tools for any needed repairs. At the end of

the semester I will be returning the drone to the Computer Science

department making it available for future student projects.

3.1 Specifications

Dependencies:

 Node.js: v0.12.0

 node-ar-drone: v0.3.3

 node-dronestream: v1.1.1

 Angular.js: v1.3.15

Drone Specs:

Model: AR.Drone 2.0 Power Edition

Network: Wi-Fi (802.11)

Processor: 1 Ghz CPU

Memory: 125MB

OS: Linux (BusyBox)

Cameras: 720p front, 480p bottom

Machine Specs:

OS: Windows 7 Enterprise

Processor: Intel(R) Core i7-4820k CPU @ 3.7GHz

RAM: 8 GB

System: 64 bit

 IDE: JetBrains: WebStorm (JavaScript IDE)

AR.Drone Features Diagram [10]

3.2 Software Design and Implementation

The wARriorDrone API extends two open source node libraries,

node-ar-drone, and node-dronestream [4].The node-ar-drone

library developed by Felix Geisendorfer, provides a client API for

sending movement commands and reading the drone video stream

and navigation data. The node-dronestream handles rendering the

drone’s video stream in a WebGL canvas using broadway.js. Great

open source libraries like these are the primary reason I chose Node

over languages like Java or C#. On the other hand Node.js is not

built for CPU-intensive operations; in fact, using it for heavy

computation will annul nearly all of its advantages. However, Node

excels in building fast, scalable applications, and has the capability

to handle a large number of simultaneous connections with high

throughput, which equates to high scalability. As a result Node is

very efficient at maintaining and reading video and data streams,

making it great for reading the AR.Drone’s two video streams and

the navigation data all asynchronously.

To avoid configuring any external libraries such as OpenCV all

image processing and autonomous flight algorithms are written in

29

JavaScript within the API. This makes the API and example

application ready to use as soon as it is installed with no need for

additional setup. Making the application great for someone who

has little experience in computer graphics but also is a great

platform to start from to gain experience with the core concepts of

computer vision and autonomous flight in the simplest and quickest

way possible. In addition to my personal preference and

familiarity, I use Angular.js primarily to take advantage of the built

in two way data-binding for keeping the various control variables

in the front and backend in sync without any extra code.

3.2.1 Demo Application

 I have developed a web application using my proposed API and

Angular.js to demonstrate its proficiency as well as visualize the

data being processed by the server to aid in understanding the

underlying algorithms. The application allows the user to track a

colored object by clicking the video stream to define the desired

color range. An overview of the applications functionality can be

seen below in Figure 2.

Figure 2. wARriorDrone Web App

In the center of the application interface, the AR.Drone’s video

stream is rendered in the user’s browser of choice using

broadway.js and a WebGL canvas. The HTML5 canvas below

renders any pixels that match the detected color range and estimates

the center of the object by calculating the average x/y coordinate of

all detected pixels. The visualization provided by the bottom

canvas was crucial to debugging the color detection algorithms

early on, and provides instant feedback when adjusting color

detection settings ensuring you are detecting the most possible

pixels on the object without detecting undesired pixels outside the

object.

The application provides the user with controls to optimize color

detection and several options to modify how the drone will interact

with the detected color. Initially I planned to allow the user to

choose between a few pre-defined colors (red, blue, yellow, etc.)

that the drone could detect. This approach had two major flaws.

First it is difficult to find an RGB color range that will consistently

detect the object without picking up other unwanted pixels. Second

the color of an object will change midflight from something as

simple as a shadow or change in lightning, causing the drone to lose

the object regularly. To solve this I have implemented three color

detection settings (Figure 3) that may be adjusted at any time while

using the application. The Color Sensitivity slider allows the user

to adjust how closely a pixels color must match the detected color.

This is extremely useful allowing you to hone down to very specific

color range, or be extend the color range to detect more of the object

when no similar colors are in the environment. The Accuracy slider

is used to determine how many pixels from the drone’s stream are

processed (1 = every pixel, 2 = every other pixel, etc.). Allowing a

user to increase accuracy when using a computer with enough

processing power, or reduce accuracy to free up CPU on a slower

machine. The Speed slider Controls how often in milliseconds the

program computes the detected pixels and sends commands to the

drone. Setting the speed slider to the fastest speed twenty-five

milliseconds will cause the drone to react faster to movement of the

object, but even more importantly adjusts the color range more

often decreasing the chance of losing the detected object. A slow

speed like five-hundred (two times per second) will not be as

effective when tracking the drone, but allows for each tick of the

dynamic color detection algorithm can be seen frame by frame, an

extremely useful feature when debugging or improving the color

detection algorithms.

My goal was to enable any AR.Drone owner, to be able to

experiment with computer vision and autonomous flight quickly

and without a lengthy and complex configuration process. The

application meets both these goals, assuming Node is already

configured it can be installed with NPM (Node Package Manager)

that comes bundled with Node.js on all major OS (Windows, Linux,

IOS) with one command.

Figure 3. Color Detection Settings

3.2.2 Color Detection

As I have mentioned previously, choosing to manually code the

color detection algorithms in JavaScript eliminates the dependency

on OpenCV or another computer vision library. Details on the

functionality of the color detection algorithm can be seen in Figure

2. As the drone is tracking an object around a room the lighting on

the object and available to the drone change frequently, this also

changes the shade of the object being detected which can cause total

loss or inconsistent detection of the object. To solve this, the

algorithm automatically adjusts the color range the drone is

detecting by moving the RGB values slightly towards the average

30

of all detected pixels each frame. This provides a level of

consistency and flexibility that far surpasses attempting to track a

set color range that does not adjust to a changing environment.

Figure 4. Dynamic Color Detection Algorithm

Figure 5. Autonomous Flight Algorithms

The section of code that adjusts the color range is included in the

Appendix Figure A. The averagePixel is a temporary object that at

this point is populated with the average of each of the r, b and g

values of all currently detected pixels (count = # of detected pixels).

The RGB values of the computed averagePixel and the current

color being tracked (pickedColor) are compared one at a time, and

the RGB range is modified to be slightly closer to the average color

that was computed. By only incrementing or decrementing the

RGB values by 1 each iteration the adjustment is smooth and will

not overreact to quick temporary changes in the detected color.

This combined with tweaking the Color Sensitivity settings seen in

Figure $, allows for optimized detection no matter the environment.

The object rendering on the white canvas gives you immediate

feedback as you adjust the sliders, allowing you to easily see how

effectively the object’s color is being detected.

3.2.3 Autonomous Flight

To achieve autonomous flight I used only pixel data from the video

stream and navigation data gathered by the drone’s sensors. Basic

drone movement commands take in a speed argument between one

and negative one. The speed arguments are based on the distance

as a percentage between the detected objects center, and the center

of the drone’s field of view (Figure 5: xVal, yVal). I divide by

/6/determine how fast the drone should move in the required

direction determining the speed and direction the drone will move.

The demo application supports three tracking modes. When the

default mode, follow-front is active, the drone will track the

detected object using the front camera, while maintaining a

consistent distance and keeping the object in the center of its view.

Figure 6. Example AR.Drone 2.0 Navigation Data [4]

Figure 7. Battery Meter and Flight Commands

The second mode follow-bottom, is activated by pressing the

“switch camera” button shown in Figure 7. This mode utilizes the

drones down facing 480p camera to track an object from above.

The drone will hover at an adjustable altitude (Figure 3) above the

detected object. An on board Altimeter that measures atmospheric

pressure is used to determine the drone’s current altitude. The

greater the altitude the lower the pressure [2]. This can be retrieved

through the drone’s real-time navigation data, as well as the fields

shown in Figure 6. The battery meter in Figure 7 created using an

31

HTML5 progress bar that is updated automatically by parsing the

navigation data (Figure 6: batteryPercentage). And third, “orbit”

mode, commands the drone to circle the detected object while

keeping the camera centered on the object. Movement along the

x/y axis (up, down, left, and right) is based on the calculated center

of the object, calculated by taking the average location of all

detected pixels.

Figure 8. Distance Metrics

Keeping a set distance from the detected object is not quite as

straight forward. I use two metrics to determine distance, first I get

a general size of the object based total pixels detected, more pixels

than previously detected indicates the object is closer, the inverse

is true for less. Unfortunately the total pixels detected alone is not

consistent enough to maintain distance, so I introduce a second

metric, a rough width, or “radius” of the detected object. Illustrated

by Figure 8, I obtain a rough estimate of the radius, starting at the

detected center of the object I read the row of pixels to the right one

at a time. The distance between the location of the last pixel to

match the detected color and the center of the object is the radius.

While the drone is tracking an object the originally detected radius

is compared to the current radius (Figure 5: radidiff) based on the

live video, moving forward or backwards to remain at the correct

distance.

Figure 9. Autonomous Flight Trial

4. TESTING PHASES

4.1 Color Detection Algorithm Optimization

To avoid damage to the AR Drone and my early testing

environment, most of the color detection development and testing

was completed without the need to fly the drone. For my own

convenience while testing different color sensitivities and how

often I process the current video buffer, (every 25 ms-500ms), I

added the slider controls that became a major feature of the finished

application. For test objects to detect I used mostly discs I use when

playing disc golf, for their variety of colors and consistent size

(Figure 2).

4.2 wARriorDrone Trials

Four autonomous flight sessions were conducted. The first two

tests focused on tracking with the front camera (Figure 9), and

switching between colors while flying using the three colored

squares in Figure 10. At first the drone over compensated the

distance required to center the object. To correct this I lowered the

speed of the movement commands sent to the drone. Another

common issue I experienced was inverting or forgetting to invert

the movement commands which would send the drone the opposite

direction of the detected object. The last two rounds tested

improvements to the front tracking algorithm as well as showcased

the bottom tracking functionality and orbit mode for the first time.

I use Camestia Studio to capture the Application view during tests,

and Google Chromes built in profiling tools to evaluate how much

CPU I had to spare for additional processing or features [10].

Figure 10. Racquetball Test Environment

Tests were conducted in a standard racquetball court that measures

40 feet long, 20 feet wide, and 20 feet high with red lines defining

the service and serve reception areas. This provides multiple

advantages, first it is an open but enclosed space, to have room to

fly but if the program has errors the drone can’t damage itself or

others. Second it provides a consistent white background in all

directions, perfect for detecting colored objects against. Last the

striped lines in the service area give the drone a good pattern on the

ground to stabilize against.

5. CONCLUSION

I have successfully implemented a demo application using the

wARriorDrone API, which supports autonomous flight through

color tracking. To aid potential users I have also created a website

with documentation on how to get started working with the drone,

and videos of the three main trials. The application is open source

and is published to NPM, making installation and configuration,

faster and easier than any existing AR.Drone API. As continued

research I would like to implement more detection modes as well

as implement PID controllers, a common data structure used in

autonomous flight systems to improve tracking accuracy and

consistency. Programming the AR.Drone 2.0 is a great way to start

experimenting with cutting edge Computer Science and

Engineering. On top of that, the hands on nature of the

32

programming makes it a great way to get younger generations

excited about programming and robotics. As new drone

technologies continue to improve drones will quickly integrate

themselves into our daily lives. Making drone and computer vision

research crucial to taking advantage of new opportunities they

provide, and equally if not more importantly understand their flaws,

for situations when they will inevitably be used for the wrong

reasons. My hope is that Winona State Computer Science students

will continue to develop applications using the drone and continue

to update the website with their new projects.

6. ACKNOWLEDGEMENT

I would like to thank, Dr. Joan Francioni, Dr. Mingrui Zhang, and

Dr. Narayan Debnath for helping with the purchase of the drone

and guiding me through the research process.

7. REFERENCES

[1] Randal W. Beard, Timothy W. McLain, Small Unmanned

Aircraft: Theory and Practice, Princeton Oxford Press, C 2012

[2] Takuya Saito, Kenichi Mase, DronePilot.NET Development:

AR.Drone SDK Supporting Native and Managed Code, IEEE

Journal, Niigata University, Japan, 2013

[3] Felix Geisendorfer, What Is This?,

http://www.nodecopter.com/, 2014, 2/13/2015

[4] Felix Geisendorfer, Documentation,

https://github.com/felixge/node-ar-drone, 2014,

1/14/2015

[5] OpenCV Developers Team, About,

http://opencv.org/about.html, 2015, 2/10/2015

[6] Laurent Eschenauer, Facial Recognition,

https://github.com/eschnou/webflight-copterface , 2013, 2/7/2014

[7] Laurent Eschenauer, Panorama,

https://github.com/eschnou/ardrone-panorama , 2013, 2/8/2014

[8] Google Angular Team, Angular.js, https://angularjs.org/, 2015,

1/1/2015

[9] Parrot, AR.Drone 2.0 Diagram,

http://ardrone2.parrot.com/ardrone-2/specifications/, 2014

[10] TechSmith, Camestia Studio,

https://www.techsmith.com/camtasia.html, 2015, 2/13/2015

8. APPENDIX

Source Code: https://github.com/JBrookshaw/node-

wARriorDrone

Videos/Documentation: https://warrior-drone-

web.herokuapp.com/#!/

WebStorm: https://www.jetbrains.com/webstorm/

33

http://www.nodecopter.com/
https://github.com/felixge/node-ar-drone
http://opencv.org/about.html
https://github.com/eschnou/webflight-copterface
https://github.com/eschnou/ardrone-panorama
https://angularjs.org/
http://ardrone2.parrot.com/ardrone-2/specifications/
https://www.techsmith.com/camtasia.html
https://github.com/JBrookshaw/node-wARriorDrone
https://github.com/JBrookshaw/node-wARriorDrone
https://warrior-drone-web.herokuapp.com/#!/
https://warrior-drone-web.herokuapp.com/#!/
https://www.jetbrains.com/webstorm/

	Announcement
	Proceeding15
	Proceeding15
	Carpenter
	Rutscher
	Hanneman
	Grupa

	Brookshaw

