

The 16th Winona Computer Science
Undergraduate Research Symposium

April 27, 2016

9:30am to 12:30pm

Kryzsko Commons Purple Rooms 247 & 248

Winona State University
Winona, MN

Sponsored by the Department of Computer Science at
Winona State University

ii

Table of Contents

 Title Author Page

Comparing Linux Operating Systems for the John Bellows 8
Raspberry Pi 2 Winona State University

Speed Index and Critical Path Rendering Malek Hakim 41
Performance for Isomorphic Single Page Winona State University
Applications

Effectiveness of Children Online Privacy Komal Bansal 1
Strategies Winona State University

Java Implementation of Cox Proportional Nathan Martin 28
Hazards Model Winona State University

Distance Accuracies with Mobile Applications Nathan Karlstad 22
And Tracking Watches Winona State University

Performance Analysis of ArrayList and Hashmap Asiqur Rahman 33
 Winona State University

Mesh Sensor Network for Atmospheric and Nicholas McNeely 14
Weather Data Acquisition Winona State University

Configuring a Drone Flight Controller over WiFi Mitchell Gerber 18
 Winona State University

Effectiveness of Children Online Privacy Strategies
Komal Bansal

Winona State University

April 22, 2016

kbansal14@winona.edu

ABSTRACT

The Children’s Online Privacy Protection Act (COPPA) is a

Federal Trade Commission (FTC) approved regulation directed

towards websites/apps that collect and use personal information

(PI) of children under 13 years of age. Under COPPA, FTC has

approved a fees-based Safe Harbor program, in which

websites/apps would be subjected to the disciplinary procedures

of the Safe Harbor in lieu of the FTC enforcement. This study

conducted interviews, surveys, and a scenario-based usability

study with parents of children under 13. The study investigated

the effectiveness and awareness of COPPA’s regulations and

COPPA’s Safe Harbor program. COPPA requires websites/apps

to be completely transparent with their activities while engaging

and collecting PI from children under 13 years of age, and to let

parents have full control over their children’s PI. However, this

study found out that parents are neither aware of COPPA and Safe

Harbors nor do parents know if websites/apps are following

COPPA’s mandatory guidelines. Due to lack of such awareness,

parents continue to feel insecure about their child’s online

privacy, and COPPA’s regulations remain less effective among

parents of children under 13.

General Terms

Reliability, Security, Human Factors, Privacy

Keywords

COPPA, FTC, Children Online Privacy Protection Act, Safe

Harbors, PRIVO, TRUSTe, kidSAFE, iKeepSafe, Aristotle,

ESRB, CARU

1. INTRODUCTION

The Children’s Online Privacy Protection Act (COPPA) is a

United States Federal Act that applies to websites/apps that

collects any kind of personal information (PI) from children under

13 years of age. PI includes first name, last name, physical

address, online contact information, telephone number, social

security number, a child’s photograph, audio file, video file,

geolocation information sufficient to identify the location of the

child, and user name sufficient to identify the child. According to

COPPA, websites/apps that collect any kind of PI need to follow

these guidelines [1]:

1. Provide a clear and complete privacy policy on their

website

2. Obtain verifiable parental consent before collecting

private information about their children

3. Provide parents access to the information collected on

their children and allow them to withdraw permission

on future collection on their children’s information

4. Maintain confidentiality of the information collected

5. Minimize the retention period of children information

for as long as is necessary, and delete the data

responsibly.

From 2008 through 2015, the Federal Trade Commission (FTC)

fined several companies for violating COPPA. As illustrated in

Table 1, some of the companies like Sony, Disney’s Playdom,

Yelp, and TinyCo were fined due to collecting PI from children

without verifiable parental consent. Echometrix failed to

adequately provide parents on how they sold the information

collected from their children to third party. RockYou was fined

due to collecting PI from children without verifiable parental

consent. Retro Dreamer and LAI were fined because they allowed

third-party ad networks to collect persistent identifiers in order to

serve targeted ads on the child-directed apps. The FTC has

proven to be strict with websites/apps that violated COPPA

regulations by imposing steep fines and punishments.

Table1: Companies fined by the FTC for violating COPPA

Year Company Fine Amount

2008
Sony BMG Music

Entertainment
$1,000,000

2010 Echometrix $100,000

2011 Disney’s Playdom $3,000,000

2012 RockYou $250,000

2014 Yelp $450,000

2014 TinyCo $300,000

2015 Retro Dreamer $300,000

2015 LAI $60,000

Hypothesis 1: Awareness

The primary goal of COPPA is to give parents full control over

their children’s online activity. Thus COPPA imposes strict

guidelines on websites/apps to provide transparent detailed

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Proceedings of the 16thWinona Computer Science Undergraduate

Research Seminar, April 27, 2016, Winona, MN, US.

1

privacy policies, and obtain verifiable parental consent before

collecting any PI from a child under 13 years of age. However, the

majority of parents are not aware of any law that protects their

child’s online privacy. Thus, the first hypothesis of this research is

as follows: Parents continue to feel insecure about their child’s

online safety, and they will assume that any website can be

harmful to their child, even when in reality, that website might be

COPPA compliant.

COPPA has also provided “Safe Harbor” provisions to encourage

websites/apps to follow COPPA without being formally

investigated by the FTC and law enforcement. The following

section explains the role of Safe Harbors and their relevance to

verifiable parental consent.

1.1 Safe Harbor provision

Under COPPA, websites/apps are subjected to the review and

disciplinary procedures provided in the Safe Harbor’s guidelines

in lieu of the formal FTC investigation and law enforcement. As

of April 2016, the FTC has approved seven Safe Harbors: ESRB,

PRIVO, CARU, Aristotle, kidSAFE, iKeepSafe, and TRUSTe.

Generally, Safe Harbor certified websites contain their

membership “seals” on their websites, which provide assurance to

the parents that these websites/apps are COPPA compliant. For

instance, the famous Pokemon website [4] has the seal of FTC

approved Safe Harbor, ESRB, shown in Table 2, certifying that

Pokemon Company International, Inc. is COPPA compliant.

There are seven different FTC approved Safe Harbors, each with

their own seal, as shown in Table 2. The purpose of a Safe Harbor

seal is to assure parents the following [1]:

 The website has posted a privacy policy and the privacy

policy describes in detail how the information collected

from the child is used and shared.

 The website is reviewed periodically along with

unannounced monitoring reviews by the Safe Harbor.

 The website provides direct notice to parent before

collecting their child’s PI and then obtaining verifiable

parental consent.

 The website gives parents the choice of consenting to

the operator’s collection and internal use of a child’s

information, but prohibits the operator from disclosing

that information to a third party.

 The website provides parents access to their child’s PI

to review and/or have the information deleted.

 The website minimizes the retention period for

children’s PI as long as is necessary, and deletes the

data responsibly.

Hypothesis 2: Judge a website

Phishing is an attempt to acquire sensitive information from an

online user by masquerading as an original website’s page and

asking users to enter the information, which is then emailed to the

hacker. About two million users gave information to spoofed

websites/apps resulting in direct losses of $1.2 billion for U.S.

banks and card issuers in 2003 [8]. A user is generally deceived

by a phishing website due to lack of knowledge, visual deception,

and lack of attention [9]. One of COPPA’s main objectives is to

provide parents with detailed information about how and what PI

websites/apps collect and use from children under 13. These

websites/apps are also required to have a detailed privacy policy

describing how the websites/apps gathers, uses and shares the PI

of a child, keeps the PI confidential and keeps the retention period

of the PI to the minimum. Moreover, if a website is under the Safe

Harbor program, then that website should not only have detailed

privacy policy, but may also have a Safe Harbor seal, generally at

the homepage or at the privacy policy page. Such detailed policy

and/or a seal provides a quick assurity to the parents that the

website is COPPA complaint and under the constant

monitoring/auditing of the Safe Harbor. Yet, many parents are

neither aware of any Safe Harbor nor are parents aware of any

Safe Harbors’ seals. The second hypothesis is the following:

Parents continue to judge the safety of a website based on factors

other than a Safe Harbor Seal or even reading the website’s

privacy policy.

Table 2: Safe Harbors and their Seals

No. Safe Harbor Seal

1

ESRB

2

PRIVO

3

CARU

4

Aristotle

5

kidSAFE

6

iKeepSafe

7

TRUSTe

1.2 Verifiable parental consent

COPPA requires websites/apps to notify and obtain verifiable

parental consent before collecting any PI from children under 13

years of age. Parents can provide their verifiable parental consent

through any of the following process [1]:

1. Signing a consent form and send it back to the website

operator via fax, mail, or electronic scan.

2

2. Use a credit card, debit card, or other online payment

system that provides notification of each separate

transaction to the account holder.

3. Call a toll free number staffed by trained personnel.

4. Connect to trained personnel via a videoconference.

5. Provide a copy of a government issued ID and delete

the identification from the records once the verification

process is complete.

Hypothesis 3: Response to Verifiable parental consent email

Protecting a child’s PI is utmost important because the

consequence of a child’s identity theft can be devastating. Online

predators lie with children, make friends with children, and ask

the child’s PI from them. Online predators can misuse different

kinds of PIs like first name, last name, email address, home

address or social security number in many ways, like, creating a

fake profile, full credit history, financial history, IRS history,

public record, and even criminal record, all before the child even

applies for her/his own government ID [7]. COPPA requires

websites/apps, which collect PI from children under 13, to obtain

verifiable parental consent before obtaining any PI from the child.

This can be done by websites either independently or through

Safe Harbors program. Each of the Safe Harbors have unique

mechanisms to obtain verifiable parental consent on behalf of

websites/apps. Several Safe Harbor compliant websites/apps

initiate a verifiable parental consent process by asking the child’s

name, date of birth, and parent’s email address. An email is then

sent to the parent seeking verifiable parental consent and

explaining why they are being asked to provide verifiable parental

consent. Finally, the third hypothesis is as follows: However, most

parents will not respond to such an unsolicited email and ignore

it considering it a spam.

2. Background Research

Children are most exposed to the dangers of the Internet and least

able to protect themselves [11] but commercial websites/apps

have been found to be more attractive to younger consumers than

older consumers [12]. According to the “Deleting the Predators

Act of 2006” [12], schools and libraries are required to restrict

access of “commercial social networking websites” and

“chartrooms” to minors. Some research has been done to analyze

threats to children from online dangers but no research has been

done to understand, from parents’ perspectives, the effectiveness

and awareness about COPPA.

COPPA was passed by the U.S. Congress in 1998 and took effect

in April 2000. It is under the Federal Trade Commission (FTC).

On December 19, 2012, the FTC issued its final rule amendments

concluding its review of COPPA [1]. The revised rules were in

light of the changes in the online technology regulations. The

final COPPA amended rule included modifications to the

definitions of an operator, PI, and website or online service

directed to children. The amended rule also updated the

requirements set forth in the notice, verifiable parental consent,

confidentiality and security, and Safe Harbor provisions, and

added a new provision addressing data retention and deletion.

Since the original COPPA was revised, little research has been

done on the effectiveness of COPPA, Safe Harbors, verifiable

parental consent measures, and safety of websites/apps directed

towards children under 13 years of age.

3. Methodology

3.1 Usability Study

Usability Studies have been increasingly used since the 1990s to

evaluate the effectiveness of user interfaces [5][6] and to obtain

feedback from users to improve the existing user interfaces. This

research implemented a usability study to test the effectiveness

and awareness of a set of COPPA and Safe Harbors strategies.

The research was conducted with parents of children under 13

using questionnaires, interviews, and empirical methodology

(usability assessed by testing the interface with real users) to

evaluate:

 Hypothesis 1: Awareness

 Hypothesis 2: Judging a website

 Hypothesis 3: Response to verifiable parental consent

email.

The following sections will describe briefly the participants

recruitment process and the methodology used for testing the

above stated hypotheses.

3.2 Participants

Ten participants were recruited from two U.S. states, Minnesota

and Wisconsin. A letter [Appendix 1] was sent through email to

recruit the eligible parents explaining briefly about the purpose

and scope of the study. The eligibility of a parent was based on

the following three factors:

 Their child should be under 13

 Their child can use an app or a website

 The parent is concerned about their child’s privacy

The usability study was performed as per the participant’s

convenient place and the study was conducted using a laptop or a

smartphone. Prior to the study, the participant signed a consent

form. The consent form stated that participation was voluntary

and the study was conducted to judge the usability of

websites/apps and Federal regulations. The study was

approximately fifteen minutes long. The participants were

presented with a questionnaire and scenarios. The questionnaire

and scenarios will be briefly described in the Section 3.3. 70% of

the participants were female. The age of participants ranged from

18 through 54 years. The age of their children varied from 3 to 12

years.

3.3 Usability Goals

3.3.1 Goal 1

The goal to support Hypothesis 1 was defined to be 90% of the

parents are not aware of any law that protects their child’s online

activities. This goal was tested by interviewing and asking

questions to parents who have children under 13. The questions

are mentioned in Table 3 below.

3

Table 3: Questions for Goal 1

3.3.2 Goal 2

The goal to support Hypothesis 2 was defined to be 90% of

parents judge the reliability of a website by something other than

a Safe Harbor seal or a privacy policy. Parents were shown a

COPPA compliant website and then asked the questions

mentioned in Table 4.

Table 4: Questions for Goal 2

1 Are you familiar with this website before?

2
Do you think your child is familiar with this

website?

3
Do you trust this website?   Please explain why

or why not do you trust this website?  

3.3.3 Goal 3

The goal to support hypothesis 3 was defined to be 80% of the

parents would not respond to an unsolicited email seeking

parental consent. They would consider it spam and ignore it. In

this study, the instructor sent an email to the parent from an app

seeking verifiable parental consent. During the interview and

questionnaire session, the parent was asked the follow up

questions mentioned in Table 5.

Table 5: Questions for Goal 3

1 Would you open this email?

2

When you receive an email from a website or

app asking for your parental consent, what will

you think and do?

3

How comfortable are you when your child

shares your email address with online

websites/apps?

4. Results and Analysis

4.1.1 Hypothesis 1

Parents were asked questions, as shown in Table 3, about their

familiarity with COPPA or any Safe Harbors. Following were the

results from the interviews and questionnaire:

Figure 1: Familiarity with COPPA

Figure 2: Familiarity with Safe Harbors

According to Figure 1,

 Only 20% of the parents said that they were familiar

with an existing US Federal regulation that protects

children under 13 (because they were educated by Girl’s

Scouts program). However, none of the parents knew

about COPPA.

 0% of the parents knew about FTC approved Safe

Harbor program, or Safe Harbors' seals.

According to Figure 2,

 0% of the parents knew about PRIVO, Aristotle,

CARU, and iKeepSafe Safe Harbors.

 Only 10% of the parents knew about ESRB.

 20% of the participants knew about TRUSTe and

kidsSAFE Safe Harbors.

 However, parents who knew about TRUSTe and ESRB,

knew them because of their business other their than

COPPA Safe Harbors.

4.1.2 Hypothesis 2

The instructor showed a COPPA compliant Safe Harbor-sealed

website to the parent, and asked why or why not would they trust

the website, as shown in Table 4.

According to Figure 3:

 80% of the parents said they trusted the website by

looking at the content of the website. Only 20% of the

parents trusted the website by looking at the privacy

policy.

1

Which of the following are you familiar with? The

options included COPPA, names of all seven Safe

Harbors, COPPA’s seal program, and definition of

COPPA.

2

"Websites/Apps, which are collecting PI of children

under 13 years of age, should have special protection

rules for those children." How would you rate your

support or opposition to this statement?

3

Do you think that websites, that collect personal

information (PI), should have an age requirement to

create an online account?

4

 70% of the parents considered media logos like:

as seals/certificates to trust the website but none of the

parents looked for a Safe Harbor Seal.

Figure 3: How parents judge a website?

4.1.3 Hypothesis 3

The participant was sent an email, seeking their verifiable parental

consent. When the parent received the email, the instructor asked

questions mentioned in Table 5. Following were the observations:

 60% of the parents said they would not at all ignore the

email, which asks for verifiable parental consent, only

because their child's name was in the email. Otherwise,

parents will ignore the email. This result contradicted

this study’s hypothesis, which stated that most of the

parents will completely ignore emails seeking parental

consent.

 However, as shown in Figure 4, 50% of the parents said

they would be somewhat or very uncomfortable if their

child shared their email address with websites/apps.

Figure 4: Are Parents comfortable if their child shares

their email address online

4.1.4 Other observations
During the usability study, few other interesting observations

about parents’ perspective towards their children’s online privacy

were also recorded:

 Age requirement for online websites

As shown in Figure 5, 90% of the parents think that

websites/apps that collect PI should have an age requirement

to create an online account but they are not aware that

COPPA is mandating this regulation on the websites/apps.

Moreover, as shown in Figure 6, 90% parents very strongly

or somewhat strongly support that websites/apps that collect

PI from children under 13 should have special protection

rules for those children but parents are not aware that

COPPA is already mandating the websites/apps to obtain

verifiable parental consent from parents whenever

websites/apps collect PI from children.

 Children’s personal information

Only 40% of parents considered first name and audio

(containing child’s voice) as PI. COPPA strictly considers

both as a child’s PI and websites/apps that collect first name

and audio are required to obtain verifiable parental consent

before collecting or storing the PI at their server.

 Control over children’s online privacy

According to Figure 7, 80% of the parents said that they

would like to have their child have some control over their

online privacy. Only 30% of the parents said that they do not

want the government to have full control over their child’s

online privacy. However, COPPA’s primary goal is to

provide only parents with full control of their child’s online

privacy.

Figure 5: Age Requirement to create online account

Figure 6 Special protection rules online for children under 13

 Trust towards their children’s online activities

In one of the scenarios, parents were shown a COPPA Safe

Harbor certified website which they had never seen before.

When parents were asked if their child had seen that website

before, as stated in Table 4, 70% of the parents said No, their

child has also never seen that website. The age of the

children of these parents ranges from 5 to 12 years. This

result seemed overly positive. An extended usability study

could be performed with children to validate the same

results.

5

Figure 7 How much control of Child's PI

5. CONCLUSION

COPPA’s primary goal is to provide parents full control of their

child’s (under 13) online interaction. COPPA has good intentions

to protect children but parents do not know about these intentions

and continue to feel insecure about their child’s online privacy.

That is why educating parents about children online privacy

strategies like COPPA, verifiable parental consent, and FTC

approved Safe Harbors is essential for these strategies to be

effective.

Parents do not know about COPPA and parents also do not know

why they receive emails or other forms of communications

seeking parental consent. In this research, when a parent received

an email seeking verifiable parental consent, the parent did not

know that the email was sent due to COPPA’s regulation. Most of

the parents would not ignore emails seeking parental consent

because their child’s name was in the email subject. However, this

format of having the child’s name in the email subject might not

be followed by all websites/apps and hence, parents would ignore

such emails. In any case, parents should be made aware of why

they receive such emails or any other form of communication

from websites/apps to obtain verifiable parental consent. Such

education and awareness among parents would help websites to

obtain parental consent faster, giving parents full control over

their child’s data.

Apart from providing full control to parents over their child’s

data, COPPA also provides an effective way to judge the

reliability of a website by mandating websites/apps to have a

descriptive and easy to understand privacy policy and/or websites

to optionally have Safe Harbor seals if the website is under the

Safe Harbor program. However, not all websites/apps are under

the Safe Harbor program nor do all websites/apps have Safe

Harbor seals. But those websites/apps that do have seals on their

homepage could provide assurity to parents about their legitimacy

and safety. Moreover, parents usually may not read the privacy

policy but if they are aware that the websites/apps have a privacy

policy link on their home page and on all the pages that collect PI

from the child, parents could better judge the reliability of that

website. The parent may open the policy page and skim the policy

to have an idea that the policy is discussing COPPA, children

under 13, verifiable parental consent, child’s data confidentiality,

and minimum retention period. Making sure that the privacy

policy exists and skimming the policy would make it easier for

parents to feel safe about a website.

COPPA is somewhat complicated to follow. That is why the FTC

has provided Safe Harbor support to websites/apps to implement

COPPA under Safe Harbor monitoring without worrying about

any litigation or fines. Just as the FTC has provided Safe Harbor

support to websites, it may be advantageous for the FTC to ask

schools to mandate compulsory COPPA education to parents

during conferences or parent-teacher sessions. Having a

compulsory curriculum would ensure that all parents are educated

enough about COPPA and supported verifiable parental consent

processes and could therefore easily judge the reliability of a

website.

6. FUTURE WORK

This study discussed the need and importance of educating

parents about the Children Online Privacy Act (COPPA) and FTC

approved Safe Harbors. However this study did not evaluate the

reliability of Safe Harbors and their auditing and monitoring

process. Also, COPPA does not require websites/apps to

investigate the age of the visitors. Thus, COPPA doesn't apply

when kids lie about their age or find other workarounds, and

parents need to understand that their children’s data is not being

monitored under COPPA’s regulation in these cases. Companies

like Facebook, Instagram, Snapchat, and Twitter have age

restrictions for children under 13 possibly because COPPA may

be complicated for them to implement and obtaining verifiable

parental consent may not be feasible at such a large scale.

However, several kids under 13 are on such websites, violating

the age policy by lying with or without their parents’ help. A lie is

a lie, be it said online or offline. Since children do not see much

difference between the digital world and the real world, letting

them think “lying online is okay,” might confuse them in the real

world. Maybe COPPA and such impactful companies like

Facebook, Twitter, Snapchat, and Instagram could work together

one day in a way that parents and children do not find the need to

lie online.

This study focused on parents of children under 13 but I strongly

feel that parents of children above 12 years and below 18 years of

age are facing much more challenges than the rest.

App stores like Google Play store and Apple store have strict

guidelines to verify the legitimacy and safety of an app that is

directed towards children under 13. However, in Apple store, a

child directed app has to comply with two components: COPPA

and Parental gate. Many developers find it complicated to comply

with both regulations. Research could be done to understand the

difference between COPPA and Parental gate regulation and why

Apple cannot combine both regulations, making it easier for a

developer to get approval for their app.

In December 2015, Mattel Inc. was charged by a class action

lawsuit [10] alleging that its “Hello Barbie” records children’s

conversation (including children who do not own the Hello

Barbie, but are still around some other child’s Hello Barbie)

without verifiable parental consent, directly violating COPPA.

Parents were concerned about scenarios where hackers could

obtain PI from the child through the Hello Barbie, storing the

conversation on the hacker’s server instead of Mattel’s own server

and misusing the data to their own advantage. This is a scary

scenario where COPPA meets the Internet of things. These toys

are using technology to reach children’s private life without

providing proper protection to them or their family’s privacy.

Unless there are proper measures to protect the privacy and

security of the users, maybe such toys should be banned, at least

for the most vulnerable users, that is, children under 13 years of

age.

6

7. MOTIVATION OF RESEARCH

The inspiration behind this research work is my childhood. When

my sister, Kanika Jain, and I were given a computer with Internet

access eleven years ago for the first time, my mother, Reeta Jain

and my father, Naveen Jain, used to constantly worry about our

interaction on Yahoo messenger and Orkut. At that time, Kanika

was 12 years old and I was 15 years old. Our parents wanted to

monitor our online interaction with strangers but had no way to do

it. They used to say that they did trust us but they did not trust the

strangers we interacted with, on the Internet. They were not

computer savvy parents eleven years ago, but they were aware of

the concept of online predators in their own way. I wish, at that

time, my parents could have had measures to judge websites/apps

and could have had the ability to provide verifiable parental

consent to websites/apps that asked for children’s PI. However,

now, when parents do have measures to judge the reliability of

websites, when parents can have access to their child’s data

shared with websites/apps and when there are strict Federal

regulations to protect children’s online privacy, parents are still

unaware and insecure about their child’s online privacy.

8. ACKNOWLEDGMENTS
The title may include only one author but there are several people

whose contribution immensely helped in this research. Thanks to

Dr. Joan Francioni and Dr. Gerald Cichanowski for teaching

Human Computer Interaction and Security and Privacy course,

respectively. Dr. Joan spent an immense amount of time guiding

me how to pick a research topic, how to narrow it down, and how

to make it practically doable. Thanks to Dr. Iyengar, my program

advisor, for including me in his Middle School Computer

Programming course and allowing me to teach 7th and 8th graders.

Teaching kids helped me develop insights into how children and

parents think in terms of online privacy. Thanks to Dr. Iyengar

and Dr. Francis Mann (Chemistry professor) for helping me

recruit parents for the research. Thanks to Rahul Bansal, my

husband: Through his critical thinking and Socratic approach

towards problem solving, he helped me from my predisposition of

trying to solve problems that were not supported by my

methodology. Thanks to Grace Hopper Conference for connecting

me to Kaliya Young. Kaliya is currently working as the privacy

and identity research Program Manager at the US Department of

Homeland Security Science and Technology. Kaliya introduced

me to Denise Tayloe, PRIVO’s founder and CEO. Even for me,

the concept of COPPA and Safe Harbors was complicated to

understand in the beginning. Denise Tayloe and her team, Shauna

Leff, Carol Altarescu, and Claire Quinn proactively provided

their answers and feedbacks to my research questions. Thanks to

Shai Samet, founder and President of kidSAFE Seal Program, for

also providing his feedback and suggestions to my research work.

9. REFERENCES

[1] COPPA, Children's Online Privacy Protection Act 1998,

Revised 2013.

[2] Federal State Commission: 2008- 2015. Children Online

Privacy Protection Act

[3] Liccardi, Ilaria, et al. "Can apps play by the COPPA

Rules?." Privacy, Security and Trust (PST), 2014 Twelfth

Annual International Conference on. IEEE, 2014Tavel, P.

2007. Modeling and Simulation Design. AK Peters Ltd.,

Natick, MA.

[4] Pokemon Company International Inc., 2016.

http://www.pokemon.com/us/

[5] Usability, 2016. www.Usability.gov.

[6] Nielsen, J., and Mack, R. L. (Eds.) (1994). Usability Inspec-

tion Methods, John Wiley & Sons, New York.  

[7] iKeepSafe, 2016, Why protecting your childs identity is

important, http://ikeepsafe.org/products/idefend/why-

protecting-your-childs-identity-is-important/

[8] Litan, A. Phishing Attack Victims Likely Targets for Identity

Theft. Gartner Research (2004).

[9] Dhamija, Rachna, J. Doug Tygar, and Marti Hearst. "Why

phishing works." Proceedings of the SIGCHI conference on

Human Factors in computing systems. ACM, 2006.

[10] Courthouse News Service, 2015. Talking Barbie Invades

Privacy

[11] Montgomery, Kathryn C. (2000), “Youth and Digital Media:

A Policy Research Agenda,” Journal of Adolescent Health,

27 61–8.

[12] Library of Congress (2007). “Deleting Online Predators Act

of 2006,” (accessed February 19, 2007) [available at

http://thomas.loc.gov/cgi- bin/query/z?c109:H.R.5319].

7

http://www.pokemon.com/us/
http://www.usability.gov/
http://ikeepsafe.org/products/idefend/why-protecting-your-childs-identity-is-important/
http://ikeepsafe.org/products/idefend/why-protecting-your-childs-identity-is-important/

Comparing Linux Operating Systems for the Raspberry Pi 2
John Bellows

Department of Computer Science
Winona State University

Winona, MN 55987
(612) 220-1321

JBellows13@winona.edu

ABSTRACT
The Raspberry Pi 2 is a single-board, low-cost computer capable of

running a GNU/Linux desktop environment on a low-power ARM

processor. Because the RPi has limited performance hardware due

to its size and cost, it is important to use an operating system that

best utilizes the systems’ available resources. There are three

categories of tasks every operating system must manage to ensure

correct behavior of the system: memory management, secondary

storage management, and process management. Four popular

Linux distributions were chosen for comparison using open-source

benchmarking software, they include: Arch, Debian, Fedora, and

Ubuntu Linux. Results showed significantly better memory access

times for Arch and Ubuntu over Debian and Fedora. In the multi-

thread DBench test, Ubuntu produced superior disk access times.

The processor results were inconclusive as each operating system

performed similarly. No one operating system clearly outperformed

the others in all areas, leading to the rejection of the hypothesis.

Keywords
Benchmark; Raspberry Pi; Linux; Operating Systems.

1. INTRODUCTION
In the three years since the first version [9] of the credit-card sized

Raspberry Pi (RPi) single-board computer was released the

platform has grown incredibly popular, sold millions of units, and

inspired a range of similar small form factor single-board

computers. A driving force behind the popularity of the RPi is its

low cost ($35) and use of open-source software, including

operating systems. In traditional computing the choice of operating

system, especially in the case of open-source, can largely be a

matter of personal preference. However, given the limited hardware

capabilities of the RPi the efficient use of resources by the operating

system is particularly important.

The main functions of an operating system are to manage hardware,

run applications, and provide an interface to the user [14]. The

second generation of the RPi, the Raspberry Pi 2 Model B, features

an energy-efficient Cortex A7 multi-core processor, one gigabyte

of RAM, and utilizes the ARMv7 architecture [11]. This enables a

wider range of GNU/Linux operating systems to run on the current

RPi’s architecture compared to the previous single-core, 512

gigabyte RAM based generation [13]. Arch, Debian, Fedora, and

Ubuntu [12] [1] [4] [17] are a few of the major Linux distributions

to offer ARMv7 versions of their operating system. Additionally

Unix-like distributions such as FreeBSD [5], and a version of

Windows 10 called Windows 10 IoT Core [2] have been developed

for use on the RPi. This increase in available operating system

choices raises a question: how does the choice of operating system

affect performance on the RPi?

There are several ways in which an operating system can be

organized, however there are three categories of tasks every

operating system must manage to ensure correct behavior of the

system: memory management, secondary storage management, and

process management [14]. Memory management handles the

reserving and freeing of space in main memory for processes.

Secondary storage management is concerned with the file system

as well as preserving data in mass storage devices. Process

management deals with adding and deleting processes (jobs) and

handling inter-process communication. How a particular operating

system implements each of these categories can have an effect on

system performance.

In order to compare the performance between operation systems

benchmarks need to be taken. Benchmarking provide a way to

obtain a metric that can then be used to access how well a system

performs [4]. To this end a benchmark must be straightforward and

run on all systems tested in order to provide meaningful results.

Additionally the test should be reproducible and simulate real-

world usage of the system. Open source benchmarking tools are

ideal for this purpose as they are cross-platform, maintained by a

large community, and are freely available. Operating system

performance will be measured in the following areas: memory

access, the ability to handle allocation and deallocation requests to

main memory; disk access, how quickly information is retrieved

and stored from the disk; and processor time, the measure of CPU

performance under heavy computation [3].

Limited research has been conducted on the performance of the

different operating systems available for the RPi. Most work

focuses on either comparing the performance of different single-

board computers with the RPi [8], or is anecdotal in nature.

However, some work has been done to compare Raspbian (the

operating system that ships with the RPi) with Pidora (an optimized

version of Fedora Linux) [3]. The goal of this paper is to compare

the performance of several Linux based operating systems using an

empirical approach. Benchmarks will be performed on Arch,

Debian, Fedora, and Ubuntu Linux distributions using the

Raspberry Pi.

Hypothesis-Arch Linux ARM has faster memory requests, disk

access, and processing time than other Linux operating systems.

2. BACKGROUND RESEARCH
Most research comparing the performance of single-board

computers focuses on testing the hardware itself. The goal of this

paper is to compare the performance of software, in the form of

Proceedings of the 16thWinona Computer Science Undergraduate

Research Seminar, April 27, 2016, Winona, MN, US.

8

operating systems, on the same piece of hardware (the RPi). An

operating system can be organized in a variety of ways that

influence overall system performance making it important to

measure the effect a given operating system has on the use of

system resources.

In a similar work, “Performance Comparisons of Operating

Systems for the Raspberr Pi”, Joshua Dinndorf examines two

operating systems: Raspbian and Pidora. These operating systems

were chosen due to their optimization specifically for use on the

RPi [3]. The research in this paper differentiates itself from that of

previous work in that all operating systems tested are non-

optimized ports of major distributions and therefore more closely

resemble conventional Linux environments.

3. METHODOLOGY
A research project is conducted to test the hypothesis. This project

tests three functions of operating system: process management,

memory management, and secondary storage management with

open source synthetic benchmark tools. As it is difficult to

completely separate the influence of one area of operating system

function from the others, however benchmarking tools were chosen

with as much isolation as possible in mind.

3.1 Hardware and Software
The hardware being tested is a Raspberry Pi model 2 B+, it features

a 32-bit ARM Cortex-A7 processor and 1GB RAM [12]. The disk

used to install each operating system is a 16 GB class 10 micro SD

card. Class 10 SD cards [15] offer the highest transmission speeds

in a card currently compatible with the Raspberry Pi. Using this

card will minimize any performance bottlenecks caused by the OS

installation media.

Table 1. Hardware specs for the Raspberry Pi 2

Hardware Raspberry Pi 2 B+

CPU Cortex A7

Architecture ARMv71

Cores 4

Clock Speed 900 MHz

GPU Videocore IV

Memory 1GB

Secondary Disk 16GB Class 10 SD card

Table 2. System information of tested operating systems

 Arch Debian Fedora Ubuntu

OS

Version

Arch

ARM
Debian 8

Fedora

23

Ubuntu

14.04

Kernel
4.1.19-5

ARCH

3.18.0

trunk-

rpi2

3.18.0-

20 rpi2

4.1.20-

v7+

Compiler
GCC

5.30

GCC

4.92
GCC 4.8

GCC

5.3.1

Processor

Speed
0.90GHz 0.80GHz 0.90GHz 0.90GHz

Package

Manager
Pacman Apt-get Dnf Apt-get

Memory 922MB 925MB 925MB 923MB

The Phoronix Test Suite (PTS) [11], a cross-platform suite of over

200 test profiles, will be used to perform benchmarks. PTS was

chosen because of its GNU GPLv3 license, ability to run on any

system containing PHP CLI (php5-cli, php5-gd, and php5-common

packages) and a GCC compiler, and the support PTS offers to

install any additional dependencies using the operating system’s

native package management system [11].

All operating systems tested were configured in a minimal server-

style setup without a desktop environment installed. A desktop

environment is a bundle of components that act as the graphical

user interface for an operating system by providing a windowing

system and pointer among other features. The exact desktop

environment installed on a Linux system often differs between

distributions and may use system resources more or less efficiently

depending on the desktop environment installed. The decision to

run the tests from the command shell instead of a GUI was made in

order to limit any unnecessary use of system resources that could

negatively impact the test results.

3.2 Memory
Main memory management is a vital function performed by an

operating system. For a program to be executed it must be mapped

to addresses and loaded into memory [14]. There are many different

memory management schemes used in computing systems. These

schemes must keep track of the memory that is currently being

used, what processes need to be loaded into memory, and which

blocks are designated free space. How an operating system

implements memory management influences the read and write

speeds to main memory.

RAM-Speed is a benchmark that measures the performance of a

systems RAM by allocating varying amounts of memory space, and

reading or writing to it in blocks [7]. RAM-Speed operates in two

modes, integer and floating point and computes block usages with

either copy, scale, add, triad, or average schemes. All schemes are

run for both integer and floating-point mode to get as full a picture

of ram performance as possible.

Another benchmark used to measure memory performance is

STREAM. STREAM is a benchmark designed to measure the

bandwidth of a hierarchic memory subsystem for read, write, and

read-modify-write access. Each mode generates a memory

bandwidth curve of varying vector lengths in a compiler-optimized

loop. The STREAM benchmark is chosen to give a good indication

of the cache bandwidth performance of operating systems on the

RPi.

3.3 Secondary Storage
Secondary storage systems make up the majority of memory in a

computer system and are responsible for the efficient accessing of

the disk to locate, read, and write data [14]. The difficulty when

benchmarking a file system located on a secondary storage device

is to isolate it as much as possible from main memory and CPU

intensive tasks. While benchmarking a file system we are interested

in the bandwidth and latency when reading from and writing to the

disks in various sized blocks.

The first benchmark used is Dbench, an emulation of a server in

which a large amount of files with varying sizes have to be created,

written, read, and deleted [16]. When run, Dbench creates a number

of parallel clients as specified by input parameter. The result of the

test is an average latency of the operations executed by each process

in megabytes per second.

9

Lastly the IOzone benchmarking tool was chosen because of its

ability to perform sequential and random I/O. IOzone is a file

system benchmark tool that reads and writes to a file while running

multiple instances in parallel [10]. A broad indication of file system

performance is obtained from using IOzone to measure both

sequential and random on-disk read and write latencies.

3.4 Processor
The processor is an important part of a computer system, without a

processor to execute instructions a program cannot run [14].

Because an operating system manages processes and the resources

they use, testing the processor’s ability to execute computationally

complex processes is a good indicator of the effect an operating

system has on the overall system’s performance.

The first benchmark used to test the processor is PHP-Bench, a

testing suite for the PHP interpreter [3]. PHP-Bench performs a

large number of simple tests while recording the time taken to

complete them. Since PHP is widely available, the ratio between

number of tests executed and the time taken to complete them is a

good indicator of processor performance under load across all

operating systems tested. The number of iterations chosen for the

PHP test is 1,000,000 for all operating systems.

Next we will use the Build-Linux-Kernel test to further test the

processor efficiency under a computationally complex instruction

load. The Linux kernel is a large and widely used open source

project that requires many parallel compilations to build. Kernel

compilation is a good benchmark to use because the time taken to

compile is heavily influenced by the operating system’s

organization [6].

Add 1213.98 1106.28 967.6 1200.97

Copy 1852.98 1748.5 1644.91 1830.65

Scale 1647.21 952.44 1199.33 1626.8

Triad 1200.97 650.13 970.65 1202.52

Average 1476.11 1115.26 1196.96 1453.68

Figure 1. Integer Results of RAMSpeed benchmark

4. RESULTS AND ANALYSIS

4.1 Memory Results
RAMSpeed is a comprehensive memory cache and performance

benchmark capable of running four tests: add, copy, scale, and triad

in two modes: integer and floating point. These tests use synthetic

simulations that correlate with real-world application memory

usage. Figure 1 shows the results of the integer tests where the

heights of the bars are measuring MB/S throughput, here a higher

score is better.

Referring to the RAMSpeed integer results in Figure 1 we can see

that Arch and Ubuntu produced better scores in all areas with an

average of 1476.11(MB/S) and 1453.68(MB/S) respectively.

Debian and Fedora split the integer tests with Debian performing

better on the Add and Copy tests, and Fedora performing better on

the Scale and Triad tests. The average scores for Debian and Fedora

were similar, but significantly worse than Arch and Ubuntu with an

average of 1115.26(MB/S) for Debian and 1196.96(MB/S).

Add 1366.58 1251.63 1110.77 1348.38

Copy 1843.01 1753.22 1657.78 1847.02

Scale 1507.39 1336.1 1240.96 1499.9

Triad 1152.39 1056.07 906.88 1137.92

Average 1469.97 1348.1 1226.48 1460.42

Figure 2. Floating point results of RAMSpeed benchmark

The floating point results of the RAMSpeed benchmark are shown

in Figure 2. Arch and Ubuntu again produce similar results, with an

average throughput 1469.97(MB/S) and 1460.42(MB/S)

respectively. Debian performed better in all testing areas with an

average result of 1348.1(MB/S) than Fedora, which had an average

of 1460.42(MB/S).

Additionally the STREAM benchmark was performed in order to

verify the results of the RAMSpeed benchmark. However,

STREAM could not be successfully run on Fedora. The STREAM

results for the other operating systems did however correspond to

the RAMSpeed results. Figure 4 shows the STREAM results for

Arch, Debian, and Ubuntu. Here as in the RAMSpeed test the bars

are measuring throughput in megabits per second, where higher

bars indicate better performance.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Add Copy Scale Triad Average

Ti
m

e
(M

B
/s

)

RAMSpeed - Integer

Arch Debian Fedora Ubuntu

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Add Copy Scale Triad Average

Ti
m

e
(M

B
/s

)

RAMSpeed - Floating Point

Arch Debian Fedora Ubuntu

10

Add 1830.95 1731.91 1792.2

Copy 1197.04 1110.33 1211.67

Scale 1647.21 952.44 1626.8

Triad 1200.97 650.13 1202.52

Average 1476.11 1115.26 1453.68

Figure 3. Incomplete results of STREAM benchmark

Figure 3 shows the incomplete STREAM results which are similar

to the RAMSpeed test in that they indicate Arch and Ubuntu

outperform Debian in memory performance. Although these results

are incomplete they serve as confirmation that there are significant

advantages in memory throughput on Arch an Ubuntu operating

systems over Debain and Fedora.

4.3 Secondary Storage Results
The DBench test was used to simulate stress on the filesystem by

running concurrent clients which generate I/O workloads. The

number of clients range from 1 to 256. Once again we are

measuring throughput in megabits per second. Referring to the

Dbench results in Figure 4, the higher bars indicate better results.

Intuitively, as more clients are added the performance degrades,

however the rate at which performance degrades is important to

consider. Debian produced the worst results out of the group in this

test especially in the 1, 6, and 12 client tests, though, it performed

better than Arch in the 256 client category. Ubuntu produced the

best results, outperforming the other operating systems in all tests

except one. It is important to note that in the 6, 12, and 48 client

tests Ubuntu shows the slowest rate of throughput degradation.

Overall, the operating systems produced similar results in the 128

and 256 client tests.

IOzone is a benchmark that measures read and write speeds on

secondary storage. Figure 5 shows the results for both the read and

write speed of each operating system in megabits per second. The

read speeds were close for all operating systems, with Arch and

Fedora slightly outperforming Debian and Ubuntu. The write

speeds were virtually identical for all operating systems tested.

The results for the IOzone benchmark were too close to determine

a significant performance advantage. However, the Dbench results

indicated that Ubuntu exhibits superior secondary storage

management. Conversely Debian greatly underperformed in this

category.

1 Client 16.45 4.63 16.11 15.99

6 Clients 22.21 6.09 21.23 30.68

12 Clients 20.9 6.51 21.23 23.75

48 Clients 5.3 3.99 6.22 16.33

128 Clients 4.05 3.9 4.75 5.78

256 Clients 4.48 5.33 6.53 6.92

Figure 4. Results for Dbench benchmark

 Arch Debian Fedora Ubuntu

Read 21.38 17.58 21.23 17.58

Write 11.2 11.48 11.25 11.5

Figure 5. Results for IOzone benchmark

4.4 Processor Results
The first test used to measure processor time management is

PHPBench, a benchmark suite for PHP. PHPBench is a CPU

intensive benchmark that runs 1,000,000 iterations of simple

operations on the PHP interpreter. Figure 6 shows the results of the

tests where the heights of the bars measure the total time in seconds

to complete the test, the lower bars indicate better scores. Three

trials were conducted on each operating system and averaged. The

results were close for Arch and Debian with scores of 7327 and

6982 respectively. Fedora performed the best with a score of 5201,

while Ubuntu, with a score of 7979, performed the worst. With a

mean of 6872.25 and standard deviation of 1188.39, the results of

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Add Copy Scale Triad Average

Ti
m

e
(M

B
/s

)

STREAM

Arch Debian Ubuntu

0

5

10

15

20

25

30

35

1 6 12 48 128 256

Ti
m

e
(M

B
/s

)

Dbench

Arch Debian Fedora Ubuntu

0

5

10

15

20

25

Ti
m

e
(M

B
\s

)

IOzone

Read

Write

11

PHPBench showed that processor performance is sensitive to

operating system configuration.

Score 962.5 915.75 1205.42 960.18

Figure 6. Results for PHPbench benchmark

The build Linux kernel benchmark simply tests how long it takes

to compile the Linux kernel. This is an interesting benchmark for

multi-processor because a large number of parallel compilations are

required in order to build the kernel. As shown in Figure 7, it took

approximately the same amount of time to build on Arch, Debian,

and Ubuntu with respective scores of 962.4, 916.75, and 960.18.

Fedora took the longest time to complete the build with 1205.42.

These results indicate that Arch, Debian, and Ubuntu performed

equally well on the test, while Fedora performed significantly

worse.

Score 7327 6982 5201 7979

Figure 7. Results for Build Linux Kernel benchmark

Comparing the two processor tests reveals an interesting

discrepancy. While Fedora performed better than the other

operating systems during on PHPBench, it performed the worst on

the Build Linux test. Arch, Debian, and Ubuntu each performed

about the same on both tests relative to the other operating systems.

This implies that the disparity between the results could be an

indication of software optimization for certain types of processor

operations on Fedora Linux.

5. Conclusion
The primary goal of this research is to compare the system

performance of Linux operating systems on a low powered device.

Arch, Debian, Fedora, and Ubuntu are four popular Linux

distributions that were chosen for comparison in three main areas

of operating system function: processor, memory, and secondary

storage management. Comparisons were made using popular open-

source benchmarking tools available from the Phoronix Test Suite.

The results of the processor tests showed no clear winner, as each

operating system produced similar results. In the memory

management tests Arch and Ubuntu outperformed Debian and

Fedora in both integer and floating point operations. Lastly Ubuntu

showed superior disk I/O times in the multi-threaded DBench test,

while all operating systems performed similar in the IOzone

read/write test. No one operating system clearly outperformed the

others in all areas, leading to the rejection of hypothesis that Arch

Linux would produce better processor, memory, and disk results.

 REFERENCES
[1] “ARM Ports.” 9 Jan 2016. Software in the Public Interest, Inc.

https://www.debian.org/ports/arm/ Accessed: Jan 27 2016.

[2] “Develop Windows 10 IoT apps on Raspberry Pi 2 and

Arduino.” 2015 Microsoft Corporation

https://dev.windows.com/en-us/iot Accessed: 27 Jan 2016.

[3] Dinndorf J., “Performance Comparisons of Operating Systems

for the Raspberry Pi”, The 14th Winona Computer Science

Undergraduate Research Symposium, Winona State University,

2014, pp. 11-17. http://cs.winona.edu

[4] “Fedora ARM.” 2015. Red Hat, Inc.

https://arm.fedoraproject.org/ Accessed: Jan 27 2016.

[5] “FreeBSD/ARM Project.” 14 April, 2015. FreeBSD.org.

https://www.freebsd.org/platforms/arm.html Accessed: 27

Jan 2016.

[6] Hatt N., Sivitz A, and Kuperman B. A., “Benchmarking

Operating Systesms”, Conference for Undergraduate Research in

Computer Science and Mathematics, Oberlin College, November

2007.

[7] Hollander R. M. and Bolotoff P. V., “RAMspeed, a cache and

memory benchmark”, Alisar Enterprises,

http://alasir.com/software/ramspeed/, Accessed: 8 March 2016.

[8] Lencse G. and Répás S., “Method for benchmarking single

board computers for building a mini supercomputer for simulation

of telecommunication systems”, in. Proc. Int. Conf. on Telecomm.

and Signal Processing (TSP 2015), Prague, 2015, pp. 246–251.

[9] Monk, S. (2015). Programming the Raspberry Pi: Getting

Started with Python (2nd ed.). New York: McGraw-Hill.

[10] Norcott W. D., “IOzone Filesystem Benchmark”,

http://www.iozone.org/, Updated: 23 January 2016, Accessed: 8

March 2016.

[11] “Open-Source Benchmarking”, phoronix-test-suite.com,

http://www.phoronix-test-suite.com, Accessed 21 January 2016.

[12] “Raspberry Pi 2.” 2015. ArchLinuxARM.org

http://archlinuxarm.org/platforms/armv7/broadcom/raspberry-pi-2

Accessed: Jan 27 2016.

[13] “Raspberry Pi 2 model B” February 2015 RaspberryPi.org

http://www.raspberrypi.org/raspberry-pi-2-model-b/ Accessed: 15

March 2014

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Arch Debian Fedora Ubuntu

PHPbench

0

200

400

600

800

1000

1200

1400

Arch Debian Fedora Ubuntu

Build Linux Kernel

12

https://www.debian.org/ports/arm/
https://dev.windows.com/en-us/iot
http://cs.winona.edu/
https://arm.fedoraproject.org/
https://www.freebsd.org/platforms/arm.html
http://alasir.com/software/ramspeed/
http://www.iozone.org/
http://www.phoronix-test-suite.com/
http://archlinuxarm.org/platforms/armv7/broadcom/raspberry-pi-2
http://www.raspberrypi.org/raspberry-pi-2-model-b/

[14] Silberschatz, A., Galvin, P. B., & Gagne, G. (2005).

Operating system concepts (7th ed.). Hoboken, NJ: J. Wiley &

Sons.

[15] “Speed Class.” SD Association.

https://www.sdcard.org/developers/overview/speed_class/

Accessed: 29 Jan 2016.

[16] Tridgell A. and Sahlberg R. “DBench”, Samba,

https://dbench.samba.org/web/index.html, Accessed 8 March

2016.

[17] “Ubuntu for ARM.” 2016. Canonical Ltd.

http://www.ubuntu.com/download/server/arm Accessed: 27 Jan

2016.

13

https://www.sdcard.org/developers/overview/speed_class/
https://dbench.samba.org/web/index.html
http://www.ubuntu.com/download/server/arm

Mesh Sensor Network for Atmospheric

and Weather Data Acquisition
Nicholas McNeely

Winona State University
Winona Minnesota

nmcneely11@winona.edu

ABSTRACT

As a campus concerned with sustainability, tracking the

atmospheric and weather conditions on the campus is essential to

informing and educating students about their environment. This

project investigated a way to gather weather and atmospheric data

using a mesh sensor network. In this application the mesh network

must fulfill the requirements of reliability, minimal latency,

minimal bandwidth usage, and minimal power consumption. The

network consisted of individual nodes and a central node or base

station. Each of these nodes were designed gather sunlight,

humidity, and temperature data. The base station gathers the same

data as well as information about ozone levels. The base station also

was designed to act as a relay to move the gathered data off of the

mesh network and into an Internet accessible database. The system

was tested using three nodes and a base station. Each node was one

hundred to two hundred feet from either the base station or another

node. In this configuration the system was unable to fulfill the

requirements. Further research into alternative configuration is

needed.

General Terms

Management, Measurement, Performance, Design, Reliability,

Experimentations.

Keywords

Mesh Network, Mesh Sensor Network, Wireless, Solar Powered,

Self-Sustaining, Sensors, Sensor Node, Weather Data,

Atmospheric Data

1. INTRODUCTION
Winona State University is dedicated to being environmentally

conscious. The university has programs that improve the

sustainability of student housing, dining services and university

transportation [1]. Though the university as a whole may be

environmentally conscious and concerned, it is important that

current and new students be educated and made aware of

sustainable practices and programs. To help in this effort, the

chemistry, physics, and art departments have begun a project to

increase awareness about the air quality on the campus. They

proposed and have begun work on a sculpture and accompanying

electronics to monitor ground level ozone and display those levels

in an informative and artistic way [2]. This project sparked interest

in not only monitoring ozone levels, but also in monitoring other

environmental data such as temperature, humidity, and

ultraviolet/sun light level.

One way to educate students about sustainability and the

environment is to engage them with a creative display detailing

information about the environment where they live, work, and

attend school. The ozone project understood this. They created an

engaging piece of eye catching art intended to draw your attention

and then educate you about ozone levels. Because they already had

the sculpture in place, it was decided that augmentation to the

existing system would be the best way to bring attention to the

additional environmental data. Thus, the goal for this project was

to develop a system to collect temperature, humidity, and sunlight

data and transmit it to a small computer located at the sculpture.

This data could then be incorporated into the ozone project’s

display at a later time.

1.1 System Constraints
The first step was to decide how, what, and where the additional

data would be gathered. The question about where the data would

be gathered influenced strongly the other two decisions. First of all,

data was to be gathered from multiple points across the campus to

allow for averaging differences in readings. Secondly, large

installations were not feasible due to cost and space availability.

Thirdly, in keeping with the sustainability principle these new data

gathering stations needed to be solar powered. This meant they

needed to be in a position that allowed them to get as much sunlight

as possible. This also meant that the stations had to be small enough

to be attached to the tops or sides of buildings or affixed to

something like a light pole.

Due to the limitation in size, the stations would only be able to

generate a small amount of power. This limited the types of sensors

and equipment that could be used to gather the data. Three data

types were selected, ultraviolet/sunlight, temperature, and

humidity.

Thus, the data was to be gathered as follows: a small station that

was solar powered, using three small low power sensors to gather

the ultraviolet/sunlight sensor, a temperature sensor, and a humidity

sensor. These would be controlled by a low power controller that

was paired with a small low power wireless transceiver.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

Proceedings of the 16thWinona Computer Science Undergraduate
Research Seminar, April 27, 2016, Winona, MN, US.

14

1.2 Mesh Network
Wireless technologies allow for flexible device placement.

Wireless communication comes with its own problem though:

power requirements. Wireless technologies like Wi-Fi and cellular

radios require massive amounts of power. This meant that the

existing Wi-Fi infrastructure on the campus was infeasible. Low

power point to point transceivers provided a viable alternative.

The difficulty with lower power receivers is the distance at which

they can communicate. For instance a sensor station on one side of

the campus would not be able to communicate with one on the other

side of the campus. One way to resolve this is to use a network

organization scheme known as mesh networking. In a mesh

network every transceiver acts a relay, and every node is not

necessarily connected to every other node. For instance consider

Figure 1. In order to get a message to node C, node A has to find a

node or a series of nodes that can reach C. In Figure 1 node A can

reach node B, and node B can reach node C. So if node A gives the

message to node B, node B can then pass that message on to node

C.

Through the use of a mesh network configuration, low power radios

can be used to send messages over distances that would normally

not be achievable due to their limited range. In this research a

wireless mesh network system was built to provide a reliable way

to aggregate data gathered on a set of distributed nodes. The

reliability of such a mesh network was investigated by examining

its ability to provide consistent service.

2. METHODLOGY

2.1 Materials
In order to investigate the reliability of a mesh network as a system

for gathering weather and atmospheric data, a prototype system was

necessary. It was decided that a custom built system would be used

for two reasons. Using a custom system allows for an exact

understanding of how the system components would affect the

results. In addition, a custom system allows for direct

programmatic control enabling modifications to improve the

system performance according to the environment. The design and

specifications of this system are described below.

2.1.1 Nodes
Each node is composed of four major components, a controller, a

wireless module, a set of sensors, and a solar panel based power

source. These components are either placed inside or affixed to the

exterior of a hard-plastic, water tight enclosure. When deployed

these nodes are placed outdoors in an area where they receive

optimal sunlight for power generation.

The controller chosen was an Adafruit Feather M0 Basic Proto -

ATSAMD21 Cortex M0. This controller was an ideal solution

because it possessed the necessary sensor interfaces, was

compatible with the selected wireless module, and had the

necessary circuitry for charging a battery using a solar panel.

There were a number of challenges that had to be addressed while

selecting a wireless module. Power consumption and operating

frequency were the most challenging. Originally the plan had been

to use a module called the ESP8266. This module operated using

Wi-Fi in the 2.4 GHz band. After consideration this module was

ruled out because it could consume as much as 170ma. Also the

network administrators in the area where these nodes would be

deployed did not want devices broadcasting in the 2.4 GHz band.

The second module considered was an XBee Pro 900. This module

solved the operating frequency dilemma. It operated in the 900

MHz band, one that the network administrators were not using and

thus did not cause any problems. However, it made the power

problem even worse. This second module could consume as much

as 210ma.

The third module considered, and the one selected for use, was a

HopeRF RFM22B-S2. This module met the needs of the project,

using only 87ma and operating the 900 MHz band.

Three sensors were selected: a temperature sensor, a humidity

sensor, and an ultraviolet/light sensor. These sensors were selected

to gather basic weather data and atmospheric data. The specific

sensors – the Waterproof DS18B20 from Adafruit, the DHT11

from Adafruit, and the SI1145 from Adafruit – were selected

because of their ease of integration with the selected controller.

The power component of each node is a combination of the

charging circuitry built into the controller, a 2200mAh lithium-

polymer battery, and a 5V 2.5W solar panel. This combination

allows the solar panel to charge the battery when it is receiving

enough sunlight. The battery allows the system to run at night and

on days when there isn’t enough sunlight to power the system.

Figure 2 Assembled Sensor Box

The components were assembled using a hard-plastic, water-tight

sensor box and two custom 3D printed parts. The sensitive

controller and wireless module components, were sealed inside the

sensor box. The solar panel is affixed to the top of the sensor box.

The light sensor is attached to the sensor box using one of the

custom 3D printed parts. The humidity sensor is located inside a

large grey plastic wedge. The waterproof temperature sensor is also

located inside the 3D printed wedge. Each of the components

Figure 1

15

outside of the sensor box are fed back to the controller through a

series of sealed ports in the sensor box. Figure 2 shows an

assembled sensor box. The red box is the water-tight portion. The

grey wedge houses the sensors and the solar panel on top feeds

power into the system through the lid of the box.

2.1.2 Base Station
The base station is a modified version of a sensor node. In addition

to acting as a sensor node the base station also acts as a relay,

moving data from the mesh network into a system that is able to put

it in an Internet accessible database. The controller and the wireless

module are the same ones that are used in sensor nodes. It is also

important to note how the base station is powered.

The base station is part of the collaborative ozone data sculpture.

Because it is part of the sculpture it made sense from a design point

to use the power that the sculpture generates rather than having the

base station generate its own power. The power is drawn from the

sculptures batteries that are charged using a much larger 180W

solar array. This means that power is not a major concern for the

base station.

2.1.3 Software
All of the code for the base nodes and base station was writing in C

using the Arduino IDE and compiled using the Adafruit SAMD

Boards profile. There are two core aspects to the software used to

run the nodes and base station. The first is the code that handles the

wireless communication. The second is the code that handles the

sensors on each of the nodes. The sensors and the wireless module

each have a respective Arduino library that simplifies the process

of writing code for the application that uses them.

The heart of the code that controls the wireless communication is

the RadioHead Packet Radio library for embedded

microprocessors [3]. This library provides the code necessary for

networking the nodes and base station in a mesh network

configuration. Once the library is configured, sending a message is

only a matter of calling the function sendToWait() and passing the

data to be sent, the size of the data, and the address of the

destination node.

To gather the data from the sensors, the Arduino libraries are used.

They are the Adafruit ST1145 library [4], the Adafruit DHT library

[5], and the Dallas Temperature library [6]. Each of these libraries

provide the necessary functions for acquiring data from their

respective sensors. Additionally an additional function for

acquiring an analog voltage reading is used to determine the battery

level.

On each of the nodes, code is executed in a repeating loop that

follows the sequence in Figure 3.

This series of steps executes very quickly, completing in under two

seconds. This allow the node to be in a more power efficient state.

Because the base station acts as a relay as well as a sensor node the

execution loop is slightly more complex. The sequence of steps that

the base station executes can be seen in Figure 4.

2.2 Procedure
Nodes were to be placed in their locations on campus,

approximately one hundred to two hundred feet apart with at least

one node within that distance of the base station. The base station

was to be connected to the sculpture’s electronics and power

source. Everything was to be connected, the nodes would begin

transmitting the data to the base station. The base station was to

receive the data and relay it to the sculpture which would log it in

a database. The data would be logged in the database, a message

number corresponding to the number of times the node had

transmitted data, the readings from each sensor, and the battery

voltage at the time of each message.

In order to establish the reliability of mesh network system, three

pieces of information were going to be examined. First, the number

of times the message number resets to the initial value of one was

examined. A reset to the initial value indicates that the system was

either forced to restart or had to shut down for some time. Second,

the message number was examined to determine if a significant

amount of data was lost. Third, the battery voltage was tracked to

determine if there was a regular loss of power or to see if there was

a long term downward trend.

3. RESULTS AND ANALYSIS
The base station and nodes were placed in testing configuration,

emulating the configuration they were to be placed in on the

campus, the power sources were connected, and each was turned

on. The output form the base station was monitored, but no data

was being received. All of the nodes and the base station were

brought back to the lab for diagnostics. The nodes and base station

were powered on and everything appeared to be working. The

nodes were transmitting data and the base station was receiving and

relaying the data back to the computer.

Upon further investigation and examination of the data it was found

that the signal strength between the nodes and the base station was

very weak. The RSSI (Received Signal Strength Indicator), in the

lab with the nodes and base station only a few feet apart, was

between -70 and -80. Preliminary tests had shown RSSI at

approximately two hundred feet to be between -65 and -75. Since

high values are stronger signals the current RSSI values indicated

something was causing a severe decrease in signal strength from

what was measured in the preliminary tests. Three aspects of the

design were examined in an attempt to determine what had caused

the degradation in signal strength.

1. Configure wireless module library

2. Configure sensor libraries

3. Read data from each sensor and store the result

4. Using the stored values build the message to be

sent to the base station

5. Send the message to the base station

6. Pause execution for a set amount of time to save

power

7. Repeat starting at step 3

Figure 3 Node Code Loop

1. Configure wireless module library

2. Configure the sensor libraries

3. Set aside space for incoming messages

4. Check if message is received if not go to set 5

5. If message is received send it to the serial port

6. Repeat starting at set 3

7. Once every set amount of time read data from each

sensor and send it to the serial port.

 Figure 4 Base Station Code Loop

16

The first attempt to diagnose the problem was to move the base

station and the nodes to a new environment to ensure that there was

no localized signal pollution. The nodes and base station were taken

to a residential neighborhood rather than the university campus.

This test showed no improvement in signal strength.

After signal pollution was ruled out, the electrical integrity of the

connection between the wireless module and its antenna was

examined for problems. This was done by directly attaching the

antenna to the wireless module rather than having it connected

through the circuit board. This did not lead to an improvement in

performance.

After the connection to the antenna was determined to be intact a

new antenna was tested. Using a more precise measuring tool and

a solid copper wire, a new antenna was fashioned. This new antenna

replaced the old antenna. The signal strength was measured again,

and found to have no improvement.

These results were not expected. They show that in the current

configuration these modules are not suitable for this system. This

avenue of inquiry should not be abandoned though. Preliminary

results showed that power consumption of this system was within

the required margins for self-sufficiency.

4. CONCLUSION
It is the conclusion of this report that this particular configuration

of hardware is not a suitable system for gathering weather and

atmospheric data. The radio chosen for this system failed to meet

the requirements of the specification. It is believed that this failure

was the result of a failure in the electrical design of the system. As

such, two modified systems may prove to be more viable and

should be the focus of further study.

The first of these systems would use the same components as the

current design. The difference would be a strong focus on

improving the electrical design. Instead of using a general purpose

development board, a high quality application specific PCB should

be designed for the system.

The second suggested system would replace the current radio

module with a module that is more self-sufficient. This module

would remove the need to focus on difficulties of wireless

electronics.

5. ACKNOLWEDGEMENTS
I thank my advisor Dr. Joan Francioni for her guidance throughout

the project. I would like to thank the Computer Science Department

at Winona State University for funding my research. I also thank

Dr. Nathan Moore for his comments and suggestions with respect

to the electronics and the Art department at Winona State

University for assistance in 3D printing parts for the sensor boxes.

6. REFERENCES
[1] Winona State University, "Green Campus: Sustainability in

Practice," [Online]. Available:

http://www.winona.edu/green/campus.asp. [Accessed 28 1

2016].

[2] C. L. M. F. O. Jeanne Franz, "What's the Air Quality Like

Today? Development of an Interactive Display to Measure

Ground Level Ozone and Educate the Community about

Renewable Energy," Winona, 2016.

[3] M. McCauley, "RadioHead Packet Radio library for

embeded microprocessors," 12 4 2016. [Online]. Available:

http://www.airspayce.com/mikem/arduino/RadioHead/index

.html. [Accessed 19 4 2016].

[4] L. Ada, "Adafruit SI1145 Breakout Board - UV index / IR /

Visible Sensor," Adafruit, 6 2 2016. [Online]. Available:

https://learn.adafruit.com/adafruit-si1145-breakout-board-

uv-ir-visible-sensor/overview. [Accessed 19 4 2016].

[5] L. Ada, "DHTxx Sensors," Adafruit, 4 5 2015. [Online].

Available: https://learn.adafruit.com/dht/overview.

[Accessed 19 4 2016].

[6] M. Burton, "Dallas Temperature Control Library," 15 1

2016. [Online]. Available:

http://milesburton.com/Main_Page?title=Dallas_Temperatur

e_Control_Library. [Accessed 19 4 2016].

17

Configuring a Drone Flight Controller over WiFi
Mitchell Gerber
507-273-6363

mgerber11@winona.edu

ABSTRACT

The Naze32 drone flight controller is a popular choice today

among hobbyists for building their own drones. The Naze32 must

be configured with a computer, which can sometimes be difficult

to access when out in the field operating the drone. A method has

been developed to configure the Naze32 flight controller

wirelessly over a WiFi network using an ESP8266, which is a

microcontroller that is cheap, small in scale, and capable of WiFi

communication. The ESP8266 physically connects to the Naze32

and communicates with it using the serial communication

protocol. The ESP8266 then starts a WiFi access point and serves

a dynamic web interface, in which users can pass configuration

settings to the Naze32. Because the ESP8266 is limited in space

and processing power, testing has been done to determine what

features the web configuration tool is capable of offering. This

system has been proven to allow more effective and accessible

configuration of the drone flight controller without the use of a

desktop computer.

Keywords

Naze32, ESP8266, WiFi, Serial Communication.

1. INTRODUCTION
Multirotors, which are commonly referred to as “drones”, have

become extremely popular within the past few years due to

technological advancements in the software and hardware within

them. The Naze32 is a popular flight controller among the

multirotor racing community because it is cheap, powerful, and

uses open source firmware. Configuration of the Naze32 requires

the Cleanflight Configurator, which is an open source

configuration tool for the Naze32 that can only run on a desktop

computer [4]. The problem is that a computer is required to

configure settings on the Naze32 flight controller. This may limit

the user if they are out in the field operating their drone. A

solution is developed to configure the Naze32 flight controller

over WiFi. The ESP8266 is used to provide WiFi configuration of

the Naze32 flight controller because it is cheap, capable of WiFi

communication, and can run its own web server.

Arduino is a company that manufactures open-source hardware

and software. They create microcontrollers that are cheap and

easily programmed with their Arduino Integrated Development

Environment (IDE). A few versions of the Arduino

microcontrollers were considered for the development of this

project. The main problem is that adding WiFi capability to an

Arduino can be costly. The ESP8266 is an inexpensive

microcontroller similar to the Arduino, but has WiFi capabilities

built in. The ESP8266 is becoming a popular alternative to the

Arduino because it is cheap, more powerful, and has built in WiFi

functionality. There are different versions of the ESP8266, but

they are all very similar. The only differences are the size of flash

memory and board layout. For this project I used the ESP-12e

version of the ESP8266. This microcontroller is developed by a

company called Espressif and they have publicly released the

SDK(Software Development Kit). The SDK has been used to

create a development environment for the Arduino IDE called

ESP8266 Arduino. ESP8266 Arduino provides many of the

Arduino libraries, which make programming the ESP8266 quicker

and simpler than using the SDK [2].

Many hobbyists choose the Naze32 as their primary flight

controller because it is cheap, powerful, modular, and is easily

configurable with a computer. Although it is easily configurable,

users are still limited in the sense that they have to have access to

a computer in order to configure or change settings on the flight

controller. Incorporating the ESP8266 into the configuration

process of the Naze32 makes it accessible by a wider array of

devices. This means that the user could be out in the field

operating their drone, stop and plug the ESP8266 into the flight

controller, edit configurations and then save and continue where

they left off. Although a computer is still needed for initial

configuration, this eliminates the use of a computer for quick

adjustments.

Space on the ESP8266 is limited, which means only the most

important features of the Cleanflight Configurator were focused

on. These features include adjustments that affect flight

characteristics of the drone. There are multiple stages of building

a drone, which include assembly, calibration, initial setup, and

tuning. The tuning stage is arguably the most important part of

building a drone that flies well. This stage requires the user to

observe flight characteristics after making adjustments. This can

be a tedious process because the user has to plug their drone into a

computer after every flight if they want to make adjustments. This

is made quicker and easier with the implementation of WiFi

configuration.

The settings on the Naze32 that affect flight characteristics are

known as the PID (Proportional Integral Derivative) settings. A

PID controller is a control loop feedback mechanism that has been

used for many years in industrial control systems [6]. This system

is also used in multirotors and helps it fly smoothly. A drone with

PID settings out of tune will experience oscillations. Depending

on how out of tune the PID settings are, these oscillations may be

clearly visible. Another setting on the Naze32 that affects flight

characteristics is the loop time. The loop time is the time it takes

to complete a control loop during flight. This includes sensor

measurements, data processing, and PID calculations [5].

Adjusting the loop time and PID settings on the drone flight

controller are the important features are implemented in the user

interface.

Proceedings of the 16thWinona Computer Science Undergraduate
Research Seminar, April 27, 2016, Winona, MN, US.

18

2. Hypothesis/Question
Features of the Cleanflight Configurator can be implemented on

the ESP8266 microcontroller, which can then be used to configure

the Naze32 flight controller wirelessly over a WiFi network. Can

a responsive web interface be developed that is consistent with the

Cleanflight Configurator that will fit on the ESP8266? This paper

and research explores the possibilities of the ESP8266 with

respect to serial communication, serving dynamic web pages, and

WiFi communication.

3. Method

3.1 Development Method
This project followed the agile software development model.

Development was divided up into many different parts and

different languages such as C, Javascript, HTML, and CSS were

used as well as different development environments. Each of these

parts has been worked on individually and in no particular order.

There were certain objectives and goals throughout the

development process that are explained in depth in the method

section. The agile software development model is an appropriate

model to follow and has positively impacted the implementation

of this project.

3.2 Communicating with the Naze32
The first initial step is to establish communication between the

ESP8266 and Naze32. Both of these microcontrollers

communicate using the serial communication protocol, which

means that they can communicate directly. The Naze32 can be

configured directly with CLI commands issued to it via serial at a

baud rate of 115,200 Bd. To test this out, a computer is used to

configure the Naze32 with a serial to USB adapter and a program

called PuTTY. PuTTY allows Windows users to issue serial

commands to a connected device. As displayed in Figure 1, a

communication port can be selected (COM9) as well as the baud

rate for communication speed (115200 Bd).

Figure 1. PuTTY to connect with Naze32

Figure 2 displays an open serial communication terminal with the

Naze32 using Putty. The “#” command is issued to the Naze32,

which causes it to enter the CLI mode. The CLI mode allows the

Naze32 to accept various configuration commands [1]. The

example shown above displays the process to change the loop

time of the Naze32. The “set” command followed by the “save”

command causes the Naze32 to execute the command and then

reboot.

Figure 2. CLI mode is entered

3.3 Parsing Naze32 Response
The Arduino IDE (Integrated Development Environment) was

used to program the ESP8266 in the C language. The Arduino

IDE offers many useful libraries that will be helpful in developing

the back end functionality of the WiFi configuration tool [2]. The

ESP8266 serves the purpose of sending commands to the Naze32

flight controller and receiving and parsing responses. All Naze32

settings can be received by issuing the command “dump”. As

shown in Figure 3, Naze32 settings are received in the format “set

<parameter> = <value>”. This makes it easy to process the entire

string and store each value. A subset of these settings needs to be

displayed on the client side and there are multiple ways of

achieving this.

Figure 3. Part of the response from issuing command "dump"

to Naze32

Javascript is used on the client side, therefore the most practical

thing to do is store settings in JSON (Javascript Object Notation)

format. There are a few different approaches to this that were

considered. One option is to dump the settings into one giant

string and send it over to the client side to be formatted. This

would be a good option if the ESP8266 was completely starved of

resources because it would reduce the amount of processing on

the server side. The next option is to use a JSON library for the

ESP8266. This seemed like the most practical approach to solving

the problem and would be best for a production environment due

to reusability. The downside of this option is that it requires extra

overhead to use the entire library when in reality only a small

19

portion is needed. Although some JSON libraries are less than

5kb, keeping the size of the entire program to a minimum is a

must. This left a final option of just creating a new string that is in

JSON format. This was appealing because it did not use any

additional libraries and the processing was still done on the server

in order to deliver a JSON string through the proper use of an

API. This was the option that was chosen and although it may not

have been the best in terms of reusability or speed, it was

sufficient for this implementation.

3.4 Developing the User Interface
The user interface is intended to only allow the user to adjust

settings which are the most important during the tuning phase.

PID and loop time are the configuration settings that are adjusted

the most when out in the field operating the drone, therefore the

user interface was limited to these to prevent a cluttered user

experience. Although these are the only settings included in the

user interface, there is a section that allows users to input CLI

(command line interface) commands. This provides the option of

adjusting any configuration setting within the Naze32 flight

controller. Figure 4 displays part of the user interface. The user

interface was developed with simplicity as a priority. Each setting

can be adjusted by a plus and minus button, or the user can enter

in a custom value.

Figure 4. A section of the user interface.

There are a few different ways to serve the user interface from the

ESP8266. The first way is to use the ESP8266’s file system. This

method is nice because files can be saved as actual HTML files.

The ESP8266 can receive an HTTP request, open up the requested

HTML file, and serve it to the user just like any normal web

server. The only problem with this method is that is makes the

code a little more complex and it also requires the flash memory

to be written to whenever an update to the HTML document

occurs. This can be a tedious task during the development phase.

Because of this, another option was chosen to serve the static

HTML files to the user. The ESP8266 can serve web pages in a

character array, which can be stores in flash memory. To prevent

making the main program cluttered, this is stored in a separate

header file. C allows an escape sequence, which was very useful

for storing the entire HTML file without escaping every special

character. The sequence “R”=====()=====”;” is used to escape

every special character by storing the HTML document within the

two parenthesis.

The ESP8266 does not technically serve any dynamic web pages

in this case, therefore dynamic functionality is handled on the

client side using Javascript. When the user accesses the index

page the Javascript is triggered, which sends an HTTP request to

the ESP8266’s restful API to obtain the configuration settings and

fill in the rest of the web page. Each field can then be adjusted

with the plus and minus buttons or by an input value. Each one of

these values gets added to the parameter list for when the user

submits the configuration. Now, only the changed configurations

are passed to the ESP8266, which then get sent over serial to the

Naze32 to be saved.

3.5 Testing
The user interface developed during this project is expected to be

used across a wide array of devices varying in screen resolutions.

Because of this, a responsive design was emphasized. The Google

Chrome web browser offers a device simulator for testing

responsive websites as different devices. This was used to test the

user interface for its responsiveness.

There are different versions of the ESP8266 and for this project

the ESP-12e is used. This specific version has a flash memory size

of 4mb, which is the largest flash size currently available for the

ESP8266. This is more than enough space for a program that

serves one HTML page along with some CSS and Javascript. The

content being served is all stored in a character array in flash

memory. The current user interface design only takes up 8kb,

which is very small and is easily served by the ESP8266. CSS and

Javascript are both included in the HTML document. Although

this is not normally good practice, it lessens the amount of

requests the server has to process. Keeping the amount of requests

to the server to a minimum will keep the user experience running

as smoothly as possible. This ultimately increases the speed at

which the initial web page loads. Testing has been done to see

how the ESP8266 reacts when serving different sized web pages.

4. Results
Development and testing has proven that features of the

Cleanflight Configurator can be implemented within a web

interface served by the ESP8266 microcontroller, which can then

be used to configure the Naze32 flight controller wirelessly using

any WiFi enabled device. As shown in Figure 5, users are able to

physically connect the ESP8266 to the Naze32 flight controller.

The ESP8266 then starts an access point and serves a dynamic

web interface. Users can then connect to the access point and

access this page, which provides a subset of Naze32

configurations from the Cleanflight Configurator. The user

interface also provides manual CLI input commands for more

advanced users. User input is then manipulated on the ESP8266,

passed to the Naze32 using serial communication, and then saved.

The new configuration settings are then passed back to the

ESP8266 where they are displayed on the web interface for the

user to observe.

20

Figure 5. Illustration of the configuration process.

Testing was done to examine the behavior of the ESP8266 for

different sized documents. Through trial and error it was

concluded that any file over 35kb did not load in the browser. An

issue like this is hard to debug because the ESP8266 does not

produce any error codes for this specific problem. A very large

character array is used, therefore it is assumed that an overflow

may be occurring, which causes the blank page to load. The user

interface developed in this project is around 8kb, which is easily

served by the ESP8266.

Figure 6. Responsive web design.

After testing the user interface with the Google Chrome device

simulator it is concluded that it is consistent across many different

devices. As shown in figure 6, the user interface adapts to

different screen sizes. This allows the user to connect and

configure their drone without worrying about which device they

are using.

5. Conclusion
Throughout development and research there are many things that

have been learned. It is possible to implement WiFi configuration

into the Naze32 drone flight controller using the ESP8266 WiFi

microcontroller. There are different methods for achieving this,

but serving web pages from a microcontroller has its limitations.

The method that was used in this project only allows files of less

than 35kb to be served by the ESP8266. There are ways around

this, but the user interface size was kept less than 35kb. The small

size of the program allowed the web server to run smoothly and

provided a robust interface for the user.

5.1 Future Development
This entire project only scratched the surface of the possibilities

for the configuration of drones with the ESP8266 microcontroller.

For example the Naze32 flight controller supports a live telemetry

data stream through the same serial connection that was used in

this project. Future development and experimentation could

include parsing through the telemetry data stream and displaying

it on the interface along with the configuration settings. This

would allow the user to see a live stream of data such as RSSI,

battery voltage, and flight time. Other future work may also

include testing the limits of the ESP8266’s wireless

communication. What is the range of the ESP8266? Does the

2.4ghz signal interfere with the drone transmitter and receiver?

These are some questions that could be answered with more

testing in the future.

6. ACKNOWLEDGMENTS
Thank you to Dr. Joan Francioni and Dr. Mingrui Zhang for

advising and review.

7. REFERENCES
[1] Cleanflight, GitHub repository, Retrieved February 15, 2016,

from Github: https://github.com/cleanflight/cleanflight.

[2] ESP8266 Arduino, GitHub repository, Retrieved February

11, 2016, from Github: https://github.com/esp8266/Arduino.

[3] ESP8266 SDK Getting Started Guide, Espressif, 2016.

[4] Liang, Oscar, CleanFlight Setup Tuning Guide for Naze32 /

CC3D, Retrieved February 11, 2016, from Oscar Liang Blog:

http://blog.oscarliang.net/cleanflight-naze32-setup.

[5] Liang, Oscar, Naze32 on Mini Quad Setup Quadcopter,

Retrieved February 11, 2016, from Oscar Liang Blog:

http://blog.oscarliang.net/naze32-on-mini-quad-fpv250.

[6] Tan, Wen, Jizhen Liu, Tongwen Chen, and Horacio J.

Marquez, Comparison of Some Well-known PID Tuning

Formulas, Retrieved February 11, 2016, from Science

Direct:

http://www.sciencedirect.com/science/article/pii/S009813540

600

21

Distance Accuracies with Mobile Applications and
Tracking Watches

Nathan Karlstad, Computer Science Department, Winona State University

Winona, MN 55987

NKarlstad12@winona.edu

ABSTRACT

The ubiquity of fitness-related mobile applications leads to

consumer confusion and doubts in their choice. It can be

frustrating for consumers if applications cannot distinguish flat

and elevated terrain. The sample to experiment with includes 11

mobile applications and three tracking watches, which rely on the

device or GPS to gather data. Findings show there is an issue in

accurate distance recordings from at least half of the samples, and

there is a significant problem in accurately recording distance in

drastic changing altitudes.

1. INTRODUCTION

In the last 30 years, the lifestyles and food consumption of

Americans have changed drastically, from children walking to

school to riding the bus, to six snacks per day up from one [12].

Due to these changes, “more than one-third of adults and 17% of

youth in the United States are obese” [16]. There is an unfortunate

trend of poor diet and inactivity. The reasons vary from each

individual, so in an effort to combat obesity, there has been a rise

in various products and services related to weight loss and fitness.

Since 2005, the number of health clubs increased by 7,630 to

34,460 total, and memberships to those clubs rose by 12.8 million

to 54.1 million total [11]. For non-club members, there are

independent options to motivate the individual and track their

results such as mobile applications and peripherals.

With the ubiquity of smartphones, there has been a plethora of

fitness-based mobile applications created on Google’s application

store, Google Play, alone [6]. Whether the user chooses to use

their smartphone or a worn peripheral, the device records various

data: number of steps, distance traveled, calorie outtake, sleep,

and other related information. The data field, distance traveled, is

interesting due to the various ways it could be calculated.

Expected ways the applications will calculate distance is by the

number of recorded steps, the use of the smartphone’s

accelerometer, and GPS. It is unlikely any of the selected mobile

applications will base their calculated distance on the number of

steps; it would be too inaccurate. The use of an accelerometer will

record a user’s motion in a 3D grid [19], but given the

unpredictable motions a person makes, the algorithms used will

show a difference between applications in recorded distance. The

use of GPS will be similar to the accelerometer, but it will be more

accurate, within 95% [8]. However, like with the accelerometer,

how the developers program the applications and devices to

account for altitude will have an effect on the recorded distance.

Some applications may only take into account latitude and

longitude, which will assume the user is always on a flat plane.

For the average person, the exact distance may not be important,

only that it is reasonably close, but for individuals committed to

downloading applications related to fitness and paying for

companion peripherals, the accuracy of the displayed distance

may be important. It could prove frustrating if the device and/or

application do not differentiate running on a treadmill and skiing

down a mountain.

Because of the mentioned accuracy of GPS, it is expected the

mobile applications’ and tracking watches’ recorded distance to

be within the margin of error of five percent when compared to

the measuring wheel’s recorded distance. However, with the

experiment involving both software and wearable hardware, it is

expected the wearable devices will be 10% more accurate in

recorded distance compared to the software applications on the

smartphone.

2. METHODOLOGY

2.1 Materials and Software

There are two Fitbit watches: our own Charge [4] and Dr. Zhang’s

Surge [5]. The third watch is Dr. Cichanowski’s Garmin [7]. The

Fitbit watches will be worn on the left arm with the Surge closest

to the wrist, and the Garmin watch will be worn on the right arm.

The mobile applications include: Strava Running and Cycling

GPS [20], Google Fit - Fitness Tracking [9], Walk with Map My

Walk [14], Endomondo - Running & Walking [3], Pedometer &

Fitness Tracker [18], Pedometer [21], GPS Odometer [10], Nike+

Running [15], Sports Tracker Running Cycling [2], Runtastic

Running & Fitness [17], and WalkLogger pedometer [27]. These

applications were chosen on developer name recognition (well-

known and unknown developers) and number of downloads.

Applications will run on the HTC One M8 smartphone using the

Android operating system. The smartphone will be placed in the
front-left pocket of the scientist’s pants.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

Proceedings of the 16thWinona Computer Science Undergraduate

Research Seminar, April 27, 2016, Winona, MN, US.

22

An analog measuring wheel to record a distance in feet and inches

to later be converted to kilometers, and a six foot leveling tool and
a tape measure.

While the measuring wheel records the distance, the three

watches will be worn, and the 11 applications will execute and

record in the background on the smartphone. At the start of each

trial, the measuring wheel will be zeroed and each application, if

the distance is not displayed as zero, will be recorded to calculate

the difference at the end of each trial.

2.2 Locations

The trail around Lake Winona (44°2'23.10"N, 91°39'2.37"W)
will be used because it has a relatively flat elevation.

A path from our home (43°58'33.76"N, 92° 3'48.91"W) to St.

Charles’ Park will be another location with its mix of flat and
sloping terrain.

To test the accuracy in high altitudes, Holzinger Lodge (44° 2'
27.0085"N, 91° 39' 43.8324"W) will be the last location.

The locations will be tested three times to get an average. The

distance measured by the measuring wheel will be targeting 8,100
feet for each location.

Uniquely, a hill with pavement will be used to predict what a

device only calculating based on latitude and longitude will

conclude. The hill is next to our home. It slopes

upward/downward at a steady angle, representing a triangle.

Using the equation tan(θ) = h/d, the height h can be found with

the distance from where we stood and the bottom of the hill d and

angle of the slope θ. The measuring wheel will be used to record

the hypotenuse, and the angle will be calculated with a six foot

leveling tool and a tape measure. The tools will form three

separate smaller triangles along the road with the road being the

hypotenuse. With one angle being 90˚, the remaining two can be

calculated, for each triangle.

3. RESULTS AND ANALYSIS

With the use of the sloping road, a prediction of what applications

and devices calculating distance without the inclusion of
elevation would record is calculated. The equation,

tan(𝜃) =
ℎ

𝑑

is used to calculate the height h of the triangle. The distance from

where we stood to the bottom of the hill was recorded and

averaged as 0.007 km for d, and the angle was measured and
averaged as 48.64˚ for θ.

tan(48.64°) =
ℎ

0.007
𝑘𝑚

ℎ = 0.008 𝑘𝑚

With the hypotenuse and height, the predicted result, or third side,
can be calculated with the equation,

𝑎2 + 𝑏2 = 𝑐2

The hypotenuse being c, and the height being a.

0.0082𝑘𝑚 + 𝑏2 = 0.0442𝑘𝑚

𝑏 = 0.043 𝑘𝑚

Lake Winona

St. Charles

Park

Holzinger

Lodge Trail

Home

23

Table 1. Average recorded distance in km along the

hypotenuse (the road)

Application and Device name Average (Ascending)

Google Fit - Fitness Tracking 0.00

WalkLogger pedometer 0.00

Runtastic Running & Fitness 0.033

Pedometer 0.048

GPS Odometer 0.050

Garmin 0.053

Charge 0.053

Surge 0.053

Nike+ Running 0.060

Walk with Map My Walk 0.076

Sports Tracker Running Cycling 0.090

Endomondo - Running &

Walking

0.097

Pedometer & Fitness Tracker 0.100

Strava Running and Cycling

GPS

0.100

Table 1. shows the applications’ and devices’ recorded distance

along the road in ascending order. Google Fit – Fitness Tracking

and WalkLogger pedometer recorded a zero likely because both

applications do not record past one decimal point; they are

included but ignored for the sake of this discussion. As for the

rest, the only application that recorded less than the measured

road, 0.044 km, is Runtastic Running & Fitness, 0.033 km. This

is 0.01 shorter than the predicted result, and the rest of the

applications and devices recorded much higher values. It is

possible that because we produced more movement climbing the

hill than we would walking on a flat, straight line, the applications

and tracking watches over calculated. However, this does not

explain why a GPS-based application or device recorded

incorrectly. The extremely short distance hindered Google Fit –

Fitness Tracking and WalkLogger pedometer from recording, so

the similar anomalies may have occurred for the applications that
recorded high.

Figure 1. shows the data collected in alphabetical order. In each

cluster, the left-most (purple) bar represents the data gathered and

averaged for the particular application or device at Lake Winona.

Eight applications and devices, Charge, Endomondo – Running

& Walking, GPS Odometer, Nike+ Running, Pedometer &

Fitness Tracker, Sports Tracker Running Cycling, Strava

Running and Cycling GPS, and Walk with Map My Walk,

recorded higher than the measurement gathered from the
measuring wheel, 2.47 km.

The middle (orange) bar represents the averaged data recorded at

St. Charles Park. Nine applications and devices, Charge,

Endomondo – Running & Walking, Google Fit- Fitness Tracking,

Nike+ Running, Pedometer & Fitness Tracker, Sports Tracker

Running Cycling, Strava Running and Cycling GPS, Walk with

Map My Walk, and WalkLogger pedometer, recorded above the
measuring wheel, 2.47 km.

The right-most (green) bar represents the averaged data collected

from Holzinger Lodge. Nine applications and devices, Charge,

Endomondo – Running & Walking, Google Fit – Fitness

Tracking, Nike+ Running, Pedometer, Pedometer & Fitness

Tracker, Sports Tracker Running Cycling, Strava Running and

Cycling GPS, Surge, and Walk with Map My Walk, measured
higher than the 2.47 km from the measuring wheel.

0

0.5

1

1.5

2

2.5

3

3.5

4

Winona Lake St. Charles Park Holzinger Lodge

Figure 1. Average recorded distances for each location, Lake Winona, St. Charles Park, and Holzinger Lodge, in kilometers.

24

According to Altitude.nu [1], which uses Google Maps, we

measured the altitude of the three locations. Figure 2. displays the

lowest and highest evaluated altitude for each location. As shown,

the altitude increased by 139.64 m from Lake Winona to St.

Charles Park. This may explain the trend for some of the

applications and devices to record higher at St. Charles Park than
Lake Winona.

However, when tested against the first hypothesis, seven

applications and devices, Charge, Garmin, GPS Odometer, Nike+

Running, Runtastic Running & Fitness, Sports Tracker Running

Cycling, and Walk with Map My Walk, are within the margin of

error of five percent, supportive of the hypothesis, at Lake

Winona. Eight applications and devices, Charge, Garmin, GPS

Odometer, Nike+ Running, Runtastic Running & Fitness, Surge,

Walk with Map My Walk, and WalkLogger pedometer, support

the first hypothesis at St. Charles Park. The difference between

the number of applications and devices within five percent of the

measuring wheel at both locations is negligible. Figure 2. shows

while there is a difference in height above sea level between Lake

Winona and St. Charles Park, at each location, the difference

between the lowest and highest elevation is not significant,

meaning the paths were fairly consistent and relatively flat. The

comparison between Lake Winona and St. Charles Park show

there isn’t enough reason to suggest a high altitude significantly
affects distance measured by the applications and devices.

However, this experiment also focused on sloping terrain,

changes in elevation throughout a location. Holzinger Lodge’s
lowest recorded altitude, from Figure 2., is 17.01 m higher than

Lake Winona’s lowest, and its highest recorded altitude is 14.33

m higher than St. Charles Park’s highest. It has a significant shift

in elevation throughout its location. In Figure 1., only two, Nike+

Running and Walk with Map My Walk, are within five percent of

the measuring wheel. It is a significant drop from at least 50% of

the applications and devices supporting the hypothesis (seven out

of 14) to 14.29%, or two out of 14, supporting the first hypothesis.

Holzinger Lodge’s lowest and highest altitude is not significantly

lower or higher than Lake Winona or St. Charles Park, but the

results displayed at Figure 1. show less applications calculating

accurate distances at Holzinger Lodge compared to Lake Winona

or St. Charles Park. These results show there is an issue, for these

applications and devices, to record distance accurately on terrain
that varies in altitude.

Table 2. Shows the standard deviation at each location and

p-value

App/Device Lake

Winona

St.

Charles

Park

Holzinger

Lodge

p-

value

Charge 1 1 2 0.305

Endomondo

– Running &

Walking

1 1 2 0.129

Garmin -1 -1 -1 0.357

Google Fit –

Fitness

Tracking

-3 2 2 0.982

GPS

Odometer

1 -1 -1 0.424

Nike+

Running

-1 1 1 0.011

Pedometer -3 -1 1 0.546

Pedometer &

Fitness

Tracker

1 3 3 0.096

Runtastic

Running &

Fitness

1 -1 -1 0.330

Sports

Tracker

Running

Cycling

1 1 1 0.083

Strava

Running and

Cycling GPS

1 2 2 0.087

Surge -1 -1 2 0.595

Walk with

Map My

Walk

1 1 1 0.122

WalkLogger

pedometer

-1 1 -1 0.416

The standard deviation was calculated for each location, as shown

in Table 2. The standard equation used had to be modified to

replace the overall mean with the mean of the measuring wheel.

For Lake Winona, the standard deviation was 0.4478. For St.
Charles Park, 0.2850. For Holzinger Lodge, 0.5616.

Table 2. also shows the p-value from a conducted T-test. For the

main hypothesis, the first one, the alpha is 0.05. The mobile

application, Nike+ Running, was the only one to pass with a

0.011, meaning its data is significant. However, since only three

samples were collected at only three locations for each

application and device, there is not enough data to confidently

state if the significance of the data holds. Pedometer & Fitness

Tracker, Sports Tracker Running Cycling, and Strava Running

and Cycling GPS could also be argued to have significant data

given their values are under 0.100. Google Fit – Fitness Tracking

likely has a 0.982 due to its wide range in given data, which
reinforces the idea there was not enough data collected.

For the second hypothesis, at Lake Winona, the Charge recorded

10% better than four applications: Google Fit – Fitness Tracking,

Pedometer, Pedometer & Fitness Tracker, and WalkLogger

0

100

200

300

400

Lake Winona St. Charles Park Holzinger Lodge

Lowest Highest

Figure 2. Lowest and highest recorded altitude from each

location in meters.

25

pedometer. The Surge did better than three applications: Google

Fit – Fitness Tracking, Pedometer, and WalkLogger pedometer.

The Garmin produced more accurate results than four mobile

applications: Google Fit – Fitness Tracking, Pedometer,
Pedometer & Fitness Tracker, and WalkLogger pedometer.

At St. Charles Park, Charge, Surge, and Garmin recorded 10%

more accurately than three applications: Google Fit – Fitness

Tracking, Pedometer & Fitness Tracker, and Strava Running and

Cycling GPS.

At Holzinger Lodge, Charge and Surge produced more accurate

recordings by 10% than Strava Running and Cycling GPS.

Garmin did better than five mobile applications: Endomondo –

Running & Walking, Google Fit – Fitness Tracking, Pedometer

& Fitness Tracker, Runtastic Running & Fitness, and Strava

Running and Cycling GPS. The number rises to seven if Charge
and Surge are included.

The tracking watches did not perform significantly better in

producing accurate distance recordings, dismissing the second

hypothesis. The watches tend to record more accurately on level

terrain, not on hiking trails like Holzinger Lodge, in which they
perform similar to mobile applications.

4. CONCLUSIONS

Figure 1. revealed an interesting trend: the orange, middle, bars

representing St. Charles Park, appeared to be recording higher

results than Lake Winona. This made us question whether the

altitude played a significant role in recording accurate distance.

Holzinger Lodge is a near-perfect location to test the recordings

due to its significant change in altitude. However, it is a forest,

which is in contrast to the near-woodless locations of Lake

Winona and St. Charles Park. It is unclear if the dense woods

interfered with some of the applications’ recordings. In our

experience, GPS Odometer warned of a weak GPS signal from

the base of Holzinger Lodge, and Nike+ Running began saying,

“Pause workout,” halfway through the path. As discussed in

Table 1., human arm movement uphill is more exaggerated to

keep balance and more quick downhill. Holzinger Lodge

consisted of many steep hills, which had to be climbed up and

down. This may have resulted in the high values generated by the

Charge and Surge. Mobile applications relying on the

smartphone’s accelerometer would have also likely suffered from

human error, due to similar reasons discussed about arm

movement, but since the smartphone was placed in the left front

pocket, the error likely occurred from exaggerated leg movement.

For example, going down a steep hill results in quick or short
steps to not lose balance.

While this experiment provided a decent sample of applications

and popular tracking watches, a larger sample size is always

beneficial. If this test were to be conducted again, more locations

would also be chosen along with more tests at each location. In

this study, there is a problem with applications and devices

recording in drastic shifts in elevation. More locations,

specifically hiking locations like Holzinger Lodge, would be best
to support this conclusion.

5. ACKNOWLEDGEMENTS

We would like to thank Dr. Zhang and Dr. Cichanowski for

lending their tracking watches. We would also like to thank Dr.

Zhang and Dr. Francioni for providing helpful feedback in data

collection, writing, poster design, and presentation. They hosted

the course CS 495, and each student also provided meaningful
feedback.

6. REFERENCES

[1] Altitude.nu. Altitude.nu - Find the Elevation of Any Place.
N.p., n.d. Web. 19 Apr. 2016. <http://altitude.nu/>.

[2] Amer Sports Digital Oy. "Sports Tracker Running Cycling."

Sports Tracker Running Cycling - Android Apps on Google Play.

Google Play, 8 Mar. 2016. Web. 10 Mar. 2016.

<https://play.google.com/store/apps/details?id=com.stt.android>
.

[3] Endomondo.com. "Endomondo - Running & Walking."

Endomondo - Running & Walking - Android Apps on Google

Play. Google Play, 18 Feb. 2016. Web. 10 Mar. 2016.

<https://play.google.com/store/apps/details?id=com.endomondo.
android&hl=en>.

[4] Fitbit. "Energize Your Day." Fitbit Charge™ Wireless

Activity + Sleep Wristband. Fitbit, n.d. Web. 10 Mar. 2016.
<https://www.fitbit.com/charge>.

[5] Fitbit. "Train Smarter. Go Farther." Fitbit Surge™ Fitness

Super Watch. Fitbit, n.d. Web. 10 Mar. 2016.

<http://www.fitbit.com/surge>.

[6] "Fitness+tracker - Android Apps on Google Play." Google

Play. Google, n.d. Web. 29 Jan. 2016.

<https://play.google.com/store/search?q=fitness%2Btracker&c=

apps&docType=1&sp=CAFiEQoPZml0bmVzcyB0cmFja2Vyeg
UYAMABAooBAggB%3AS%3AANO1ljIdNaE>.

[7] Garmin. "Garmin | United States | Home." Garmin. Garmin,

n.d. Web. 10 Mar. 2016. <http://www.garmin.com/en-US>.

[8] "Global Positioning System Standard Positioning Service

Performance Standard." (2008): 11. GPS.gov. Sept. 2008. PDF.

11 Feb. 2016. <http://www.gps.gov/technical/ps/2008-SPS-
performance-standard.pdf>.

[9] Google, Inc. "Google Fit - Fitness Tracking." Google Fit -

Fitness Tracking - Android Apps on Google Play. Google Play, 8

Jan. 2016. Web. 10 Mar. 2016.

<https://play.google.com/store/apps/details?id=com.google.andr
oid.apps.fitness>.

[10] GPS Tools. "GPS Odometer." GPS Odometer - Android

Apps on Google Play. Google Play, 10 Apr. 2015. Web. 10 Mar.

2016.

<https://play.google.com/store/apps/details?id=com.gpstools.gps
odometer>.

[11] "IHRSA - About the Industry." IHRSA. N.p., 30 June 2015.
Web. 11 Feb. 2016. <http://www.ihrsa.org/about-the-industry/>.

[12] "Let's Move." Let's Move. N.p., n.d. Web. 11 Feb. 2016.

<http://www.letsmove.gov/learn-facts/epidemic-childhood-

obesity>.

26

[13] Liu, Guangwen, Masayuki Iwai, Yoshito Tobe, Dunstan

Matekenya, Khan Hossain, Masaki Ito, and Kaoru Sezaki.

UbiComp '14 Adjunct Proceedings of the 2014 ACM

International Joint Conference on Pervasive and Ubiquitous

Computing: Adjunct Publication. Ubiquitous Computing, New

York. New York: ACM, 2014. 459-68. ACM Digital Libary.
Web. 22 Jan. 2016.

[14] MapMyFitness, Inc. "Walk with Map My Walk." Walk with

Map My Walk - Android Apps on Google Play. Google Play, 1

Mar. 2016. Web. 10 Mar. 2016.

<https://play.google.com/store/apps/details?id=com.mapmywalk
.android2&hl=en>.

[15] Nike, Inc. "Nike+ Running." Nike+ Running - Android Apps

on Google Play. Google Play, 2 Feb. 2016. Web. 10 Mar. 2016.

<https://play.google.com/store/apps/details?id=com.nike.plusgp
s>.

[16] Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of

Childhood and Adult Obesity in the United States, 2011-2012.
JAMA.2014;311(8):806-814. doi:10.1001/jama.2014.732.

[17] Runtastic. "Runtastic Running & Fitness." Runtastic

Running & Fitness - Android Apps on Google Play. Google Play,

5 Feb. 2016. Web. 10 Mar. 2016.

<https://play.google.com/store/apps/details?id=com.runtastic.an
droid>.

[18] SenseMe. "Pedometer & Fitness Tracker." Pedometer &

Fitness Tracker - Android Apps on Google Play. Google Play, 10

June 2015. Web. 10 Mar. 2016.

<https://play.google.com/store/apps/details?id=com.wearablelab
.fitnessmate>.

[19] Smith, Dave. "How Does An Accelerometer Work In A

Smartphone? Bill Hammack, The Engineer Guy, Explains [FULL

TEXT]." International Business Times. N.p., 23 May 2012. Web.

11 Feb. 2016. <http://www.ibtimes.com/how-does-

accelerometer-work-smartphone-bill-hammack-engineer-guy-
explains-full-text-699762>.

[20] Strava, Inc. "Strava Running and Cycling GPS." Strava

Running and Cycling GPS - Android Apps on Google Play.

Google Play, 8 Mar. 2016. Web. 10 Mar. 2016.

<https://play.google.com/store/apps/details?id=com.strava>.

[21] Tayutau. "Pedometer." Pedometer - Android Apps on

Google Play. Google Play, 7 Sept. 2015. Web. 10 Mar. 2016.

<https://play.google.com/store/apps/details?id=com.tayu.tau.ped
ometer&hl=en>.

[22] Walklogger. "WalkLogger Pedometer." WalkLogger

Pedometer - Android Apps on Google Play. Google Play, 6 Jan.

2015. Web. 10 Mar. 2016.

<https://play.google.com/store/apps/details?id=com.walklogger.
pedometer>.

27

Java Implementation of Cox Proportional Hazards Model
Nathan Martin

Winona State University
178 East 6th St Winona, MN 55987

763-370-5275
NMartin11@winona.edu

Abstract

The project is to redesign the web-based software for

predicting lung cancer treatment outcomes. The current

application was designed eight years ago and has been used

at Mayo Clinic since. It was done by integrating R statistical

package into Java environment. It introduced unnecessary

complexity due to the need of the Cox Proportional Hazard

model in R. To simplify the design, we developed a Java

version of Cox Proportional Hazard model to compute

patient survival rate. We both both ArrayList and HashMap

of Java implementation for information exchange between

web-based interfaces and the Java implementations. Our

software tool calculates the survival rate using patient

histological information and chosen treatments, and then

presents the survival curves on web-based interfaces. In the

redesign of the software tool, we have improved the user

interfaces to allow a healthcare provider compare patient’s

survival rates between different treatments.

1. Introduction

The Cox proportional hazards model or simply known as the

Cox model is a statistical technique for exploring the

relationship between the survival of a patient and several

explanatory variables [1]. This model is the most common

tool for studying the dependency of survival time on

predictor variables [2]. For example, this model can evaluate

the current status of a patient with lung cancer and predict

the life expectancy based on predictor variables. It can also

provide an estimate of the treatment effect on survival after

adjustment for other explanatory variables [1]. The hazard

function represented as S(t|x), is the probability that a person

will experience an event within a small time interval [1].

𝑆(𝑡|𝑥) = exp[−ℎ0(𝑡)𝑥𝑒
𝛽𝑥] Equation. 1

Shown in Equation 1, h0(t) is the baseline which corresponds

with the probability of dying when all given explanatory

variables of x are at default values. When used properly we

can express the hazard or risk (S(t)) of dying at time t [1]. In

short, the Cox model is used to analyze survival data, which

allows us to isolate the effects of treatment from the effects

of other variables. Although the Cox model is commonly

used for survival analysis, essentially the same methods are

employed in a variety of disciplines under various rubrics

such as “event-history analysis” in sociology, and “failure-

time analysis” in engineering [2].

There are a few software tools that can effectively use the

Cox model, they include R statistical language, SAS,

Minitab, JMP, and STATA. None of them are in Java. The

goal of this project will be creating a generic Java function

to approximate cox model, and use it in different survival

models such as Background model of non-small cell lung

cancer (NSCLC), Treatment model of non-small cell lung

cancer, Quality of life (QoL) model, extensive stage small

cell lung cancer model, and limited stage small cell lung

cancer model. Results from this application need to

approximate to that of the results from R.

There is limited availability of the Cox PH model

implemented in Java. A package that can be downloaded was

developed by Campagne Laboratory at the institute for

computational biomedicine of Weill Cornel Medical

College, but isn’t official to Java [5]. Also, there is another

project called JStats started by a small group [4]. The

problem with the JStats package is that on their website you

are presented with a warning that the package is incomplete,

and almost certainly neither usable nor functional [4].

For this project it is to be expected that Java can handle such

models and output accurate results but will be limited to only

the Cox PH model. I hypothesize that a carefully designed

Java implementation of Cox model will compute survival

rate within 5% of estimated results by R package. Because

of the focus on the Cox model, this project will be limited to

just that and will not perform other statistical analysis

functions for the time being.

2. Methodology

Java is the programming language being used to create a

function of Cox proportional hazard model. Our Java

implementation will allow a user to pick a desired model and

convert the data into a hash map which is a data structure

stores both key and value. In this case each coefficient or

time interval will be the key paired to its corresponding

values.

Table 1. CSV file with coefficient and there values

Coefficient Baseline

agedx 0.0256

gender 0.232644

stageib 0.187212

stageiia 0.297941

stageiib 0.549594

Proceedings of the 16thWinona Computer Science Undergraduate

Research Seminar, April 27, 2016, Winona, MN, US.

28

mailto:NMartin11@winona.edu

Looking at table 1, the first column is the key and the second

column would be the value of the key. When we want to

access a coefficient all is needed is to search for the name of

the coefficient and value is returned.

Math.exp (-(1-baseline)*Math.exp (CoefficientSum))

In Java implementation, the CoefficientSum variable

corresponds to the βX in Equation 1 which is the sum of all

coefficient to be used in the equation. For example, if we

used agedx and gender from table 1 the CoefficientSum will

be equal to .258244. – (1 – baseline) is equivalent to −ℎ0(𝑡)
in Equation 1 and its value is provided by the specified

model we decide to use. Math.exp is Java’s method of

taking the exponent of the value in the parenthesis.

2.1 R Statistical Program

R is the statistical computing program that is used to

compare the Java implementation results to determine the

accuracy of the survival rate results. Since the focus of

project is Java implementation, Dr. Mingrui Zhang of the

Computer Science Department from Winona State

University provides the data that will be used to compare and

determine the validity of the Java implementation. This data

includes results from NSCLC background, NSCLC

treatment, post-surgery recurrence, quality of life, extensive

small cell, limited small Cell.

Table 2. Sample data from R of Survival Rate for first 10

months with Non Small Cell Type Model

Month Baseline

0 0.99997265

1 0.99856295

2 0.99673442

3 0.99470675

4 0.99289737

5 0.99129227

6 0.98959672

7 0.98790793

8 0.98616069

9 0.98434493

10 0.9826557

In Table 2, the coefficients or predictor variables being used

to get the survival rate is age being 50 and stage being

stageiiib. Stageiiib is the stage of lung cancer the patient is

at. Numbers in the first column are the months. The second

column contains the base survival rate corresponding to each

month. You can see that as each month passes the survival

rate or probability of survival decreases. Looking back at

Equation 1, ℎ0(𝑡) is the base at a given month. For example,

at month 0 ℎ0(𝑡) is set to the corresponding survival rate.

2.2 Significance Testing

IBM SPSS Statistics 22 is used in computing the ANOVA

and t-tests, it provides all needed data to determine the

validity of the Java implementation. Data such as means,

standard deviation and variance of each data set are

computed using this software and compared. In order to test

the application against the one provided by R there will be a

set of different data inputs each including coefficients and

baseline values that are needed for the application to work.

Each application (Java and R) takes in the different inputs

and produce the results. Results produced by the Java

application are compared to the ones produced by R. When

comparing the two results, the mean values and standard

deviations of the differences between two curves need to be

computed and analyzed. A t-test can then be performed to

see if the difference is significant.

2.3 Software Development Model: AGILE

Figure 1. Class Diagram of the Cox Model program in

Java

The software development model that we have followed is

the Agile model. This process allows for small incremental

improvements with minimal planning. Each iteration are

within short time frames and involve all members working

on planning, requirement analysis, design, coding, and

testing. Once an iteration is done, it is then reviewed and the

next round of development precedes. This allows for a

project to take in account of unpredictability and adapt to

needed changes. Figure 1 shows the methods used in the

Java class. In the prepCoeff class, the load coefficient is

used for the user to enter the coefficients that need to use.

Get model method returns the model being used and the set

baseline method gets the baseline values of each month in

29

the model and puts it in an array list. Most importantly, the

calcsum method adds the values of the coefficients that the

user specified and gets it ready to pass the value to the

calculate method. The calculate method is where the Cox

Proportional hazard model is used to compute the survival

rate. As for the Model class, it puts the model being used

into a hashmap and set the baseline value for that specified

model. This is not what the final class will look like but

rather the bare essentials.

Figure: 2. Survival curve produced by Java function

compared to results from R

In Figure 2 the line graph there is a descending curve which

shows over time the probability of survival given the

predictor variables which are the age and stage. In the graph

the x-axis represents the time which is in months. In this case

the x-axis goes to sixty months which is equivalent to 5

years. The y-axis is the survival rate which starts near one

or one hundred percent. The line labeled R derived is the

survival data set that was produced by R package which is

the same set previously mentioned in Table 2. Java derived

is the line produced by the current function that was created

in Java.

2.4 T-Test

T-test is used to compare two different data sets which, in

this experiment, the results produced from the Java

implementation and the results from R. To conduct a t-test,

the means, standard deviation, variance are calculated for

each set of data. Using these the means, standard deviation,

variance, we calculate the t value. This can be done by using

Equation 3.

𝑡 =
𝑚𝑒𝑎𝑛1−𝑚𝑒𝑎𝑛2

𝑆
 Equation 2

In Equation 2, mean1 is the mean of the first set of data by

the calculating the summation of the set and divided by the

number of values in the set. Mean1 is the results from the R

package. Mean2 is the mean of the second set of data which

is the result of the Java function. We then get the difference

of mean1 from mean2 and divide it by the Standard

Deviation. To get the standard deviation, use Equation 3.

𝑠 = √
∑(𝑥−�̅�)2

𝑛−1
 Equation 3

The x in Equation 3 is the value of the variable in the set, and

�̅� is the mean of the data set x. This means we take the value

of each variable in the set subtracted by the mean of the set,

then take the summation of them and square the result. N is

the total number of values in the data set. Finally we take the

square root of the result which will give us the standard

deviation.

In addition the cut off of significance is 0.05. Finally, we

compare the cut off level and the value of t to see if results

from the Java implementation is significant or not.

3. Results and Analysis

Table 3: Shows the mean, Standard Deviation, and

Standard Error of Mean

Test data Mean Std. D

Std. Error

Mean

R

Background 0.5809 0.18732 0.02398

Java

Background 0.5809 0.18732 0.02398

R limited 0.6789 0.17279 0.02373

Java Limited 0.6822 0.16921 0.02324

R Extensive 0.6027 0.21722 0.03352

Java

Extensive 0.6119 0.21138 0.03262

R QOL 0.7023 0.1797 0.0232

Java QOL 0.7114 0.18083 0.02335

R Recurrence 0.3369 0.23524 0.03976

Java

Recurrence 0.34048 0.23169 0.03916

In the above table, we compared the results derived from R

and results derived from the Java functions for five different

clinical models. They are Background, Limited, Extensive,

Quality of Life, and Post-surgery Recurrence models. Each

model has their own set of coefficients with a corresponding

value along with their own baseline data. Some models have

a few gaps in data which will be accounted for by filling in

missing data. We have calculated the Mean, Standard

deviation, and Standard Error Mean of the differences

between results. Looking at the R Background row, the mean

was calculated by taking the results given by R, adding up

all the values and dividing by the number of values. This

gives us the average survival rate of the data set. Looking at

the Std. D or Standard Deviation which tells us the average

variance in the data that the difference in each set for a model

is minimal. By examining the results, it is clear that the Java

function performs very similar to that of R with results

almost identical and well within the confidence interval

shown in table 3.

Table 4 is extension of the results of Table 3 by performing

a paired sample t-test. A t-test is used to compare two set of

means from two samples that are correlated. Taking the first

row as an example. The t-test for Background compared the

means, standard deviation, and significance of the results

from R and Java when using the Background model. For the

0

0.5

1

0 10 20 30 40 50 60

Background Model

R Derived Java Derived

30

columns Mean and Std. D the value is telling us the

difference between the R and Java functions results. This

means that there is no difference between R and Java when

using the background model. Because the mean and Std. D

are zero in the first column the significance is unambiguous.

As for the models limited, extensive, QOL, and recurrence

since there is some variations between R and Java for each

model we have to look at the value of the Sig column. If the

value in this column is below .05 it means that the result is

significant and assume that they are not likely due to change.

Table 4. Shows the results of T-test between R and Java

T-test Mean Std.D Sig

Background 0 0 0

Limited -0.00329 0.00677 0.001

Extensive -0.00473 0.01251 0.019

QOL -0.00902 0.00537 0

Recurrence -0.00386 0.00981 0.014

To further iterate the significance of our tests we can look at

Figure 3. This graph includes two curves that represent the

results for the Quality of Life model. The orange line

represents the results calculated by the Java function and the

blue line represents the results from R.

Figure 3. Graph showing results from R and Java

implementations

The Java derived results follow the same curve shape as the

R derived results. Results from Table 4 tell us that the

difference between R and Java for the quality of life model

are minimal. Figure 3 also shows us that there is minimal

difference between the two functions.

Figure 4 shows results from R and Java for the post

recurrence model. Our Java implementation follows the

curve for R. The difference between Figure 3 and Figure 4

is that our Java function accounts for gaps of data in the

model and completes it. This is why the Java curve extends

the full 60 months as compared to R stopping at 35 months.

Figure 4. Graph showing results from R and Java for

post recurrence model

4. Importance of Project

The completion of this project simplifies and reduces the

complexity of the web based software for predicting lung

cancer treatment outcomes. It replaces the need for the R

language with the Java implementation of the Cox

Proportional Hazard Model. This also enables the project to

be more light weight, easier to maintain, and deployed on

web servers for future iterations of the software. Overall, the

project as a whole brings an important tool for lung cancer

patients to compare their treatment options and make a more

informed decision that will have a life lasting effect.

Figure 5. User interface for lung cancer prediction tool

Because of the simplifications of the software future

development can be spent on putting more resources on the

user interface to make it easier for doctors and patients to fill

out and receive the information they need. Currently the

0

0.5

1

0 10 20 30 40 50 60

Quality Of Life Model

R Derived Java Derived

0

0.5

1

0 10 20 30 40 50 60

Post Recurrence Model
R Derived Java Derived

31

user interface is kept simple and has a few forms for the user

to fill out. The first page is used to gather the needed

information to determine what model should be used.

Depending on what is chosen you will get sent to a different

page which will display a curve or ask for more data. Our UI

also allows for users to use it on multiple different devices

because of its responsive design.

5. Conclusion

With the current results, it is concluded that the Java function

outputs survival rate with the accuracy of the function used

in R. Further development can make the function more

generic, allowing it to work properly with more models and

allow us to perform more extensive testing assuring the use

of different coefficients will still produce accurate results.

However, currently there are some limitations to the current

program. For a user to use the function we have created they

need to know the locations of their files and have some

knowledge as to what coefficients are needed for it. If they

do not know the proper guidelines for the model they want

to use, they will either get an error message saying “invalid

data” or they will get inaccurate results.

6. Acknowledgments

I would like to thank Dr. Mingrui Zhang for including me

and helping me throughout this project. He conducted code

reviews and provided me with helpful articles and

suggestions. I would also like to thank the Winona State

Computer Science Department for this opportunity.

References

[1] Walters, Stephen John. What Is a Cox Model? 2nd ed.

England: Hayward Medical Communications, 2009.

What Is…? What is a Cox Model, May 2009. Web. 21

Jan. 2016

[2] Fox, Brown and Sanford Weisberg. “Cox Proportional

Hazards Regression. “ Encyclopedia of Public Health 2

(2011): 1-20. 23 Feb. 2011. Web. 21 Jan 2016.

[3] Spatz, Chris, Exploring Statistics: Tales of

Distributions. 11th ed. Conway: Outcrop, 2016. Print.

[4] Edelstein, David, and Justin Scheiber. “The Fnordistan

Deartment of Software Engineering.” JStats, N.p. , n.d.

Web. 28 Jan 2016.

[5] Campagne, Fabien. “Campagne Laboratory.” BDVal –

Campagnelab, Well Medical College of Cornell

University, 4 Aug. 2010. Web. 10 Feb. 2016

[6] Urbanek, Simon. “Low-Level R to Java Interface.”

(2016): 1-45. Cran R Project. Web.

32

Performance Analysis of ArrayList and HashMap
Asiqur Rahman
419 ½ Olmstead St

Winona, MN 55987

ARahman12@winona.edu

ABSTRACT
A Java Collection Class is a data Structure, which is used for

processing data. In general, finding a good balance between

memory utilization and time efficiency is quite challenging.

ArrayList and HashMap are two commonly used Java Collection

Classes. They store and process the data differently. While

ArrayList implements List interface and extends AbstractList class,

HashMap implements Map interface and extends AbstractMap

class. In this paper, a performance analysis is conducted on

ArrayList and HashMap. If there are more than 0.1 million records,

our experiment shows that ArrayList uses approximately 20-40%

less memory than HashMap and provides similar performance up

to 0.6 million records for randomly accessing to the data.

 Keywords

ArrayList, HashMap, Memory Usage, Overhead Time,

Access Time.

1. INTRODUCTION

A Collection class is a single object representing a group of objects,

known as its element. These Collection class can be referred to as

containers for other object [5]. It can perform the operations

including searching, sorting, insertion, manipulation, deletion etc.

Above all, Java Collection classes reduce the programming effort

by providing useful data structures and algorithms.

Applications often have large runtime memory requirements. In

some cases, this large memory footprint helps to accomplish an

important functional, performance, or engineering requirement.

However, finding a good balance between memory consumption

and time efficiency is quite challenging. To do so, the development

team must distinguish effective from excessive use of Memory and

Time [7].

Due to the above facts the developers often get confused about

finding a well-balanced data structure that they should use within

their project. HashMap and ArrayList are two frequently used

collection classes in Java. An ArrayList implements the List

interface, which is an ordered collection of objects that we access

using an index, much like an array. A HashMap implements the

Map interfaces, which is an object that maps keys to values. A map

cannot contain duplicate keys and each key can map to at most one

value [4].

1.1. ArrayList

ArrayList is one of the popular java collection classes. It

implements List interface and extends AbstractList class (Figure 1).

It stores one object that holds a reference to the value. The Java

Platform SE 6 API documentation describes ArrayList as:

“An ordered collection (also known as a sequence). The user of this

interface has precise control over where in the list each element is

inserted. The user can access elements by their integer index

(position in the list), and search for elements in the list. Unlike sets,

lists typically allow duplicate elements [2].”

 Figure 1. Internal design of ArrayList (Collected from Eclipse)

ArrayList stores the data internally in an array. When an ArrayList

is being initialized, an array of size 10 is created by default when

no parameter is passed and all elements are added to this array. But

the ArrayList size can also be passed to any number as a parameter

while initializing the ArrayList. When adding a new element, if the

array is full, a new array is created with double the initial size, in

order to accommodate all the elements in the ArrayList. An empty

ArrayList uses 88 bytes of memory. For a 10,000-entry ArrayList,

the overhead of ArrayList objects is approximately 40K [2].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

Proceedings of the 16thWinona Computer Science Undergraduate

Research Seminar, April 27, 2016, Winona, MN, US.

33

1.2. HashMap

HashMap is another popular java collection class. It implements

Map interface and extends AbstractMap class. It stores two objects,

one holds a reference to the value and another object holds a

reference to the key that make a huge disparity in terms of memory

consumption. HashMap works on the principle of Hashing. To

understand Hashing, we should understand the three terms, i.e.

Hash Function, Hash Value and Bucket [3].

 Hash Function: Hash Function is the hashCode ()

function, which returns an integer value.

 Hash Value: Hash Value is the integer value that is

returned by the hashCode ().

 Bucket: A bucket is used to store key value pairs. A

bucket can have multiple key-value pairs. In HashMap,

bucket used simple linked list to store objects.

Figure 2. Internal design of HashMap. (Collected from Eclipse)

When we use put () method to store (Key, Value) pair, HashMap

implementation calls hashCode on Key object to calculate a hash

that is used to find a bucket where Entry object will be stored. When

get () method is used to retrieve value, again key object is used to

calculate a hash which is used then to find a bucket where that

particular key is stored.

When a HashMap is created, the default capacity of HashMap

object, which is an array of HashMap$Entry objects, is 16 entries.

This gives a HashMap a size of 128 bytes when it is completely

empty [2]. Any key/value pairs inserted into the HashMap are

wrapped by a HashMap$Entry object, which itself has some

overhead. The total overhead of a HashMap consists of

the HashMap object, a HashMap$Entry array entry, and

a HashMap$Entry object for each entry, which can be expressed by

the following formula [2]:

 HO = HObj + AO + (n* (HEAE + HEObj))

 Where Ho is the total overhead, HObj is the HashMap object, Ao is

the Array object overhead, n is the number of entries, HEAE is the

HashMap$Entry array entry, HEObj is the HashMap$Entry object.

For a 10,000-entry HashMap, the overhead of just

the HashMap, HashMap$Entry array, and HashMap$Entry objects

is approximately 360K. This is before the size of the keys and

values being stored are taken into account [2].

Our Hypothesis was ArrayList uses approximately 20-40% less

memory spaces than HashMap with similar access time if n>=0.1

million where n= number of records, keys are integer and values

are string.

In this paper, we conducted a performance analysis on ArrayList

and HashMap by utilizing the Java Garbage Collection (JGC) and

Java Built-in function nanoTime ().

2. SOFTWARE TOOLS

Java Garbage Collection (JGC) is an automatic memory

management feature in Java Memory Management that runs within

the JVM (Java Virtual Machine). It allows creating new objects

without worrying explicitly about memory allocation and de-

allocation, because the Garbage Collector automatically reclaims

memory for reuse [8]. As application runs, new object gets

allocated in the heap memory. And when the object is no longer

referred any more in the program, JGC recollects those memories

that were allocated for the uncalled object. In this project JGC was

used after storing the data to the data structures to calculate the

memory usage in the memory usage experiment.

Java System class contains several useful class fields and methods.

nanoTime () is one of them. It returns the current time in

nanoseconds (there are 1*109 nanoseconds in a second). It was used

during the overhead and access time experiments to calculate the

elapsed time by getting the starting time and the ending time of the

operations.

The experiments were conducted on the Operating System, OS X

Yosemite, version: 10.10.5, Processor: 1.4 GHz Intel Core i5,

Memory: 4 GB 1600 MHz DDR3, Graphics: Intel HD Graphics

5000 1536 MB, and the Eclipse IDE, version: 2.1.2.v20160212-

1500, Build id: M20160212-1500

3. PERFORMANCE ANALYSIS

3.1 Approach
As part of the project, I did some comparison analysis. The

objective was to find the memory usage, memory consumed by

each data structures; overhead time, the amount of CPU time it

needs to store the data; and access time, the amount of CPU time it

needs to access the data for ArrayList and HashMap. Then I analyze

their memory utilization, overhead time, and access time. In this

experiments various numbers of datasets were used. Those datasets

were collected from SCOWL (Spell Checker Oriented Word List)

and Friends by Kevin Atkinson, PhD Graduate at University of

Utah. Scowl is a collection of word lists split up in various sizes

and other categories [1]. In this project thirteen different sizes of

datasets were used, each of them were collected form SCOWL. For

each dataset all the data are stored in a file in an Alphabetical order.

The datasets contain en_US dictionary words ranging from 1 to

2000 thousands of words. Since HashMap stores two objects (key-

value) and ArrayList stores one object as previously mentioned

(section 1.1 & 1.2), we experimented the ArrayList using both

single and double objects and compared them with the HashMap.

We used the following algorithms to compute the memory usage,

overhead time and access time for each dataset:

34

ALGORITHM 1: Memory Usage

1. Initialize data structures, ArrayList/HashMap
2. Read the data from the file
3. Add /Put data into the ArrayList / HashMap

4. Repeats step 3 & 4 until the file has element

5. Get the available memory and free memory

6. Finally, compute the used memory by subtracting the free

memory from the available memory.

ALGORITHM 2: Overhead Time

1. Initialize data structures, ArrayList/HashMap
2. Get the Start time from the system

3. Read the data from the file

4. Add /Put data into the ArrayList / HashMap

5. Repeats step 3 & 4 until the file has element

6. Get the End time from the system

7. Finally, compute overhead time by subtracting the end

time from the start time.

ALGORITHM 3: Access Time (last index/key)

1. Declare a Boolean flag exist.
2. Initialize data structures, ArrayList/HashMap
3. Read the data from the file
4. Add /Put data into the ArrayList / HashMap

5. Repeats step 3 & 4 until the file has element

6. Get the Start time from the system

7. Set exist contain/containKey (Key/Value). The

operations, contain/containKey will return Boolean

values depending on whether the key/value exists in the

list/map.

8. If exist is true, Get the End time from the system and

compute access time by subtracting the end time from the

start time. Otherwise, print out “key is not found”.

 ALGORITHM 4: Access Time (random)

1. Initialize data structures, ArrayList/HashMap
2. Read the data from the file
3. Add /Put data into the ArrayList / HashMap

4. Repeats step 3 & 4 until the file has element

5. Get the Start time from the system

6. For each key in keys (list)/key.Set () (map); Print out the

key
7. Get the End time from the system

8. Finally, compute access time by subtracting the end time

from the start time.

In this project the java built-in function getRuntime () were used to

get the runtime instance that allows getting the available heap

memory and free memory by running the garbage collector. The

java built-in runtime instance functions, totalMemory () &

freeMemory (), were used to get the runtime available memory and

free memory respectively. For the access time the function

nanoTime () were used to calculate the response time of these data

structures. Since time measurement commonly referred to as wall

(clock) can vary widely depending on the speed of the hardware it

is running on, the efficiency language of the language translator and

operating system, and the number of other process the platform is

executing [6], we used the same eclipse IDE and hardware system

for this experiments.

3.2 Results and Analysis

3.2.1. Memory Usage

In these experiments we found the significant differences when the

numbers of records are exceeded 0.1 million. The result we got

from the experiments are given below:

Table 1: Memory Usages (in kilobytes) for various numbers of

records (in thousands).

Records ArrayList HashMap

I II III I II

1 2043 2043 2043 2043 2043

25 13113 13624 13701 14645 14643

50 9865 12141 12240 14015 14027

75 6574 10051 9950 12851 13122

100 17845 22227 22400 13839 14084

200 18546 28875 28812 36795 36553

300 34948 37963 37653 47205 47687

400 35261 57284 56988 60137 60641

600 52997 73136 73639 78765 81936

800 71958 98406 98845 116550 84825

1200 96746 140075 139860 170274 96410

1600 137133 187188 187225 233977 108737

2000 155827 206838 207463 277430 121606

Note that on the above table, column, ArrayList I is the

measurement of single object. Columns, ArrayList II & HashMap

I, are the measurements of key-value pair, where keys are integer

and values are string. Columns, ArrayList III & HashMap II, are

another key-value pair measurements where keys are string and

values are integer.

Based on the above data four comparison graphs were plotted. One

graph is the comparison between ArrayList (single object) and

HashMap using string as the key and integer as the value. The next

graph is the comparison between ArrayList and HashMap using

string as the key and integer as the value. Another graph is the

comparison between ArrayList (single object) and HashMap using

integer as the key and string as the value. The final graph is the

comparison between ArrayList and HashMap using integer as the

key and string as the value.

35

In the comparison between ArrayList and HashMap using

ArrayList I and HashMap II, we notice that (Figure 3) up to 100

thousands records ArrayList and HashMap use almost same

amount of memory. But then up to 1.2 millions records ArrayList

uses significantly less memory than HashMap. And then when the

number of records are exceeded 1.2 millions suddenly HashMap

uses notably less memory than ArrayList, which is around 10% less

memory than ArrayList.

Figure 3. Comparison between ArrayList and HashMap using

ArrayList I and HashMap II on memory utilization.

However, In the comparison between ArrayList and HashMap

using ArrayList III and HashMap II, we see that (see appendix:

Figure 4) for numbers of records up to 100 thousands there is no

significant differences between them. But then up to 600 thousands

records ArrayList has slightly better memory usage compared to

HashMap. And afterward for more than 600 thousands records

ArrayList dramatically uses more memory in

Figure 5. Comparison between ArrayList and HashMap using

ArrayList I and HashMap I on memory utilization.

contrast to HashMap, which is around 30% more memory than

HashMap. For 2.0 millions of records the difference is around 86

MB, which is around 35% more memory than HashMap.

On the other hand, in the comparison between ArrayList and

HashMap using ArrayList I and HashMap I, we figured out that

(Figure 5) for the number of records up to 100 thousands there is a

negligible difference between them with ArrayList having a slight

better memory usages. But then later HashMap uses more memory

compared to ArrayList, which is around 40% more than ArrayList.

For 2.0 millions of records the difference is around 122 MB, which

is around 45% more than ArrayList.

In contrast, in the comparison between ArrayList and HashMap

using ArrayList II and HashMap I, we found that (see appendix:

Figure 6) there is a negligible differences between ArrayList and

HashMap up to 600 thousands records. But, then all of a sudden

ArrayList uses considerably less memory than HashMap, which is

about 15-20% less memory than HashMap.

From the above discussion, we come to the conclusion that for

small databases there are no big differences in memory usage

between ArrayList and HashMap. But as databases grow larger,

they have some significant differences between them depending on

the data types that are used as the key and value.

3.2.2. Overhead Time

When we found that there are some noticeable time differences

between ArrayList and HashMap while they store the data, we

chose to experiment this time differences, which we considered as

the overhead time. The result we got from the experiment are

shown below:

Table 2: Overhead Time (in seconds) for various numbers of

records (in thousands).

Records ArrayList HashMap

I II I II

1 0.03790 0.04267 0.04211 0.04906

25 0.18588 0.18737 0.19511 0.20573

50 0.22962 0.25954 0.25740 0.22466

75 0.28051 0.32901 0.32398 0.33557

100 0.32054 0.34742 0.36719 0.39925

200 0.42499 0.45980 0.47691 0.54104

300 0.55336 0.58526 0.61718 0.70898

400 0.65451 0.73265 0.75144 0.94873

600 0.92720 0.99715 1.06129 1.33826

800 1.19559 1.29575 1.32954 1.61566

1200 1.84657 1.85718 1.91518 2.19286

1600 2.34398 2.40009 2.52489 2.81731

2000 2.61896 2.91823 3.30606 3.44197

Note that on the above table, column, ArrayList I, is the

measurements of single object. Column, ArrayList II, is measured

using key-value pair. And finally columns, HashMap I and

HashMap II, are measured using key-value pair where keys are

36

integer and values are string in HashMap I and keys are string and

values are integer in HashMap II.

Using the above data another four comparison graphs were plotted:

One graph represents the comparison between ArrayList (single

object) and HashMap using keys as the string and values as the

integer. The following graph represents the comparison between

ArrayList and HashMap where keys are string and values are

integer. The next graph represents the comparison between

ArrayList (single object) and HashMap using key as the integer and

value as the string. And the Last graph represents the comparison

between ArrayList and HashMap where keys are integer and values

are string.

In the comparison between ArrayList and HashMap using

ArrayList I and HashMap II, we realize that (Figure 7) for numbers

of records up to 100 thousands there is no significant differences

between them with ArrayList having negligibly better performance

than HashMap. But, then suddenly ArrayList seems to have a better

overhead time over HashMap. For 2.0 millions records the

difference is approximately 0.8s.

Figure 7. Comparison between ArrayList and HashMap using

ArrayList I and HashMap II on overhead time.

Meanwhile, in the comparison between ArrayList and HashMap

using ArrayList II and HashMap II (see appendix: Figure 8), the

scenario is quite similar as Figure 7. For number of records up to

100 thousands, the difference is trivial. But then later ArrayList has

steadily less overhead time than HashMap.

However, in the comparison between ArrayList and HashMap

using ArrayList I and HashMap I, we see that (Figure 9) for number

of records up to 1.6 millions there is minor differences between

them with ArrayList having trivially better overhead time than

HashMap. However, after 1.6 million records unexpectedly

HashMap consumes significantly more time than ArrayList.

In contrary, in the comparison between ArrayList and HashMap

using ArrayList II and HashMap I (see appendix: Figure 10), for

number of records up to 1.6 millions both seem to have same

overhead time. But, then suddenly after 1.6 millions records

ArrayList has steadily less overhead time than HashMap.

Figure 9. Comparison between ArrayList and HashMap using

ArrayList I and HashMap I on overhead time.

From the above discussion, we understand that for smaller datasets

there is no immense variance in overhead time between ArrayList

and HashMap. But as datasets grow bigger, ArrayList takes

moderately less overhead time than HashMap.

3.2.3. Access Time

In the Access time experiment, we noted drastically different

behaviors. We noticed that when the numbers of records are larger

than 0.1 millions, there is a noticeable difference between ArrayList

and HashMap. The result we got from the experiment are shown

below:

Table 3: Access Time (in seconds) for various numbers of

records (in thousands).

Records ArrayList HashMap

I II I II

1 0.0002218 0.039325 0.000015 0.042853

25 0.0320334 0.267937 0.000011 0.302271

50 0.0088436 0.560700 0.000010 0.466567

75 0.0089284 0.785223 0.000010 0.683926

100 0.0099176 1.055507 0.000010 1.001105

200 0.0083014 2.285915 0.000009 2.182070

300 0.0082658 3.430187 0.000009 3.516207

400 0.0086292 4.571302 0.000009 5.013680

600 0.0102064 7.157854 0.000013 6.907536

800 0.0125412 10.12845 0.000009 7.031599

1200 0.0134796 14.06706 0.000009 7.189533

1600 0.0152462 18.29040 0.000011 7.261722

2000 0.0151832 22.79678 0.000009 7.039231

Note that on the above table columns, ArrayList I and HashMap I,

represent the time they took to access the last index/key. And

37

columns, ArrayList II and HashMap II, represent the time they took

to randomly access the data.

Lastly two more comparison graphs were plotted based on the

above data. One graph represents the comparison between

ArrayList and HashMap for the last index/key access time. Another

graph represents the comparison between ArrayList and HashMap

for the random access time.

Figure 11. Comparison between ArrayList and HashMap using

ArrayList I and HashMap I on access time.

In the comparison between ArrayList and HashMap on Access

Time, we found that (Figure 11) for the number of records up to 25

thousands there is a trivial difference between them. But, then

Figure 12. Comparison between ArrayList and HashMap using

ArrayList II and HashMap II on access time.

speedily up to 50 thousands records ArrayList consumes extremely

more times compared to HashMap, which is near 3000 times more

than HashMap. And then for more than 50 thousands records the

access time of ArrayList significantly dropped down. But still it

provides significantly higher access time than HashMap, which is

approximately 1500 times higher than HashMap.

On the contrary, in the Comparison between ArrayList and

HashMap using ArrayList II and HashMap II, the picture (Figure

12) is quite different. For number of records up to 600 thousands

there are no huge inequalities between them. Both seem to have

same access time. But then after 600 thousands HashMap provides

drastically better performance than ArrayList, which is about 3

times better access time than ArrayList.

From the above discussion, we finally realize that HashMap

provides radically better performance than ArrayList for finding a

key from the map. And for the random access time, up to 600

thousands of records there are no massive dissimilarities in access

time between ArrayList and HashMap. But as the datasets increase

and exceed to 600 thousands records, HashMap provides

significantly better performance than ArrayList, which is about 3

times better access time than ArrayList.

4. CONCLUSION
In this paper, we have analyzed and compared Memory Usage,

Overhead Time and Access Time on ArrayList and HashMap, two

popular java collection classes. After evaluating the experiments

we have come to the following conclusions: (1) In general, for

number of records up to 0.1 million there are no huge disparities

between ArrayList and HashMap except the access time for finding

the last index/key, where HashMap provides expressively better

performance than ArrayList. (2) As the datasets increase and

number of records exceed to nearly 0.1 million records ArrayList

uses approximately 20-40% less memory than HashMap if keys are

integer and values are string. (3) As the datasets increase and

number of records exceed to nearly 1.0 million records HashMap

consumes roughly 10% less memory than ArrayList if keys are

string and values are integer. (4) Up to 0.6 million records there are

no big differences between ArrayList and HashMap for the

randomly access to the data. But, later when the number of records

exceed to 0.6 million HashMap provides significantly better

performance than ArrayList, which is approximately 3 times better

than ArrayList.

5. ACKNOWLEDGMENTS
I would like to thank to Dr. Mingrui Zhang, professor of computer

science dept. at Winona State University for guiding me to

complete this experiment.

6. REFERENCES
[1] Atkinson, Kevin. "SCOWL (And Friends)." SCOWL (And

Friends). SCOWL (And Friends), n.d. Web. 16 Mar. 2016.

<http://wordlist.aspell.net/>.

[2] Bailey, Chris. "From Java Code to Java Heap." From Java

Code to Java Heap. IBM, 29 Feb. 2012. Web. 12 Feb. 2016.

[3] Cormen, Thomas H. Introduction to Algorithms. Cambridge,

MA: MIT, 2001. Print.

38

[4] Gray, Simon (Simon James McLean). Data Structures in

Java: From Abstract Data Types to the Java Collections

Framework. Boston: Pearson Addison-Wesley, 2007

[5] Hunt, John. A Beginner's Guide to Scala, Object Orientation

and Functional Programming. Cham, Switzerland: Springer,

2014.

[6] McAllister, William. Data Structures and Algorithms Using

Java. Sudbury, MA: Jones and Bartlett, 2009. Print.

[7] Nick Mitchell and Gary Sevitsky. 2007. The causes of bloat,

the limits of health. In Proceedings of the 22nd annual ACM

SIGPLAN conference on Object-oriented programming

systems and applications (OOPSLA '07). ACM, New York,

NY, USA, 245-260.

DOI=http://dx.doi.org.wsuproxy.mnpals.net/10.1145/129702

7.1297046

[8] Reitbauer, Alois, Klaus Enzenhofer, Andreas Grabner,

and Michael Kopp. "Java Memory Management." How

Garbage Collection Works. Dynatrace, n.d. Web. 23

Feb. 2016.

39

APPENDIX

Figure 4. Comparison between ArrayList and HashMap

using ArrayList III and HashMap II on memory utilization.

Figure 6. Comparison between ArrayList and HashMap

using ArrayList II and HashMap I on memory utilization.

Figure 8. Comparison between ArrayList and HashMap

using ArrayList II and HashMap II on overhead time.

Figure 10. Comparison between ArrayList and HashMap

using ArrayList II and HashMap I on overhead time.

40

Speed index and critical path rendering performance for
isomorphic single page applications

Malek Hakim
Winona State University, Computer Science Dept.

175 W Mark St.
55987, Winona, MN, USA

+1(507) 457-5000

hakimelek@gmail.com

ABSTRACT

A current debate in web technology is about whether web apps

should be rendered on the client or on the server. Recently, a

new approach of using both techniques combined has been

developed by rendering the first page load on the server, then

rendering the rest of the content on the client to provide an

interactive experience for users of a single page app. This

approach, called isomorphic Javascript web development,

involves running the same Javascript code on the client and the

server. In this paper, we measure the speed index and critical

path rendering performance of this new technique compared to

that of traditional single web apps. We test two versions of a

React app delivering a view of a table filled with simulated data.

The first version supports server-side rendering while the second

does not. The test runs on “WebPagetest,” a tool to measure and

analyze the performance of web pages. The results show that

isomorphic rendering performs better than the traditional

approach because it saves the browser the time it takes to render

the first views of the website.

General Terms

Human Factors, Web Performance.

Keywords

Javascript, Isomorphism, critical rendering path, code reuse,

page load performance, server-side rendering, single page apps.

1. INTRODUCTION
It is important to focus on how web applications behave in terms

of loading time in order to provide a greater user experience. A

Bing study found that a 10ms increase in page load time costs

the site $250K in revenue annually because the improvement in

user experience [8]. Optimizing the critical rendering path refers

to prioritizing the display of content that relates to the current

user action [3]. A study by Amazon showed that an increase of

1.0s in their website page load had an impact of increasing their

revenue of $1.6 billion per year [6]. Speed is obviously

becoming a critical feature to consider when building web apps.

There are many ways to consider speed in page loading. Testing

the true user experience in rendering pages and showing the

content that fulfills users goal can be sometimes tricky. Users

can wait for a page to fully load until they will be able to see the

relevant content, or start interacting with the page once the

content they were waiting for gets displayed on the screen.

Previous research showed that in order to keep a tasked focused

user, the relevant information needs to be displayed on the

screen within 1000ms [9] and that is a challenging problem for

web developers. The time it takes for a page to be completely

loaded generally exceed the time period mentioned earlier. In

fact, in average the time it takes for any single page request,

without considering caching, going from the DNS lookup, TCP

connection with the three-way handshake, the HTTP request

generally exceeds the 500ms for a 3G/4G connection [5].

Optimizing the server processing time, downloading time and

rendering time either on the client or the server is critical.

In this paper, we focus on the rendering part. Nowadays, there

are different approaches to building web application and

rendering techniques differ from a full stack technology to

another.

1.1 Server-side Rendering
The most popular technique for serving web pages is server-side

rendering. Frameworks like ASP.NET, Ruby on Rails and

Django endorse server-side rendering and are currently the most

popular tools being used on the web [6]. This technique allows

pages to be pre-rendered on the server. Users do not need to wait

for the Javascript interpreter, as introduced by client-side

rendering, to build the application on the browser and bind the

data to the HTML in order to see the content on the page. It

generally also has the advantage to provide a better Search

Engine Optimization (SEO) since pages can easily be crawled.

Since client-side rendering requires the page to be rendered on

the browser, crawlers index the pre-rendered page, which turns

out to be blank since the Javascript does not get executed.

Making requests to the server without having to reload the page

is limited through AJAX requests. It is a way for the client to

communicate with the server through sending and receiving

information in a variety of formats thanks to its “asynchronous”

nature. Moving from one page to another usually introduces

page reload. Figure 1 (at the end of the paper) shows the

Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage

and that copies bear this notice and the full citation on the first page.

To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Proceedings of the 16thWinona Computer Science Undergraduate

Research Seminar, April 27, 2016, Winona, MN, US.

41

modules that the client and the server are handling. Routing and

view rendering occur exclusively on the server. When a user

first requests a web page, the server handles the request and

generates a rendered HTML file to be sent as a response in

addition to the basic CSS, the Javascript code, and the images.

The browser will then handle the response and paint the page on

the screen; no additional networking is needed until the next

user request.

1.2 Client-side Rendering and Single Page

Apps
The client-side rendering technique has recently become

popular. In this method, the HTML is rendered on the browser

using a Javascript payload sent by the server. The Javascript

community has developed new frameworks for this method and

many web developers have started building Single Page

Applications (SPA) in this way. Apps like Gmail and Google

Maps are classic examples of a single page app [11]. They let

the user interact with the website without having to refresh the

page. Today, most of the popular social networks like Facebook,

Twitter, GitHub and Flickr are examples of SPAs [2]. As of

2015, 69% of the content on the web is created dynamically on

the browser [6]. These apps are more interactive and more

pleasant to use. They are also faster because the HTML, CSS,

and Javascript code are loaded once throughout the life span of

the app, keeping communications with the server to a bare

minimum. It is also less heavy on the network bandwidth since

communication after the first load with the server is using only

data through XML or JSON files.

However, SPAs have the disadvantage of not being very suitable

for SEOs and do not have the benefit of allowing pages to be

indexed by search engines. Crawlers usually index “blank”

pages, for example, in a news article app since the first page is

loaded empty waiting for the Javascript to fetch the data from an

API server. It also takes more time for content to load before the

user interface can be rendered. Another problem that arises with

the use of SPA is maintaining two similar business logic

programs written in different languages, using any programming

language on the server, and Javascript on the client. Figure 2

illustrates this problem. Once the code is loaded on the browser,

the page remains blank until the Javascript renders the entire

page. Usually functions with the same logic are written twice:

once because it is handled by the front-end Javascript and once

for validation for the server.

1.3 Supporting Server-side rendering in

Isomorphic Single Page Apps
SPAs present an advantage from a user experience standpoint:

There is no need for a page refresh, the state of the app is

preserved, and the app is more interactive. However, they

introduce challenging problems related to SEOs, performance

and maintainability. In order to overcome these problems, web

developers can take advantage of a recent Javascript runtime

built on the Chrome’s V8 Javascript engine called NodeJs [10].

It allows developers to use Javascript as programming languages

on the server and provide ways to create web servers that

perform networking operations and handle file system I/O. It

makes it easier to create more maintainable code that can be run

both on the client and the server. This approach also facilitates

writing code once. The same codebase for view rendering for

example is executed during the initial page load on the server

then executed on the browser to create a consistent single page

experience.

Most of the new implementations of isomorphic web apps use

the first approach of server-side rendering, in order to render the

first page bound with data, plus a Javascript bundle that will be

used for the client to keep performing the business logic and

fetching data through user interaction without having to reload

the page. Libraries like React and Rendr are pioneers in

implementing this technique. Web crawlers able to index pages

easily even with having Javascript disabled in the browser [12].

Thanks to the isomorphic nature of web apps that run on

NodeJS, in web development the business logic can now be

shared on both the client and the server. The code can be written

once and executed as needed on both ends. Figure 3 illustrates

the code base of the isomorphic approach where view rendering

occurs on the client and on the server. DOM manipulation,

animation and form validation are handled on the browser, while

persistence is handled on the server. The client and the server

depending on the program flow share the rest of the business

logic that covers all the app functionality.

The sequence diagram in Figure 3 shows the sequence of events

when a user requests a new page. The browser receives an initial

render HTML with the CSS and a Javascript bundle that will

build the client-side app for further navigation and user

interaction. However, compared to the previous model, the user

will receive a UI ready app without having to wait for the

Javascript to re-render the DOM tree and display the content on

the page. After the app is done building on the client, it makes

requests for the resources the user is asking for. This requires an

additional round-trip with the server or the API server.

Isomorphic Javascript apps seem to mix the two rendering

techniques to optimize the user experience for displaying the

relevant content to the user quicker.

2. METHODS

2.1 Metrics
Server-side rendering in SPAs is considered an optimization in

the critical rendering path. We examined the following metrics

[13] to compare the traditional approach, which is limited to

client-side rendering, to the optimized approach using

isomorphic Javascript.

2.1.1 Page Weight
Page Weight represents the page size in kilobytes. It combines

the size of the total web app file that are received by the

browser.

2.1.2 Visually Complete
Visually Complete is the time when the videos frames are 100%

complete when video recording is enabled during the page

loading.

2.1.3 Start Render
The Start Render time is the first point in time that something

was displayed to the screen. Before this point in time the user

was staring at a blank page. This does not necessarily mean the

user sees the page content. It could just be something as simple

as a background color but it is the first indication of something

happening for the user.

42

2.1.4 Speed Index
The Speed Index calculates how "complete" the page is at

various points in time during the page load. The lower the speed

index is, the better. It is expressed by the following equation

[14]:

Speed Index uses video recording during the page load and

captures screenshot through the time (10 frames each second in

the WebPagetest tool implementation used). A histogram of

colors of each of the frames is then generated and takes the

overall distribution of colors on the page. The difference of the

histogram for each frame in the video versus the first histogram

is compared to the baseline to determine how “complete” that

video frame is.

2.1.5 Dominteractive
Dominteractive is the amount of time spent between first known

startup of the application platform and when the UI is interactive

regardless of view. Note that this does not require that the UI is

done loading, but is the first point at which the customer can

interact with the UI using an input device.

2.1.6 First Byte
The First Byte time is the time from when the user starts

navigating to the page until the first bit of the server response

arrives. The bulk of this time is usually referred to the "back-

end time" and is the amount of time the server spends building

the page for the user.

2.2 Environment Setup and Test Case
For the purpose of this experiment, a web app with two

variances was served from the same server on different ports. It

is an open source Web application using NodeJS, Express and

ReactJS [3]. It is a basic example of isomorphic Javascript. It

uses a Griddle React component in order to display a basic table

filled with simulated data. The table contains 200 rows and 7

columns with the ability to sort through the columns. The

Javascript running on the browser handles the sorting of the

columns. Once the page is fully loaded and the DOM becomes

interactive, the table can be sorted. The first version was the

original one using ReactJS rendering on the server the first page

load. The second version is similar except that the server

rendering code was deleted and the app served only the

Javascript bundle that render the view on the browser.

The following code shows the HTML code that will be used to

render the page:

“reactOutput” is a reference to a React component which serves

as a rendering template on the server. Deleting <%- reactOutput

%> would result to an exclusive client-side rendering handled

by the Javascript bundle “main.js” attached to the HTML file.

The Javascript file is also referencing the same React component

that “reactOutput” is referencing. This implementation

illustrates the isomorphic nature of React.

React is using many tricks to make page load performance faster

and probably its most popular feature is the use of a virtual

DOM that reflects the actual DOM. React makes changes into

the virtual DOM and when it is ready, it batches DOM updates

through the use of difference algorithms. For the matter of the

measurement of page load performance for isomorphic web

apps, we do not focus on that feature and are varying only the

rendering mode from the server and the client to concentrate our

study on the isomorphic nature. We also do not compare our

results to the optimal page load time. We only compare the two

approaches tested.

One of the popular tools to test the metrics mentioned earlier is

the “WebPagetest” tool. It is a web performance tool that uses

real browsers to access web pages and collect timing metrics.

We performed the test 10 times and took the median of the

results. All the tests were run on a 3G network using Chrome as

the default browser.

3. RESULTS
The results for the single page app tested show that the browser

takes the same time as the client-side approach to receive the

first bytes when using isomorphic rendering. However, the Start

Render time is delayed compared to the client-side approach. By

looking at the median of the first bytes, the delay experienced by

the isomorphic approach is explained by the fact that it takes

more time to process the view rendering on the server.

We notice a 0.4 seconds difference in the Start Render time; it is

explained by the fact that the isomorphic approach for the

HTML is much heavier. However, the isomorphic approach has

the advantage of having a faster Visually Complete time and a

slower Speed Index. The isomorphic approach takes less than

9.25 seconds to render a visually complete page from the time of

Start Render compared to the client-side approach, which takes

13.25 seconds to render the table and display the complete page

from the time of Start Render.

Figure 4 illustrates the visual completeness of the two

approaches and shows the progress of the rendering on the

screen. The Visually Complete metric and the Speed Index are

always the same value for the isomorphic approach. It is

explained by the fact that the page is not progressively rendered

since the complete HTML was served with the data during the

initial page load.

 <div id="react-main-mount">

 <%- reactOutput %>

 </div>

 <script src="/main.js"></script>

43

Figure 4. Visual completeness vs. time for client-side rendering

and isomorphic rendering

We notice a difference in time in favor of the client-side

approach, which has a reduced time for the Dominteractive

metric. On the other hand, isomorphic is much better in

optimizing the critical rendering path. Content is displayed

faster but the page takes longer to be interactive, i.e., not yet the

user is able to interact with the displayed page. In our case,

filtering the table is an example of user interaction. Also, we

notice that the page weight is heavier for the isomorphic

approach because it carries a heavier pre-rendered HTML file.

In this case, mobile browsers may have problems supporting

larger files because of the limitations in CPU usage and memory

storage of mobile devices.

Another factor that determines which method is better is the

intent of the app. If it is an app for content delivery, like a news

web app, showing content very quickly is a necessity. If it is an

app where users need to interact heavily with the app through

button clicking, drag and drop, etc., then waiting for the app to

fully load helps increase the perceived performance. A

possibility of adding a progress indicator like a spinner or a

loading bar can be an alternative in this case to keep the user

task focused

4. CONCLUSION
Isomorphic Javascript is a promising approach, especially with

the increasing engagement of the NodeJS and Javascript open

source community. In this paper, we have covered the evolution

and different approaches of rendering content on the server and

on the browser. We claimed that the isomorphic approach would

have a faster load time and lower Speed Index and, after

performing an experiment on a single page app with two

variances to support client-side rendering only and isomorphic

rendering, we validated our hypothesis. We also discovered that

the faster the page is visually loaded, the more time it takes to

become interactive. In addition, the results showed that the

isomorphic approach causes Page Weight to be higher than the

traditional approach.

5. ACKNOWLEDGMENTS
My thanks to Dr. Joan Francioni and Dr. Mingrui Zhang for

their reviews and contributions to this research work.

6. REFERENCES
[1] Built With, “Framework Usage

Statistics,” [Online]. Available:

http://trends.builtwith.com/framework. [Accessed: 4- Apr-

 2016].

[2] D. Pupius, (2013, Jan.). “Rise of the SPA,”. [Online].

Available: https://medium.com/@dpup/rise-of-the-spa-

fb44da86dc1f. [Accessed: 4- Apr- 2016].

[3] D. Walles. “What is Isomorphic/Universal Javascript?”.

[Online]. Available:

https://github.com/DavidWells/isomorphic-react-example.

[Accessed: 18- Apr- 2016].

[4] I. Grigorik, ‘Google Developers', Critical Rendering

Path. [Online]. Available:

https://developers.google.com/web/fundamentals/performa

nce/critical-rendering-path/?hl=en. [Accessed: 27- Mar-

 2016].

[5] I. Grigorik, “Optimizing the Critical Rendering Path,”

presented at the O’Reilly Velocity Conference, Santa

Clara., CA.

2013. [Online]. Available: https://docs.google.com/presenta

tion/d/1IRHyU7_crIiCjl0Gvue0WY3eY_eYvFQvSfwQou

W9368/present?slide=id.p19. [Accessed: 4- Apr- 2016].

[6] K. Eaton, ‘Fast Company', How One Second Could Cost

Amazon $1.6 Billion In Sales, 2012. [Online]. Available:

http://www.fastcompany.com/1825005/how-one-second-

could-cost-amazon-16-billion-sales. [Accessed: 27- Mar-

 2016].

[7] K. Probst, B. Johnson. “Making Ajax

Crawlable,” [Online]. Available:

Approach Page weight Visually Complete Speed Index Dominteractive First Byte Start Render

Client-side

rendering
2,106 KB 13.25s 5982.5 12.9s 0.839s 3.437s

Isomorphic

rendering
2,390 KB 3.9s 3900 14.77s 0.841s 3.888s

Table 1. Results of the tests run using “WebPagetest”

44

http://trends.builtwith.com/framework
https://medium.com/@dpup/rise-of-the-spa-fb44da86dc1f
https://medium.com/@dpup/rise-of-the-spa-fb44da86dc1f
https://github.com/DavidWells/isomorphic-react-example
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/?hl=en
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/?hl=en
https://docs.google.com/presentation/d/1IRHyU7_crIiCjl0Gvue0WY3eY_eYvFQvSfwQouW9368/present?slide=id.p19
https://docs.google.com/presentation/d/1IRHyU7_crIiCjl0Gvue0WY3eY_eYvFQvSfwQouW9368/present?slide=id.p19
https://docs.google.com/presentation/d/1IRHyU7_crIiCjl0Gvue0WY3eY_eYvFQvSfwQouW9368/present?slide=id.p19
http://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
http://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales

http://www.scriptol.fr/ajax/SMX_East_AJAX_Proposal.pdf

. [Accessed: 4- Apr- 2016].

[8] Microsoft, ‘IEBlog', HTTP/2: The Long-Awaited Sequel,

2014. [Online]. Available:

https://blogs.msdn.microsoft.com/ie/2014/10/08/http2-the-

long-awaited-sequel/. [Accessed: 27- Mar- 2016].

[9] M. Kearney, ‘Google Developers’, The RAIL Performance

Model. [Online]. Available:

https://developers.google.com/web/tools/chrome-

devtools/profile/evaluate-performance/rail?hl=en.

[Accessed: 4- Apr- 2016].

[10] Nodejs Home Page. [Online]. Available: http://nodejs.org.

[Accessed: 4- Apr- 2016].

[11] P. Lenssen, (2008, Jun.). "Kevin Fox of Gmail &

FriendFeed on User Experience Design,”. [Online].

Available: http://blogoscoped.com/archive/2008-06-02-

n56.html. [Accessed: 4- Apr- 2016].

[12] S. Brehem, (2013, Jan.). “Isomorphic Javascript: The

future of web apps”. [Online]. Available:

http://nerds.airbnb.com/isomorphic-javascript-future-web-

apps/. [Accessed: 4- Apr- 2016].

[13] WebPageTest Documentation. [Online]. Available:

https://sites.google.com/a/webpagetest.org/docs/.

[Accessed: 4- Apr- 2016].

[14]

45

http://www.scriptol.fr/ajax/SMX_East_AJAX_Proposal.pdf
http://www.scriptol.fr/ajax/SMX_East_AJAX_Proposal.pdf
https://blogs.msdn.microsoft.com/ie/2014/10/08/http2-the-long-awaited-sequel/
https://blogs.msdn.microsoft.com/ie/2014/10/08/http2-the-long-awaited-sequel/
https://developers.google.com/web/tools/chrome-devtools/profile/evaluate-performance/rail?hl=en
https://developers.google.com/web/tools/chrome-devtools/profile/evaluate-performance/rail?hl=en
http://nodejs.org/
http://blogoscoped.com/archive/2008-06-02-n56.html
http://blogoscoped.com/archive/2008-06-02-n56.html
http://nerds.airbnb.com/isomorphic-javascript-future-web-apps/
http://nerds.airbnb.com/isomorphic-javascript-future-web-apps/
https://sites.google.com/a/webpagetest.org/docs/

46

	Announcement
	Binder1
	Komal Bansal
	Bellows
	McNeely
	Gerber
	Karlstad
	Martin
	Asiqur
	Hakim

