

The 17th Winona Computer Science
Undergraduate Research Symposium

April 26, 2017

9:30am to 12:00pm

Gildemeister Hall (GI) 325

Winona State University
Winona, MN

Sponsored by the Department of Computer Science at
Winona State University

ii

Table of Contents

 Title Author Page

iOS Application Development with Firebase as Justin Bergeron 5
a Mobile Platform Winona State University

Performance Analysis of Raspbian and Ubuntu Jakiul Alam 1
Mate on a Raspberry Pi Winona State University

The Use of XML to Store Patient Medical Record Hok Lam Ou-Yong 13
 Winona State University

A Web-based Approach to Virtual Guitar Richard Marquez 9
Amplification Winona State University

Performance Analysis of Raspbian and Ubuntu Mate

on a Raspberry Pi

Jakiul Alam

Department of Computer Science

Winona State University

Winona, Minnesota

JaAlam13@winona.edu

Abstract— Raspberry Pi has been in the center of a lot of “Do

it Yourself” projects since it hit the market. The computer is very

compact, inexpensive and powerful. However, the price point

dictates that some tradeoffs be made. This is where the operating

systems come into play. They are responsible for using the

resources available on the device as efficiently as possible. In this

research project, I have used UnixBench to compare Ubuntu

Mate and Raspbian. I have run tests like Dhrystone 2,

Whetstone, Process Creation which test aspects of OS that are

general indicators of how gracefully they handle memory

management and process management. Ubuntu Mate edged it

out over the Raspbian.

Keywords—raspberry pi; benchmark; raspbian; ubuntu mate;

I. INTRODUCTION

Raspberry Pi is a credit card sized computer that was
developed by Eben Upton and a group of computer enthusiasts
to inspire and instill in children the fundamentals of computing.
From powering a high-tech mirror that tells you weather to
being the brains behind a face plotter, it has been used to do a
lot of credible projects. A huge community has sprung up and a
lot of tech giants have started taking heed into this project.
Raspberry Pi’s are extremely inexpensive, they range from $27
to $39. As expected the trade-off for keeping prices low is
limiting the performance of these devices. This is where
operating systems play a big role to make these devices more
efficient in terms of speed, time and power.

Based on where it is being used and viewpoint, operating
systems can take many shapes and forms. “An operating
system is a program that manages a computer’s hardware” [8],
satisfies our view of an operating system. It is a key element in
a computing environment that makes sure resources are being
allocated correctly, efficiently and effectively. There are lots of
resources that the OS has to keep track of. In this paper, we
looked at how they manage the distribution of CPU time
among running processes and how they allocate memory for
these processes. Each operating system approaches the
problems differently. They have different sets of algorithms
and schemes for carrying out these tasks.

 Process management entails a variety of tasks. They range
from allocating CPU time, inter-process communication,
protecting resources allocated to a process and synchronization
of processes. On the other hand, memory management is
concerned with keeping as many processes running as possible.

Given the time it has been around, you can choose
from quite a sizeable number of operating systems to put on a
Raspberry Pi. Raspbian is the officially recommended
operating system for the Raspberry Pi. It is based on Debian
distribution of Linux. It is a community driven, open source,
free software and is still under active development according to
their website [3]. Also, it has over 35000 pre-compiled
software packages that can be installed on the Raspberry Pi
since it carries the popular Debian desktop environment. It is
currently the most used operating system on a Pi.

Ubuntu Mate developed by Martin Wimpress and
Rohith Madhavan specifically for the Raspberry Pi computers.
They have optimized the operating system so it runs on the
device as efficiently as possible. Ubuntu is one of, if not the,
largest deployed Linux based desktop operating systems in the
world. Linux is at the heart of Ubuntu and makes it possible to
create secure, powerful and versatile operating systems, such as
Ubuntu and Android. Android is now in the hands of billions of
people around the world and it’s also powered by Linux. The
MATE Desktop is one such implementation of a desktop
environment and includes a file manager which can connect
you to your local and networked files, a text editor, calculator,
archive manager, image viewer, document viewer, system
monitor and terminal. All of which are highly customizable and
managed via a control center [2].

To compare these two operating systems, we used
benchmarking software. Some of these software, come with
predefined parameters or sometimes you can customize them.
For our purpose, we are using Byte Unix Benchmark tool that
have predefined set of tests using predefined parameters. In
essence, Benchmarking is running the same set of tests on
different products you are testing and comparing the score
produced from those tests.

Proceedings of the 17thWinona Computer Science Undergraduate
Research Seminar, April 26, 2017, Winona, MN, US.

1

Hypothesis: Ubuntu manages processes and memory more
efficiently than Raspbian on the Raspberry Pi.

II. METHODOLOGY

For this project, we have two different OS on two identical
memory cards and we booted onto them separately. We used
UnixBench5.1.3 which is an open source tool and is available
on Google code for anybody to download. It is based off of
Byte Unix benchmark algorithm and requires you to download
certain Perl libraries to run. It can measure the performance of
bash scripts, CPUs in multithreading and single threading. It
can also measure the performance for parallel tasks. Also,
specific disk IO for small and large files are performed. These
tests should be sufficient to come to a conclusion. A full run of
the benchmark tool performs Dhrystone2, Double-Precision
Whetstone, execl Throughput, file copy using variable buffer
sizes and block sizes, pipe throughput and context switching,
process creation, shell script and system call overhead. A lot of
these tests overlap in aspects they test. For simplicity, will be
considering Dhrystone, Whetstone, Shell script runs and
process creation as markers for process management and
context switching, file copying, execl throughput as markers
for memory management.

Dhrystone is a general-performance benchmark test
originally developed by Reinhold Weicker in 1984 updated to
Dhrystone 2 in 1988 [6]. This benchmark is used to measure
and compare the performance of different computers or, in this
case, the efficiency of the code generated for the same
computer by different compilers. The test reports general
performance in loops per second. Like most benchmark test,
Dhrystone consists of standard code and concentrates on string
handling. It uses no floating-point operations. It is heavily
influenced by hardware and software design, compiler and
linker options, code optimizing, cache memory, wait states, and
integer data types.

Whetstone is a benchmark test which attempts to measure
the speed and efficiency at which a computer performs
floating-point operations. The result of the test is given in units
called kilo-whetstones-per-second or KWIPS. The Whetstone
is a synthetic benchmark designed to measure the behavior of
scientific programs. It contains several modules that are meant
to represent a mix of operations typically performed in
scientific applications. A wide variety of C functions including
sin, cos, sqrt, exp, and log are used as well as integer and
floating-point math operations, array accesses, conditional
branches, and procedure calls. The primary aim of this
benchmark is to measure the performance of both integer and
floating-point arithmetic [10]. Both of these tests are a good
indicator of how well an operating system handles process
management. Also, there is an additional test which shows how
well the operating system handles the process spawning in
UnixBench, it is called Process Creation. Other than that, it
tests scripts by running them in parallel.

Pipe based context switching test measures the
number of times two processes can exchange an increasing
integer through a pipe. The pipe-based context switching test is
more like a real-world application. The test program spawns a
child process with which it carries on a bi-directional pipe
conversation.

File copying measures the rate at which data can be
transferred from one file to another, using various buffer sizes.
The file read, write and copy tests capture the number of
characters that can be written, read and copied in a specified
time. This indicates the speed of read and writes which depend
extensively on the usage of RAM.

Process creation test measure the number of times a
process can fork and reap a child that immediately exits.
Process creation refers to actually creating process control
blocks and memory allocations for new processes, so this
applies directly to memory bandwidth. Typically, this
benchmark would be used to compare various implementations
of operating system process creation calls.

III. TEST ENVIRONMENT AND SETUP

We used a Raspberry Pi 3 model B with 2 identical 32gb
class 10 memory card, one with Ubuntu Mate and one with
Raspbian. Both were the latest releases at the time of testing.
Table 1 shows the operating system information and table 2
shows the configuration of a Raspberry Pi 3 model B.

Table 1. Operating System Specifications

Operating System Ubuntu Mate Raspbian

Distribution Ubuntu Debian

Kernel Version 4.4.38-v7+ 4.4.34-v7+

OS Version

(codename)

16.04.2LTS

(xenial)

8.0

(jessie)

Disk Space Occupied 3.4 GB 3.8GB

Table 2. Raspberry Pi 3 Model B Configuration

Introduction Date 2/29/2016

CPU Quad Cortex A53 1.2GHz

Instruction Set ARMv8-A

GPU 400MHz

RAM 1GB SDRAM

Ethernet 10/100

Wireless 802.11n/Bluetooth 4.0

Price $35

The Raspberry Pi was connected to an Element monitor
via HDMI and the resolution on both OS was set to 1360x768
pixels. Both were connected to the internet via Ethernet port
and wireless was turned off in both cases.

After booting to the operating system, we installed all the
pending updates and rebooted the system. We used the

2

terminal to install the specific libraries required to run
UnixBench5.1.3. Then we ran the benchmark test using the
terminal. Upon completion of the test, the results were
generated immediately and displayed onto the terminal.

Figure 1. Raspberry Pi 3 Model B

IV. RESULTS

The UnixBench benchmark runs two sets of tests, one of
which uses a single core and the other uses all available cores
for the processors. The following tables show a summary of the
results from both sets of tables and compares the results from
both operating systems.

Table 3. Results of running single copy of the test

System Benchmarks Index

Values

Ubuntu

Mate

Raspbian

Dhrystone 2 using register

variables

5107464.5

lps

4344901.7

lps

Double-Precision Whetstone 1019.9

MWIPS

736.4

MWIPS

Execl Throughput 741.6 lps 773.1 lps

File Copy 1024 bufsize 2000

maxblocks

144790.3

KBps

143881.1

KBps

File Copy 256 bufsize 500

maxblocks

43066.0

KBps

43539.3

KBps

File Copy 4096 bufsize 8000

maxblocks

347839.0

KBps

335002.4

KBps

Pipe Throughput 276246.1

lps

310841.3

lps

Pipe-based Context Switching 54936.7 lps 54462.4 lps

Process Creation 2347.3 lps 2438.4 lps

Shell Scripts (1 concurrent) 2126.6 lpm 2116.7 lpm

Shell Scripts (8 concurrent) 516.5 lpm 489.8 lpm

System Call Overhead 700690.9

lps

693554.5

lps

System Benchmarks Index

Score

313.9 303.6

Table 4. Running four parallel copies of the test

System Benchmarks Index

Values

Ubuntu

Mate

Raspbian

Dhrystone 2 using register

variables

15197180.0

lps

12139250.8

lps

Double-Precision Whetstone 3257.4

MWIPS

2187.1

MWIPS

Execl Throughput 1825.3 lps 1631.4 lps

File Copy 1024 bufsize 2000

maxblocks

162635.9

KBps

158476.0

KBps

File Copy 256 bufsize 500

maxblocks

44114.0

KBps

44042.5

KBps

File Copy 4096 bufsize 8000

maxblocks

406946.6

KBps

412090.6

KBps

Pipe Throughput 775798.7

lps

858033.4

lps

Pipe-based Context Switching 124035.8

lps

120903.3

lps

Process Creation 3658.3 lps 3629.3 lps

Shell Scripts (1 concurrent) 3196.0 lpm 3096.9 lpm

Shell Scripts (8 concurrent) 412.3 lpm 401.9 lpm

System Call Overhead 1975942.6

lps

1945043.9

lps

System Benchmarks Index

Score

560.6 526.4

V. ANALYSIS

A. Process Management

Comparing the performances for the Dhrystone 2 and
Whetstone first. These tests measure how fast these OS
handle big calculation which gives us a clear indication of
how well it manages processes. During the Dhrystone 2 test
using the single core Ubuntu Mate performed 15% faster at
5107464.5 loops per second compared to 4344901.7 loops
per second on Raspbian. During floating point calculations
in the Whetstone test the difference was more noticeable.
Ubuntu Mate performed 28% faster than Raspbian. The
pipe throughput test measures the rate at which inter-
process communication is done. In this case, Raspbian
performed 12% faster than Ubuntu Mate. This would mean
process synchronization on Raspbian is fairly smoother
than it is on Ubuntu Mate. The process creation test
measure the number of times a process can fork and reap a
child that immediately exits. During our tests, Raspbian
performed 4% faster than Ubuntu Mate. On the shell script
test Ubuntu Mate performed 10% faster both times. The
trends are preserved during the test with all cores in use.
Overall Ubuntu Mate performed slightly better than
Raspbian.

3

B. Memory Management

The execl throughput was the first test for Memory
Management, here bunch of current processes are replaced by
new processes and memory is allocated to them as part of the
process control block. Raspbian performed 5% faster than
Ubuntu Mate. However, with more of the test being done at the
same time, Ubuntu Mate performed 11% faster than Raspbian.
Ubuntu Mate reached speeds of up to 44114.0 KBps while
copying files compared to Raspbian’s 44042.5 KBps. Finally,
the Ubuntu Mate handled context switching 3% faster than
Raspbian.

VI. CONCLUSION

Overall the in both sets of tests Ubuntu Mate got a higher score
than Raspbian. In the single core test Ubuntu Mate scored
313.9 versus Raspbian’s 303.6. The performance gap was a
little wider when put under more load, Ubuntu Mate scored
560.6 and Raspbian scored 526.4. Although the scores are not
that different, Ubuntu mate scored marginally better than
Raspbian. This leads us to accept our hypothesis that Ubuntu
handles process and memory management better than
Raspbian.

REFERENCES

[1] “About Debian” www.debian.org https://www.debian.org/intro/about
Accessed: February 2017

[2] “About” ubuntu-mate.org https://ubuntu-mate.org/about/ Accessed:
February 2017

[3] “About Raspbian” www.raspbian.org
https://www.raspbian.org/RaspbianAbout Accessed: February 2017

[4] “About Us” www.raspberrypi.org https://www.raspberrypi.org/about/
Accessed: February 2017

[5] “Byte-Unix Benchmark” code.google.com
https://code.google.com/p/byte-unixbench Accessed: February 2017

[6] "Dhrystone" en.wikipedia.org https://en.wikipedia.org/wiki/Dhrystone
Accessed: February 2017.

[7] N. Hatt, A. Sivitz and B.A Kuperman, “Benchmarking Operating
Systems”, Oberlin College Research Publication 2007,
https://www.cs.oberlin.edu/~kuperman/research/papers/audlib2007mcur
csm.pdf Accessed: February 2017

[8] Silberschatz, A., Galvin, P. B., & Gagne, G. (2005). Operating system
concepts (9th ed.). Hoboken, NJ: J. Wiley & Sons.

[9] “The 14th Winona Computer Science Undergraduate Research
Symposium” cs.winona.edu http://cs.winona.edu/conference.php
Accessed: February 2017

[10] "Whetstone (benchmark)" en.wikipedia.org
https://en.wikipedia.org/wiki/Whetstone_(benchmark) Accessed:
February 2017.

4

https://www.debian.org/intro/about
https://ubuntu-mate.org/about/
https://www.raspbian.org/RaspbianAbout
https://www.raspberrypi.org/about/
https://code.google.com/p/byte-unixbench
https://www.cs.oberlin.edu/~kuperman/research/papers/audlib2007mcurcsm.pdf
https://www.cs.oberlin.edu/~kuperman/research/papers/audlib2007mcurcsm.pdf
http://cs.winona.edu/conference.php
https://en.wikipedia.org/wiki/Whetstone_(benchmark)

iOS Application Development with Firebase as a

Mobile Platform

Justin Bergeron

Computer Science

Winona State University

Winona, USA

jbergeron12@winona.edu

Abstract— Firebase is a mobile and web application platform

with tools and features created to help developers build high

quality apps. It includes free features that developers can mix-

and-match to fit their specific needs. BetterYou is a Health &

Fitness iOS mobile application that has food recipes and a list of

all users and their posts. This study investigated the effectiveness

of Firebases Spark plan with iOS application development and

deployment by conducting a usability test and a survey. From the

results, this study found out that not only is Firebase an effective

development platform but it also scored high on user satisfaction

reviews.

Keywords—iOS, Applicaton Development, Firebase

I. INTRODUCTION

Firebase is a mobile and web application platform with
tools and features created to help developers build high quality
apps. It includes free features that developers can mix-and-
match to fit their specific needs [1]. A mobile application
development platform (MADP) is software businesses can use
to quickly develop top quality apps. A business has the choice
of building their own MADP or purchase one from the many
third-party products available. The third-parties typically offer
features like Backend as a Service (BaaS) and administration
tools for application programming interfaces (APIs). Behind
every software application is a comprehensive series of
backend services intended to support the front end you see and
use every day [1]. The workload involved in
developing/creating this backend technology is not a simple
task. Many organizations are choosing to save time and money
by using a BaaS.

II. BETTERYOU

A. BetterYou the Software

BetterYou is a Health & Fitness application that has food
recipies and a list of all users and their posts. Once a user is
logged in there are two main screens, a Meals tab and a
Community tab. On the Meals tab, there are five sections
listed: Recipe of the Day, Breakfast, Lunch, Dinner and Meal
Prepping. Within those sections are recipes which once
selected bring you to their specific screen listing the ingredients
and directions to make. On the Community tab, all the users in
the app are listed with their Facebook Profile Picture and
Display name. Tapping a user’s name brings you to their

profile. A user’s profile displays all the recipes that they have
posted to BetterYou. When visiting your profile, a little circle
with a plus appears in the top right corner. Tapping it brings
you to the recipe uploading page. Users can type in the title of
the recipe and then list the ingredients and directions. Once
submitted the recipe is added to the user’s profile page which
can then be viewed by all users.

B. Firebase with BetterYou

The template is used to format your paper and style

the text. All margins, column widths, line spaces, and text

fonts are prescribed; please do not alter them. You may note

peculiarities. This study investigated the effectiveness of the

Firebase Spark plan with iOS application development and

deployment. Spark is Firebase’s free plan which offers great

and easy to implement features. User authentication, database,

and analytics are some of the features utilized by the

BetterYou app. Facebook was used for BetterYou’s user

authentication.

The first time a user opens the app, they are prompted

to “Login with Facebook.” Once the user is verified with their

Facebook credentials, Firebase does the rest. Their display

name, profile picture, and user ID are all added to the users

branch in the database. The database also stores the recipes in

the app. This includes the pre-loaded and the user posted

recipes. When a user posts a recipe, it is added underneath

their name in the users branch as well. The structure style of

the database is a JSON file that can be queried and edited in

real-time. JavaScript Object Notion (JSON) is a minimal,

readable format for structuring data. It is used primarily to

share data between a server and web application, as an

alternative to XML. Each time a user loads a new screen the

app queries the database and loads in the specific information

being requested. When a user posts a recipe, the JSON file

updates within seconds and the changes can then be viewed by

other users.
Analytics gives useful information about the user’s

interactions with the app. Active Users, User Engagement,
Retention Cohorts, and Devices are the four sections being
used for BetterYou. Active Users displays a visual
representation of monthly, weekly, and daily user totals. User
Engagement displays daily engagement, daily engagement per
user, sessions per user, and average session duration. Retention

Proceedings of the 17
th

Winona Computer Science Undergraduate Research

Seminar, April 27, 2017, Winona, MN, US.

5

Cohorts displays user retention rate over a 5-week span and
gauges if users are coming back after the first week. Devices
displays the phone model and OS version of users., the head
margin in this template measures proportionately more than is
customary. This measurement and others are deliberate, using
specifications that anticipate your paper as one part of the
entire proceedings, and not as an independent document. Please
do not revise any of the current designations.

III. HYPOTHESIS

Is Firebase an effective mobile platform for iOS development?

IV. METHODS

A. Usability Study

Usability Studies have been a common practice since the
1990s to assess the effectiveness of user interfaces [2][3] and to
collect feedback from users to improve existing user interfaces.
This research performed a usability study to test the
effectiveness of Firebase with iOS mobile application
development. The research was executed with WSU students
ranging from freshman to seniors using a survey with goals
they had to perform within the app.

B. Demographics of Participants

A total of 50 Winona State University college students

participated in the testing. They ranged from freshman to

graduate students. Each user had to have an iPhone and a

Facebook account. There were 22 males and 28 females.

C. User Tasks and Questions

The equations are an exception to the prescribed
specifications of this template. This study conducted a usability
test and a survey. The usability test consisted of 5 tasks that
each user was to try and complete. If any of the tasks could not
be accomplished the user was asked to explain why. The tasks
are shown in Table 1.

The survey gathered information about the users experience
while conducting the usability test. Data collected consisted of:

(1) Successful or Unsuccessful Facebook login

(2) Successful or Unsuccessful Database query

(3) Successful or Unsuccessful Database entry

(4) Load times.

Facebook login is whether the user had a successful login.
Database query consisted of users being able to view the
correct recipes descriptions dependent on their selection.
Database entry consisted of users being able to upload a recipe
of their own into the Database for others to view. Load times
consisted of the average time it took for information and
images to load onto the users’ screen. Results of the data
collected are shown in figure 3 & 4.

D. Usability Goals

Table1: Tasks asked to perform

E. BetterYou Life Cycle

Figure 2: Life Cycle

 Visualize: The idea and planning began during the
beginning weeks of January 2017. The idea
stemmed from the want of an application to share
meals cooked with friends.

 Research: Knowing we wanted to share photos
within an app, we were going to need a good
cloud storage solution. Firebase was selected
because of its great guides and reviews. For
developing on iOS, Firebase supports Xcode as an
IDE and Swift as a language. Using these three
tools, we then determined what features we
wanted in the app.

 Implement: User authentication,
Database/Storage, and Analytics were selected to
be implemented into the app. Reading through
Firebase’s helpful guides, we could create an
implementation plan for the selected features.

 Development: The first step of development was
creating a Storyboard in Xcode. This gives the

1 Login with Facebook.

2 Access all Categories under the Meals tab

(ROTD, Breakfast, Lunch, Dinner, Meal

Prepping) View each Categories meals list and

access their specific details.

3 Find your Facebook Display Name and Profile

Picture under the Community tab.

4 Once clicked onto your name, attempt to post a

recipe.

5 View other user’s profiles.

6

layout and flow of the app. From there, we used
the implementation plan to develop the correct
functions and methods to connect the app with
Firebase.

 Testing: Xcode has built in iOS simulators that
cover the wide range of Apple Devices. Testing on
the simulators first allowed us to discover and then
remove bugs/errors. We then moved to physical
iPhones for further testing.

 Deployment: Meetings were scheduled with
testers so the app could be built to their iPhone.
The usability test and survey were then given to
the testers and collected once finished.Word
Formatting toolbar.

F. Software Development

We began with a blank Xcode project that would later be
integrated with Firebase. Xcode is an integrated development
environment (IDE) for macOS containing a plethora of
software development tools created by Apple for developing
software for macOS, iOS, watchOS and tvOS [4]. Once you
create your free account with Firebase you are brought to your
own personal dashboard. Here is where you will be able to
create multiple apps and keep track of them with ease. When
creating a project in Firebase with iOS you must already have
an Xcode project created. This will automatically create a
unique iOS bundle ID. This ID is very important; it will link
your Xcode project to Firebase. Once those two are linked up,
a file called GoogleService-Info.plist will be downloaded to
your computer [1]. Before adding the file to your Xcode
project you must install the Firebase software development kit
(SDK). This is a three-line command that you run in Terminal.
Once the Firebase Pods are installed, adding the
GoogleService-Info.plist file is as easy as dragging and
dropping it into your file list in Xcode. After completing those
steps, you are directed to your customized dashboard within
Firebase. It’s here where you can start to add features to your
app with the code snippets provided.

G. Software Development

BetterYou utilizes three main Features from Firebase.

1.) Authenticating users using Facebook login on
iOS.

2.) Read and Write Data on iOS.

3.) Analytics for iOS.

1.) Authenticating users using Facebook login on iOS takes
5 steps.

 Integrate Facebook Login into your app by
following the developer’s documentation. When
you initialize the FBSDKLoginButton object, set a
delegate to receive login and logout events [1].

 Import the Firebase module in your
UIApplicationDelegate subclass [1].

 Configure FIRApp in your application’s
application:didFinishLaunchingWithOptions:
method [1].

 After a user successfully signs in, get an access
token for the signed-in user and exchange it for a
Firebase credential [1].

 Finally, authenticate with Firebase using the newly
obtained Firebase credential [1].

Once completed Facebook Login is a great feature that will
give your app a professional first impression.

2.) Read and Write Data on iOS is a series of Database calls
that either query into an array or edit the current JSON file. For
basic write operations, the setValue method is used to save data
to a specified reference, replacing any existing data at that path.
This method can be used to pass the four compatible JSON
types:

 NSString

 NSNumber

 NSDictionary

 NSArray

Once it is decided what type your data will be you can use
setValue as follows (Swift):

self.ref.child("users”).child(user.uid).setValue([“username”
: username])

Using setValue in this way overwrites data at the specified
location, including any child nodes. However, you can still
update a child without rewriting the entire object [1]. If you
want to allow users to update their profiles you could update
the username as follows (Swift):

self.ref.child(“users/(user.uid)/username”).setValue(userna
me)

Using these write options, users can add data that can then
be accessed by anyone.

Reading data once in Firebase is one of the recommended
examples [1]. This type of Database query takes a snapshot of
the “child” or branch of a specific section in the JSON file and
puts all the data into an array of your style. Once the data is
queried into the array, you can use that information to populate
tables or display specific information within your app. You can
also set up a listener. For instance, having a listener with a
news feed display is a better solution to database querying. A
listener can wait for any action to occur and then carry out a
task. The news feed example would be every time a user
creates a new post the listener hears that and then automatically
updates the news feed for all users to see.

3.) Analytics for iOS is the simplest of the three to add to
your app. With just two lines of code, your app can be
configured and ready to run Analytics.

 import Firebase

 FIRApp.configure()

7

Once your app is configured to Firebase Analytics, you
have instant access to useful information about the user’s
interactions with the app. Active users, User engagement,
Retention cohorts, and Devices are the four sections being used
for BetterYou. Active users display a visual of your monthly,
weekly, and daily user totals. User engagement displays Daily
engagement, Daily engagement per user, Sessions per user,
Avg. session duration. Retention cohorts displays user
retention rate of a 5-week span meaning after the first week use
are your users coming back. Devices displays the phone model
and OS version that your users have.

V. RESULTS AND ANALYSIS

Users were asked questions, as shown in Table 1, to try and
perform a series of goals. The following charts are a visual
representation of the results.

Figure 3, displays number of successful and unsuccessful
goals. Results found that users had a success rate of 93% when
interacting with Firebases Real Time Database. The failures
that did occur are believed to be internal coding errors with the
app, not Firebase.

Figure 4, displays user’s response about screen load times.
The load times that did take longer than 5 seconds were
typically when images were being loaded onto the screen. The
text would load but the images would sometimes take a little
longer.

VI. RESULTS AND ANALYSIS

 The primary goal of this research is to gather data that
supports or denies the hypothesis. The results of the usability
test and survey speak for themselves. Throughout the Software
Life Cycle of the project, Firebase proves that it is indeed an
effective MADP for iOS Development. From the beginning
stages to deployment, their get started guides, Code Labs, API
references, and Samples were extremely helpful and easy to
follow. Moving forward, Firebase will continue to be
BetterYou’s backbone. This study accepts the hypothesis that
Firebase is an effective mobile platform for iOS development.

REFERENCES

[1] Firebase, 2017. https://firebase.google.com

[2] Usability, 2016. www.Usability.gov

[3] Nielsen, J., and Mack, R. L. (Eds.) (1994). Usability Inspection
Methods, John Wiley & Sons, New York.

[4] Apple, 2017. https://developer.apple.com

[5] Zobel, Justin. Writing for computer science. London: Springer, 2014.
Print..

[6] “Automated Usability Testing for Mobile Applications.” Proceedings of
the 10th International Conference on Web Information Systems and
Technologies.

[7] Firebase, 2017. https://console.firebase.google.com

[8] Apple, 2017. https://developer.apple.com/iOS/human-interface-
guidelines

Figure 3: Usability Test Results Per User

Figure 4: Information Load Times Per User

8

https://firebase.google.com/
http://www.usability.gov/
https://developer.apple.com/
https://console.firebase.google.com/
https://developer.apple.com/iOS/human-interface-guidelines
https://developer.apple.com/iOS/human-interface-guidelines

A Web-Based Approach to Virtual

Guitar Amplification

Richard Marquez

Computer Science Department

Winona State University

Winona, MN 55987

RMarquez14@winona.edu

Abstract— Guitar amplifiers take the electrical signal from an

instrument and strengthen it to be pushed out through a speaker

system. They are often prohibitively expensive or overly complex.

A new system has been developed to make virtual guitar

amplification available through the web. This allows users to be

able to access virtual guitar amplification more quickly and

easily than through a traditional digital audio workstation.

Keywords—audio; signal processing; web; amplifier; guitar

I. INTRODUCTION

A. Background Information

An electric guitar uses magnetic "pickups" to convert the
mechanical vibrations of its ferrous strings into an electrical
signal. This signal is too weak to drive a speaker by itself so it
is first sent through an amplifier. A guitar amplifier amplifies
the signal so that it can produce sound through one or more
speakers. An amplifier also provides a set of basic sliding
controls including: volume—the loudness of the output;
gain—the sensitivity of the input; tone—the amount of treble
present; and reverb—simulation of a reverberant environment.

Physical guitar amplifiers are often expensive and
physically unwieldy which can be prohibitive traits for
hobbyist players. Increases in computer performance have led
to the proliferation of software-based virtual guitar
amplification. However, virtual guitar amplifiers can also be
expensive and overly complex, often requiring special training
as a part of a full-scale digital audio workstation (DAW).

The chart in Fig. 1 shows the popularity of various digital
audio workstations as voted on by readers of Ask.Audio, a
resource for educational materials by digital music makers.
GarageBand and its associated paid version, Logic Pro,
together make up some of the most popular DAWs [1] due to
their relative simplicity and availability on macOS. The
relatively low bar to entry of these DAWs is still prohibitive to
many players who do not have access to an Apple computer,
have no interest in recording software, or do not have the time
to download, install, and learn how to operate the software.

Figure. 1. Popularity of digital audio workstations

B. Research Purpose

When I began learning to play guitar I was in the situation
of needing an amplifier. I did not want to make the financial
commitment of purchasing a physical amp. The alternative was
to use a virtual amp, with GarageBand seeming to be the best
available choice given my circumstances: I had a Mac
computer and was searching for a free option. I was in no need
of the slew of professional recording features, as shown in Fig.
2, that dominate the application. As such, the learning curve
was unnecessarily steep and nearly destroyed the effort
altogether.

That personal story is a demonstration of the need for a
simpler and accessible virtual guitar amplifier. The goal of this
project is to build such a software that makes straightforward
guitar amplification available in the browser space.

A web-based guitar amplifier makes virtual guitar
amplification available through the web browser. Virtual guitar
amplification will be able to be achieved more quickly and
easily through a web application dedicated solely to guitar
amplification, rather than a traditional full-featured desktop
DAW.

23.14%

0.77%

9.03%

0.92%13.63%

2.49%

16.95%

8.70%

15.13%

3.46%

1.99% 3.80%

Ableton Live Bitwig Studio

Cubase Digital Performer

FL Studio GarageBand

Logic Pro Other

Pro Tools Reason

Sonar Studio One

Proceedings of the 17th Winona Computer Science Undergraduate
Research Seminar, April 26, 2017, Winona, MN, US.

9

Figure. 2. GarageBand example project

II. METHODOLOGY

A. Development Strategy

This is a software development project that used industry
standard web technologies to develop a single-page web
application that provides standard guitar amplifier functionality
given an audio input. Functionality includes amplification of
the input signal as well as controls for volume, gain, tone, and
reverb. Fig. 3 shows the final user interface. It features
adjustable circular controls similar to physical amplifiers for
the preceding effects. It also includes a waveform display of
the output signal.

HTML5 and CSS3 form the base of technology used for
front-end development. The Bootstrap framework was used to
provide page structure and responsive capabilities. The audio
waveform was drawn using the standard HTML5 canvas

element. The JavaScript language and associated web APIs
were used to develop the back-end of the application. A
combination of jQuery and standard JavaScript were used to
connect the data fed from the back-end into the front-end, and
vice versa. The standard Web Audio API was used to interface
with audio input and output [2].

JetBrains WebStorm was used as the primary IDE for
development with an educational license. Git was used for
version control, and the source of the project is available
publicly on GitHub. The web application was tested on the
Safari, Chrome, and Firefox browsers on macOS and Windows
systems to ensure cross-compatibility.

An iterative approach to development was taken.
Amplification and output of the input signal form the core of
the application. Once the core was complete the effects
controls for volume, gain, tone, and reverb were added. The
waveform display was developed after all of the preceding
functionality and serves primarily as a UI element.

B. Software Internals

Connecting the guitar to the computer with the 1/4 inch to
USB cable makes it appear as a standard audio input device.
The browser's audioContext object is used access the input and
output streams of the chosen audio devices (the guitar and
system speakers, respectively). Audio nodes are created and
attached to the audioContext's graph to process the signal.

1) Tone

Tone indicates the amount of treble present in the signal. A

biquad filter is used to achieve this effect. A highshelf biquad

filter node is created and connected to the input audio device's

stream (the beginning of the signal chain) to modify the range

of frequencies that are attenuated [3]. Selecting a high tone

Figure. 3. Finished UI of web-based amp

10

value from the UI knob will raise the threshold of attenuated

frequencies; i.e. the higher the tone, the more treble.

2) Reverb

The reverb effect controls simulation of a reverberant

environment. This typically involves complex calculations or

an intricate set of interconnecting audio nodes. To simplify

this process, the soundbank-reverb library (developed by

mmckegg on GitHub) was used. A reverb node from that

library is created and connected to the tone node. The UI's

reverb knob adjusts the time property of the reverb node as it

is spun; i.e. the higher the reverb, the longer it lasts.

3) Amplification and Volume

The amplification and volume of the signal can be

considered one and the same from a programmatic point of

view. A gain node is created that takes the reverb node as its

input. The reverb node is used instead of the direct input

stream so that the volumes of the effects are also taken into

account. The gain property of the gain node used to represent

the volume of the entire signal chain. The UI's volume knob

changes the value of the gain property as it is spun.

4) Gain

The gain control modifies the sensitivity of the input. To

achieve this effect, another gain node was created that resides

slightly askew to rest of the graph. It is connected to both the

reverb node and the input stream. The UI's gain knob changes

the value of the node's gain property as it is spun; i.e. the more

gain, the more sensitive the input.

5) Waveform

The audio waveform is displayed in the time domain. The

amplitude of the signal is represented on the y-axis and time

on the x-axis. Because of the relatively small amount of signal

processing taking place within the application there were no

performance issues resulting in signal buffer lag. A script

processor is attached to the input stream to redraw the graph

whenever audio is processed. It is drawn on an HTML5

canvas element.

C. Testing

1) Test Process
 A survey was executed to assess the hypothesis. The user
was tasked with achieving a usable tone from either
GarageBand or the new system given an electric guitar. The
user may have had experience with the instrument, but may not
have had experience with any digital audio workstation
software.

 The user was provided with an electric guitar, 1/4-inch
audio to USB cable, and a MacBook Pro (Early 2015) with
GarageBand 10.1.6 and the web amp system installed. The user
was asked to obtain a usable tone from either GarageBand or
the new system. The user was shown links on the desktop to
the appropriate software. No further instruction was given
throughout the survey.

 It should be noted that the time taken for GarageBand to be
downloaded and installed (an unnecessary step for the web
amp) was not part of the test. GarageBand 10.1.6 is a 956 MB
package which takes approximately 19 minutes to download on
a 7 Mbit/s connection [4].

2) Usability Survey
 The time it took to acquire a usable tone was recorded. The
user was then asked to rate the ease of use of the software on a
scale from 1 (being extremely difficult) to 5 (extremely easy).
The user was also asked to rate how likely they were to
recommend the software to a beginner guitar player on a scale
from 1 (extremely unlikely) to 5 (extremely likely).

 These metrics were initially recorded on paper by the user
and were then transferred into a Microsoft Excel spreadsheet.
As suggested by the Nielsen Norman Group for user
experience research [5] there was a total of twenty users in an
effort to achieve statistically significant results. Half of the
pool tested GarageBand, and the other half tested the new
system.

III. RESULTS AND ANALYSIS

There were a total of twenty users used to gather
information about the software usability. Ten of the users
tested GarageBand, and ten users tested the new web-based
system. No users had prior experience playing guitar or using
any type of digital audio workstation.

A. Time to Amplification

The overall mean time it took to achieve amplification, as
shown in Fig. 4, was 1.3 minutes for the web amp and 5.1
minutes for GarageBand. As noted earlier, the approximately
19 minutes it takes to download and install GarageBand (an
unnecessary step for the web amp) was not part of the test.
Even without that added time a t-test showed a statistically
significant difference between the results with a p-value < 0.05.

Figure 4. Time to completion results

B. Ease of Use

 The overall mean rating for the ease of use of the software,
as shown in Fig. 5, was a score of 4.6/5 for the web amp and
2.8/5 for GarageBand. A t-test showed a statistically significant
difference between the results with a p-value < 0.05. to 5
(extremely likely).

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

N
u

m
b

er
 o

f
u

se
rs

Completion time (minutes)

Web Amp GarageBand

11

Figure 5. Ease of use results

C. Likelihood of Recommendation

As shown in Fig. 6, the overall mean rating for the

likelihood the user would recommend the software to a

beginner guitar player was highly skewed in favor of the web

amp, with a score of 4.8/5, as opposed to GarageBand with a

score of 2.8/5. A t-test showed a statistically significant

difference between the results with a p-value < 0.05.

Figure 6. Likelihood of recommendation results

IV. CONCLUSION

The web amp software was developed as planned and used
to compare usability with GarageBand as a traditional digital
audio workstation. The statistically significant data acquired
through the survey supports the initial hypothesis that a web-
based amp with dedicated functionality can be used to achieve

virtual guitar amplification more quickly and easily than
through a traditional DAW.

The general accessibility of the functionality is also vastly
increased by the web amp. GarageBand is available only on
macOS systems and requires a large download. The web amp
requires no download and is available on any system with a
web browser that supports the Web Audio API (e.g. Chrome
53.0, Firefox 36).

V. FURTHER WORK

This project is open-source and available on GitHub
(https://github.com/richard92m/webVamp). The next step is to
have the application hosted online and made available for
public usage.

The web amp should work on mobile devices given the
appropriate hardware connections and a browser that supports
the Web Audio API. This was not tested during the course of
this research project.

This web-based virtual guitar amplifier stands as a nice
proof of concept and exploration of the Web Audio API;
however, there is a wide open space in the market for a full-
fledged DAW in the browser. Soundtrap (http://soundtrap.com)
is an example of the type of applications that will be coming in
the near future. This open-source project may be expanded
upon.

ACKNOWLEDGMENT

I would like to thank Dr. Narayan Debnath, Dr. Sudharsan
Iyengar, and Dr. Mingrui Zhang for advising and reviews
throughout this project. I would also like to thank the Winona
State University Computer Science Department for this
opportunity.

REFERENCES

[1] R. Sethi, "The top 11 most popular DAWs," in Ask.Audio, 2015.
[Online]. Available: https://ask.audio/articles/the-top-11-most-popular-
daws-you-voted-for. Accessed: Feb. 7, 2017.

[2] I. Hickson, "Media Capture and Streams," in W3C, 2016. [Online].
Available: https://www.w3.org/TR/mediacapture-streams/. Accessed:
Feb. 7, 2017.

[3] B. Smus, Web audio API. Sudbury, MA, United States: O’Reilly Media,
Inc, USA, 2013.

[4] Akamai, "Q4 2016 State of the Internet/Connectivity Executive
Summary," in Akamai, 2016. [Online]. Available:
https://www.akamai.com/us/en/our-thinking/state-of-the-internet-
report/index.jsp. Accessed: Apr. 1, 2017.

[5] J. Nielsen, "How many test users in a usability study?" in Nielsen
Norman Group, 2012. [Online]. Available:
https://www.nngroup.com/articles/how-many-test-users/. Accessed: Feb.
10, 2017.

[6] R. G. Lyons, Understanding digital signal processing, 3rd ed. Boston,
MA, United States: Prentice Hall, 2010.

0

1

2

3

4

5

6

7

8

1 2 3 4 5

N
u

m
b

er
 o

f
u

se
rs

Score

Web Amp GarageBand

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5

N
u

m
b

er
 o

f
u

se
rs

Score

Web Amp GarageBand

12

https://github.com/richard92m/webVamp
http://soundtrap.com/

The Use of XML to Store Patient Medical Record
Data Storage of Lung Cancer Treatment Outcomes Predicting Tool

Hok Lam Ou-Yong
Winona State University: Computer Science Department

Winona, MN 55987, USA
houyong13@winona.edu

Abstract—This research involves the restructuring of data
storage for a web-based software Lung Cancer Treatment
Outcomes Predicting Tool, which predicts lung cancer treatment
outcomes. The current application was developed ten years ago
and the software needs to be redesigned due the unnecessary
software maintenance overheads. Extensive markup language is
aimed to create a structured data form as part of the remodeling,
this approach is taken to avoid a large number of flat files for
storing medical record of lung cancer patients.

I. INTRODUCTION
According to American Lung Association, lung cancer has

one of the lowest 5-year survival rates among other leading
cancer sites, only 15% of lung cancer patients are diagnosed in
the early stage and almost half of the lung cancer patients do
not survive within one year after being diagnosed [1]. In
treating lung cancer, a web-based software application Lung
Cancer Treatment Outcomes Prediction Tool (LCTOPT) was
jointly developed by Winona State University and Mayo Clinic
ten years ago and has been in active use at Mayo Clinic since
then. There are five different clinical models in LCTOPT: Non-
Small Cell (NSC), Limited Small Cell (LSC), Extensive Small
Cell (ESC), Quality of Life (QoL), and Post-Surgery
Recurrence (PSR). In each model, LCTOPT calculates the
survival rates of a lung cancer patient based on the patient
current condition and the selection of treatments. The survival
rates are presented as survival curves on the web interface.

The current software uses the R statistical package in Java
and the R server runs side by side of Java runtime environment
with Apache Tomcat Version 6.0 Server. Patient information is
added via SQL queries so all information needs to be passed
between three different servers [2]. It has introduced
unnecessary software maintenance overhead. During the
redesign process, a Java version of the Cox Proportional Hazard
(CPH) model implementation is developed with a simplified
design to replace R statistical package and enforce standards by
Health Level 7 [3]. It computes the survival rates of patients
and significantly reduces the complexity of LCTOPT.

With more treatment models added over the past decade and
more diagnosed patients live longer beyond five years, the
prediction of survival rates is extended from 5-year to cover a
10-year period. A new responsive design allows displaying
results on different mobile devices. Flot (JavaScript plotting for
jQuery) is used for the web interface to present survival curves
on a graph with features included checkboxes for selecting
which curves to show, annotations to interpret survival rate
accurately, and automatic resizing of graph when window size

changes. These features are all combined together in the
JavaScript functions of the JavaServer Page (JSP).

However, the current software stores patient information in
multiple comma-separated values (CSV) files, which CSV is
one of the types of flat file. Thus, this storage system is
unorganized and non-optimized with different clinical models.
Restructuring of data storage is indispensable to prevent
multiple flat files. To complete the reformation, using extensive
markup language (XML) is targeted to help store data and
reduce the size and the complexity of the entire software. XML
is a neutral meta-language that allows course contents
separation and comprehensible with simple syntax; visual XML
editors also acknowledge validation based on XML files’ DTD
(Document Type Definition) and the validity provides
smoother function [4]. Since the developed Java version of
CPH model implementation has simplified and streamlined, the
XML data form storage implementation is intended to allow
saving and reading data more efficiently for both new and
existing patients in LCTOPT. In this paper, methods and results
of comparing XML and CSV are presented to comprehend if
storing data using XML file format has better latency on data
saving and data retrieving than that of flat file format.

II. SOFTWARE REDESIGN

A. Combination of Waterfall and Agile

Fig. 1. Software development flow overview.

Proceedings of the 17th Winona Computer Science Undergraduate
Research Seminar, April 26, 2017, Winona, MN, US.

Requirements

Design

Implementation

Verification

Maintenance
Clinician’s
Feedback

13

In this research project, waterfall model and Agile software
development processes are combined, and given in Fig. 1. In the
first phase, project requirements were collected from Mayo
Clinic and system requirement specification was prepared. Then
the application architecture was designed to fulfill the
requirements in the next phase. During implementation phase,
program was written to for building the application. Testing
cases was performed in the verification phase to validate the
application. In the maintenance phase, software tools would be
updated periodically for better performance. Feedback was then
received from clinicians in the following phase. Phases of
implementation, verification, maintenance, and clinician’s
feedback are under agile development circle.

B. Architecture
The whole architecture behind includes different languages,

tools, and platforms in LCTOPT, and shown in Fig. 2. Eclipse
with a Java SE Platform is used as Integrated Development
Environment (IDE) for programming the survival rates
calculation of CPH model. For servlet container, Apache
Tomcat Version 8.0 Server runs as the web server. The use of
JavaServlet Page (JSP) as a front-end interface for input and
output can dynamically generate different views of courseware
utilizing Java XML data-binding and embed HTML codes [4].
The new XML data storage implementation interact with JSP
for data saving and data accessing. JSP connects with the web
server through the Internet and web interface is displayed on
desktop or mobile devices with responsive design for clinicians
and patients at Mayo Clinic.

Fig. 2. Application achitectural design.

C. Clinical Models
Each of the five clinical models has certain specific

information to be stored. General information of a lung cancer
patient includes: age, gender, smoking history, cell type, stage,
grade, and self-symptom [5]. Additional information is input
based of which clinical model.

1) Non-Small Cell (NSC): It only obtains general
information without any additional information needed.

2) Limited Small Cell (LSC): Input of stage is disabled,
blood marker is added automatically. Additional data includes:
prophylactic cranial irradiation, red cell distribution width,

lymphocyte, neutrophil, platelet, hemoglobin, ECOG
performance score, and cessation of smoking.

3) Extensive Small Cell (ESC): It is very similar to LSC
model except replacing cessation of smoking information with
data of liver metastases and number of metastatic sites.

4) Quality of Life (QoL): If self-reported symptom is
available, extra information requires comorbidities, symptom
values of fatigue, symptom values of cough, and symptom
values of short-breath.

5) Post-Surgery Recurrence (PSR): When there is post-
surgery recurrence, additional information includes
performance status at recurrence, symptoms at recurrence, liver
recurrence, and number of recurrent foci.

D. User Interface

Fig. 3. Screenshot of newPaitent.jsp in LCTOPT showing the input form of a
lung cancer patient.

XML

Data
Storage

JSP

Input/
Output

Mobile devices/
Desktop

Responsive
Design

Java Web Server

Apache
Tomcat

CPH
Model

Users

Fig. 4. Screenshot of nscCurve.jsp in LCTOPT showing the graph of the
survival curves.

Fig. 5. Screenshot of nscCurve.jsp in LCTOPT showing the table of the
survival rates.

E. XML Implementation
1) Structural design: Patient information is input by

clinicians on the web interface, additional information depends
on which cell type and selection of treatments. Data of new
patients is data-centric, it has a well-defined structure and
contains updateable data, such data is structured nicely as XML
format. The XML structure schema for storing medical record
of existing patients in NSC and QoL clinical models is as shown
in Fig. 3. <Patients> is the root node in the file. Each patient
record is stored as a child node of the root node as <patient
id=""> with a unique clinic ID attribute. General information
are stored as the child nodes of <patient> node. They are
<agedx>, <gender>, <smk>, <celltype>, <stage>, and <grade>
one-to-one. <reported>, <bloodMark>, and <recurrence> are
child nodes that for determination of the clinical models. More

child nodes are also stored if additional information is required.
For the example with ID number 1002 in Fig. 3, four more child
nodes <comorb>, <fatigue>, <cough>, and <dyspnea> are
appended in <patient> node because the value of <reported>
node is “Yes” which indicates the clinical model is QoL. Every
<patient> node has <entryTime> node as the last child node to
store the date of data entry for record purpose.

Fig. 6. XML format examples of lung cancer patients in NSC and QoL clinical
models respectively.

2) Java servlet read/write parser: Two servlet parsers are
are save parser and read parser. Input of a new patient
information on the web interface invokes the save parser in the
Java Servlet and information is saved in the file with a unique
clinic ID. The read parser is invoked in the Java Servlet after
entering unique clinic ID of an existing patient on the web
interface and then retrieves data of that patient. In the redsigned
LCTOPT, only one form action is allowed to output the survival
rates. Java servlet parser leads to two actions required in the
same JSP form for both saving/reading data and displaying
survival rates.

3) XPath in JSP: XML storage efficiently accommodate
this type of data requirements since it is widely utilized for data-
centric management [6]. With storing patient data within XML

<?xml version="1.0" encoding="UTF-8"?>
<Patients>

<patient id="1001">
<agedx>66</agedx>
<gender>Female</gender>
<smk>Former</smk>
<celltype>Adenocarcinoma</celltype>
<stage>StageIIA</stage>
<grade>Moderate</grade>
<reported>No</reported>
<bloodMark>No</bloodMark>
<recurrence>No</recurrence>
<entryTime>4/1/2017</entryTime>

</patient>
<patient id="1002">

<agedx>83</agedx>
<gender>Male</gender>
<smk>Current</smk>
<celltype>Adenocarcinoma</celltype>
<stage>StageIIIB</stage>
<grade>Poor</grade>
<reported>Yes</reported>
<bloodMark>No</bloodMark>
<recurrence>No</recurrence>
<comorb>Cocancer</comorb>
<fatigue>3</fatigue>
<cough>2</cough>
<dyspnea>4</dyspnea>
<entryTime>4/2/2017</entryTime>

</patient>
</Patients>

15

files as a plain text data format, it is ideally suited for such a
format because of its wide availability of tools and parsers [7].
XPath is a syntax using path expressions to direct in XML files.
Saving and reading data with XML documents can be done with
Java XPath in JSP without using any servlet, which lets JSP
form remain one action in LCTOPT to present graph and table
with the survival curves and the survival rates respectively.

III. TESTING AND VALIDATION

Comparison between XML format and CSV format is to test
which method can save and retrieve data in LCTOPT more
efficiently. We focus on the measurement of parsing data in
NSC model on two main criteria: data memory size and data
latency. Java servlet read/write parser is used to associate with
both XML and CSV files for calculating the results. For data
memory size, three datasets are randomly generated as patient
data. The number of patients in these three different datasets are
10, 50, 250 and each dataset is saved in both XML format and
CSV format. The space taken is measured to get the average
memory size of one patient data for each format. For data
latency, average data access times with 1,000 randomly
generated data records are measured by continuously ten
runtimes. Results are extracted from logs and calculated with
mathematical functions for both formats.

Since LCTOPT is developed based on statistical models, the
redesigned software needs to be validated before being put into
use. Five Mayo oncologists were interviewed to select the best
treatment for a number of patients. Given in Table I is an
example of the treatment selection comparison between the
expectations from oncologists and the predictions from
LCTOPT, for a patient who is a 66-year-old female former
smoker that diagnosed a moderate grade lung cancer with
adenocarcinoma cell type based on different stages. The choices
of best treatment from clinician matched closely with the
software predictions.

TABLE I. EXAMPLE OF TREATMENT PREDICTION COMPARISON
BETWEEN CLINICIAN AND SOFTWARE FOR A LUNG CANCER PATIENT WITH

DIFFERENT STAGES

Stage
Treatment Prediction

Clinician LCTOPT

IA Surgery only Surgery + Chemotherapy

IB Surgery + Chemotherapy Surgery + Chemotherapy

IIA Surgery + Chemotherapy Surgery + Chemotherapy

IIB Surgery + Chemotherapy Surgery + Chemotherapy

IIIA
Surgery + Chemotherapy Surgery + Chemotherapy

Surgery + Chemotherapy +
Radiaion Surgery only

IIIB
Chemotherapy + Radiaion Surgery + Chemotherapy

Surgery only Surgery only

IV
Surgery + Chemotherapy Surgery + Chemotherapy

Surgery only Surgery only

IV. RESULTS

A. Memory Size
Within three different datasets, memory sizes of three

different datasets are measured. XML file format contains more
memory space than that of CSV file format, given in Table II.
The average memory spaces needed of one patient data are 308
bytes for XML file format and 68 bytes for CSV file format.

TABLE II. MEMORY SIZE RESULTS OF XML AND CSV

Number of
record

Memory Size (byte)

XML CSV

10 2,978 755

50 16,757 3,417

250 72,680 14,588

B. Data Access Time
XML file format also obtains more data latency than

that of CSV file format on most of the models as calculated,
given in Table III. The average access times to retrieve a patient
data among 1,000 records are 138.9 milliseconds for XML
format and 60.3 milliseconds for CSV format.

TABLE III. DATA ACCESS TIME RESULTS OF XML AND CSV

Run (nth)
Access Time (millisecond)

XML CSV

1 122 257

2 279 107

3 210 20

4 115 24

5 69 37

6 321 10

7 100 58

8 45 23

9 76 23

10 52 44

V. ANALYSIS
The file format with less memory space needed and shorter

time delay is preferable in LCTOPT. With the big data of
patient medical record, a database server is not necessarily
needed for data management in this application but an
optimized data storage. Another server for database might
indeed add more complexity to the application. The results for
both XML and flat file formats are gathered and the difference
is observed from Fig. 7. for average memory size and from Fig.
8. for average data access time. CSV file format consumes less
data usage that may improve the storage efficiency thus overall
performance. For LCTOPT as a real-life project, the
significance

16

significance of reducing data latency counters more quickly and
it makes the whole decision making process faster as well.
However, the complexity of adding extra servlets in this
software and the poor-structured flat files data storage should
also be encountered for the choice whether using XML format
or CSV format.

Fig. 7. Comparison of the average memory size in bytes of a medical record
for a lung cancer patient in NSC clinical model.

Fig. 8. Comparison of the average data access time in millisecond among
1,000 medical records in NSC clinical model.

VI. CONCLUSION

The goal of developing the XML data storage for LCTOPT
is to function more efficiently, plus its self-organized structure
can handle different clinical models all at once as each model

acquires different coefficient data. Though the use of XML
indeed holds more memory space and contains higher data
latency, which is inferior than the use of flat files. For flat files
data storage implementation, adding Java servlet is essential
among the interaction of CPH program, Apache server, and
JSP. Nevertheless, the use of XPath expression on JSP can
support data retrieving from XML files without a single servlet.
XML data storage is still a potential practice for LCTOPT.

ACKNOWLEDGMENT
I would like to thank to Dr. Mingrui Zhang, Dr. Iyengar

Sudharsan, Dr. Narayan Debnath for guiding me throughout this
project. Also, I would like to thank Winona State University
Computer Science Department and Mayo Clinic for supporting
this research. Java CPH model was initially developed by
Nathan Martin for his senior project.

REFERENCES
[1] U.S. National Institutes of Health. National Cancer Institute. SEER

Cancer Statistics Review, 1975-2013.
[2] Zhang, M., Liu, Y., Jiang, Y., Sun, Z., & Yang, P. (2011, August). Model

based user interface design for predicting lung cancer treatment outcomes.
In Engineering in Medicine and Biology Society, EMBC, 2011 Annual
International Conference of the IEEE (pp. 75-78). IEEE

[3] Martin, N. (2016, April). Java Implementation of Cox Proportional
Hazards Model. In The 16th Winona Computer Science Undergraduate
Research Symposium (p. 28).

[4] P. Wubbelt, G. Femandez, and J. Heymer, "Clinical trial management and
remote data entry on the Internet based on XML case report forms," Stud.
Health Technol. Inf., vol. 77, pp. 333-337, 2000.

[5] Gegg-Harrison, T., Zhang, M., Meng, N., Sun, Z., & Yang, P. (2009,
September). Porting a cancer treatment prediction to a mobile device.
In Engineering in Medicine and Biology Society, 2009. EMBC 2009.
Annual International Conference of the IEEE (pp. 6218-6221). IEEE.

[6] Qu, C., Gamper, J., & Nejdl, W. (2001). A collaborative courseware
generating system based on webdav, xml, and jsp. In Advanced Learning
Technologies, 2001. Proceedings. IEEE International Conference on (pp.
197-198). IEEE.

[7] Emerick, J. (2002). Managing XML data storage. Crossroads, 8(4), 6-11.
[8] Xie, D., Marks, R., Zhang, M., Jiang, G., Jatoi, A., Garces, Y. I., ... &

Yang, P. (2015). Nomograms predict overall survival for patients with
small-cell lung cancer incorporating pretreatment peripheral blood
markers. Journal of Thoracic Oncology, 10(8), 1213-1220.

[9] Cheville, A. L., Novotny, P. J., Sloan, J. A., Basford, J. R., Wampfler, J.
A., Garces, Y. I., ... & Yang, P. (2011). The value of a symptom cluster
of fatigue, dyspnea, and cough in predicting clinical outcomes in lung
cancer survivors. Journal of pain and symptom management, 42(2), 213-
221.

[10] Sun, Z., Aubry, M. C., Deschamps, C., Marks, R. S., Okuno, S. H.,
Williams, B. A., ... & Yang, P. (2006). Histologic grade is an independent
prognostic factor for survival in non–small cell lung cancer: An analysis
of 5018 hospital-and 712 population-based cases. The Journal of thoracic
and cardiovascular surgery, 131(5), 1014-1020.

[11] Williams, B. A., Sugimura, H., Endo, C., Nichols, F. C., Cassivi, S. D.,
Allen, M. S., ... & Yang, P. (2006). Predicting postrecurrence survival
among completely resected nonsmall-cell lung cancer patients. The
Annals of thoracic surgery, 81(3), 1021-1027.

[12] Turau, V. (2002, March). A framework for automatic generation of web-
based data entry applications based on XML. In Proceedings of the 2002
ACM symposium on Applied computing (pp. 1121-1126). ACM.

0

20

40

60

80

100

120

140

160

by
te

s

file format

Memory Size Comparison

XML

CSV

0

20

40

60

80

100

120

140

160

m
ill

is
ec

on
ds

file format

Access Time Comparison

XML

CSV

17

	Announcement
	Proceeding17
	Jakiul
	Justin
	Richard
	Rachel

