
The 20th Winona Computer Science
Undergraduate Research Symposium

May 1, 2019
10:00am to 12:30pm

Winona State University
Winona, MN

Sponsored by the Department of Computer Science

at Winona State University

https://minnstate.zoom.us/j/98629578149?pwd=YkxMNGpOa2ZMT1dKSGx0MWV2RFZYdz09

ii

Table of Contents

 Title Author Page

The Comparison of Speed and Memory Allocation Garvey John 1
Between Jython and Python

Realtime Multi-Camera Virtual Reality Video Ryan Rowe 5
Streaming

Comparing Image Classification with Feature Barett Jones 10
Extraction

Comparing Self-extracted to Third-party Audio Bradley Erickson 15
Features for Music Genre Classification

Performance Analysis of Heap, Merge, and Siddhant Grover 18
Insertion Sort

Facebook Privacy Settings: Individuals Belief On Callie Kitoski 23
Privacy versus Their Settings

Machine Learning Algorithms Accuracy for Time Isaac Plevak 27
Series Prediction

The Comparison of Speed and Memory Allocation
Between Jython and Python

Garvey John
Department of Computer Science

Winona State University
Winona, MN 55987

(612) 910-5095

Gjohn17@winona.edu

ABSTRACT
In the industry, there are many different programming languages
that are used. Each one used for different reasons and accomplishes
different task differently. Two popular programming languages are
Python and Java. Each language has code that is broken down into
a language that can be read by their own respected virtual machine
to complete a task that is given. In this research, Jython was tested
against its counter part Python. The tests that were conducted were
to see if Jython could produce results as well or even better than
Python could. In every trial, Python was able to complete the task
faster and use less memory while doing this, which leads us to reject
our original hypothesis.

General Terms
Algorithms, Performance, Reliability, Experimentation,
Languages.

Keywords
Jython, Python, Java, Time, Memory

1. INTRODUCTION
One of the main purposes of a programming language is to give
humans a way to communicate with computers. With this
communication, humans are able to create advance algorithms for
computer to compute. These computations can help humans solve
advance problems, organize data, recognize patterns, and many
more possibilities.
Programming languages have shaped our society in many ways.
The same way that natural languages have shaped the way society
thinks, programming languages have impacted the way that
programmers think about a problem [6]. From first generation
languages like FORTRAN, where the main objective of using these
languages were to compute advance mathematical problems, to our
current high level programming languages like Java that allow us
to complete much more advance task than FORTRAN.
Like natural languages, there are many different programming
languages. Two of the more popular languages are Java and Python.
According to Tiobe Index, Java is the most popular programing
language amongst all other programming languages and Python
being the third most popular language [7].

Java revolutionized the programming language industry when it
came out in 1995. The basis of Java was to allow any program to
be “write once, run anywhere.” Java would turn code into bytecode
which was interpreted on a its own virtual machine. The virtual
machine would translate the code into code that could be
understood by the host computer [4].
Python came out in 1991, and also changed the way people thought
of programming. Some of the goals of Python were easy and
intuitive language that’s able to compete with the other competitors
in the industry, used for everyday task, and open source [9]. Like
Java, Python interprets its code on a virtual machine.
With many powerful programming languages out there, Java’s
virtual machine decided to add them. Java’s virtual machine has an
implementation of many popular programming languages, but this
research focuses on the implementation of Python within the virtual
machine. This implementation is called Jython.
Jython, previously known as JPython, is a successful language that
has been used by many successful businesses including IBM
Websphere, Apache PIG, Robot Framwork, and many more [8].
One thing that sets Jython apart from Python is that it is able to run
code in any environment as long as it supports a JVM [3].
The main goal of this research is to see if Jython is able to produce
faster results than Python and use less memory within completing
its task.

2. BACKGROUND KNOWLEDGE
As far as research for Jython compared to Python, there is limited
research that has been conducted. Even though there’s a lot of
research on Java and Python, Jython has limited research to its
counterpart that it was created for. The goal of this research is to
test if Jython is faster and uses less memory to run programs than
Python.

This research was conducted on:
Table 2.1

Model Name MacBook Pro
Processor Name Intel Core i5
Processor Speed 2.3 GHz
Number of Processors 1
Total Number of Cores 2
Memory 8 GB
System Version macOS 10.14.6 (18G103)

1

Jython Version 2.7.1

Python Version 2.7.10

3. METHODOLOGY
To be able to test Jython and Python under the conditions of time
efficiency and memory usage, three programs were created, and
two programs ran under the same conditions while the general user
interface program was tested under one less condition. These
programs were made to search a file, organize a numerical matrix,
and create a general user interface.
Each one of these programs were first written in Python code and
then transferred directly over into Jython for all programs except
for the general user interface program. This created three unique
conditions for each program to be tested except for the general user
interface which would only be tested under two conditions. The
three conditions were to be ran in Python, Jython with Python code,
and Jython using Java classes. The graphical user interface only
tested Python code and Jython using Java classes.

3.1 Search
One important aspect of all programming languages is the ability
to search a file. This is because files are used to hold important data
and possibly organize it. It is possible to hold all information within
the program itself, but once the program is done running, the data
is lost. Because of this, we store our information within some kind
of file which can be read and written to.

In this program, a file was searched to find if a city was within the
file. This file had a list of famous cities within the United States [1].
This program would open a file and read in each value one by one.
Opening a file allowed access to a program to a file. If the value
was found it would close the file and report back that the city was
found and at what line in the file. For example, if the city
Minneapolis was put into the program, it would report back
“Minneapolis was found at position 213.” If a value like Winona
was put into the program, it would report back “Winona was not
found in the file.”

In this program, for Python, nothing was imported from the Python
library. While testing Jython using Python code, nothing was
changed, and everything matched the same exact way as Python
code did. While testing the Jython code using Java classes, the
program implemented the Scanner class. The scanner class was
used to open a file and return each line within the file. Python did
the same thing, but just used something that was implemented into
its own code respectively.

3.2 Matrix
Another important aspect of computing is being able to organize a
mass amount of data and being able to manage it efficiently. In a
programming language, we are able to create something called an
array. These are a list of values that are similar. With these arrays,
it is possible to create a two-dimensional array which is an array of
arrays. Since the program is using numerical values in this two-
dimensional array, this can be called a matrix and handled like one.

In this program, the objective is to organize a two-dimensional
array and print them out from smallest to largest. A hundred by
hundred array is created and reads in a hundred thousand values
from a file.

Once read, the values are then organized from smallest to largest
by using a modified selection sort to fit a two-dimensional array
instead of the normal one-dimensional array. A selection sort goes
into an array and starts at the first value. It then searches the whole
array starting from the current position and finds the smallest value
then switches that value with the starting point value. Once it
switches the value, it goes to the next value and does this again until
it gets to the end of the array and there are no more values to search
for. This forces the smallest values to the beginning and the largest
values to the end. This sort was modified to do the same thing
except it would do it in a two-dimensional array that had one
hundred thousand values.

Similar to the search program, Python code did not import anything
from the Python library. While testing the Jython code using Python
code, nothing was changed, and no Python libraries were imported.
While running Jython with Java classes, we imported the Scanner
class to read in the values into the matrix.

3.3 Graphical User Interface (GUI)
A graphical user interface is a way to convey information to the
user while it can also have interaction with the user [2]. A good
example of a graphical user interface is an internet browser or even
using Microsoft Word. A GUI is used for many different businesses
and are an important aspect of programming.
In this program, it creates a simple GUI that displays Jython and
Python onto the display. The name of the GUI is called “GUI.” The
size set to 250 x 250 and set to end program once the user exits the
program. The Display is similar in both programs. The GUI created
in Jython is Figure 3.1 and Python is Figure 3.2.
The GUI program is only tested under the conditions of Python
code and Jython using Java code. Python’s GUI program used the
Tkinter class. This class is a template for creating a GUI for a
program to use and edit. Jython is not able to use the class TKinter
and because of this, the study isn’t able to do a comparison of
Jython using only Python code. Instead the program for Jython will
have to implement the Javax.swing package. This does the same
thing, but instead uses Java packages. These two programs were
written similarly to make sure the results were not favored in one
language compared to the others.

 Figure 3.1

2

 Figure 3.2

4. RESULTS AND ANALYSIS
Each program took the average of running ten times while only that
program was running. The results were tested within each program
so that there would be no human error while producing the results.
In each program, the time and memory usage were measured by
some kind of import within Python or Jython.

For all programs tested in either Python or Jython, the time class
was used to measure how fast the program would finish. For
memory, all Python code used the resources class to measure how
much memory was consumed during the process. Within the
resources class, it can measure the peak amount of memory that
was taken up through the process. Jython was not able to use the
resource class, so instead it imported the Runtime class. This is a
Java class that has the capability of seeing how much memory is
allocated in a Java program.

4.1 Time Trials
The time it took a program to complete was measured in seconds.
In each program, Python out performed Jython programs by a large
margin. Since the matrix program took so long to run with such a
big array to sort, it caused the time to be a bit closer, but the Python
code still ran significantly faster than any Jython program. One
thing to note is that the next fastest program was Jython using the
direct Python code. This could be because the Python code didn’t
import any classes like the Jython using Java classes did. A counter
argument to this point would be that the Python GUI application
imported a class and still out performed the Jython program.

Figure 4.1

Figure 4.2

Figure 4.3

4.2 Memory Usage
The total amount of memory used was measured in Megabytes.
Similar to the time trials, Python outperformed the Jython program
by a large margin. Although the Python code seemed to outperform
both Jython codes, Jython implementing Java classes was only a
little bit larger than Jython running Python code. This is an
improvement compared to the time trials. The closest test was
comparing the GUI programs. Even though Python used less
memory than Jython, it wasn’t as big of a margin as the previous
programs.

Figure 4.4

0

0.02

0.04

0.06

0.08

0.1

Python Jython Java Code Jython Python
Code

Search - Time

6.22
6.23
6.24
6.25
6.26
6.27
6.28

Python Jython Java Code Jython Python
Code

Matrix - Time

0
0.05

0.1
0.15

0.2
0.25

0.3

Python Jython Java Code

GUI - Time

0

10

20

30

40

50

Python Jython Java Code Jython Python
Code

Search - Memory

3

Figure 4.5

Figure 4.6

5. CONCLUSION
The main goal of this research was to see if Jython was able to
produce results that were faster and used less memory than Python.
From the results, we can see that the hypothesis is rejected. Python
was able to beat every Jython program in speed and memory usage.
In most cases, it was clear to see that Python could outperform
Jython ten times faster and use a tenth of the memory to do so.

5.1 Continuing Research
For this research, smaller programs were tested instead of a large
scale project that a business could use. One idea for testing a more

realistic algorithm is to have a program that takes in a mass amount
of data and have user input and output. In this program, it would be
ideal for the program to be constantly running. With the program
being more advanced and complex, it will allow observations on
the algorithms that take more time and takes up more memory.
With the program constantly running, the time and memory could
be tested for different real life situations. This is one of many
different ways to test the two languages in more experiments, but
could produce different results than what was obrtained in this
research.

6. REFERENCES
[1] “city_names.txt” Clint Bettiga

https://gist.github.com/norcal82/4accc0d968444859b408
Accessed: March 1, 2020

[2] “GUI” Computer Hope
https://www.computerhope.com/jargon/g/gui.htm Accessed:
April 22, 2020

[3] “Intro to Jython, Part 1: Java programming made easier”
Barry Feigenbaum
https://www.ibm.com/developerworks/java/tutorials/j-
jython1/j-jython1.html Accessed: April 26, 2020

[4] “Java” The Editors of Encyclopaedia Britannica
https://www.britannica.com/technology/Java-computer-
programming-language Accessed: April 22, 2020

[5] “Know your history — Java’s rise to popularity” JAXenter
Editorial Team https://jaxenter.com/java-know-your-history-
149484.html Accessed: April 22, 2020

[6] Latifa BEN ARFA RABAI1, Barry COHEN2, Ali MILI
“Programming Language Use in US Academia and Industry”
Informatics in Education, 2015, Vol. 14, No. 2, 143–160

[7] “TIOBE Index for April 2020” Tiobe
https://www.tiobe.com/tiobe-index/ Accessed: April 22,
2020

[8] “What is Jython?” Jython https://www.jython.org/ Accessed:
April 21, 2020

[9] “What is Python?” Python Institute
https://pythoninstitute.org/what-is-python/ Accessed: April
22, 2020

0
10
20
30
40
50
60

Python Jython Java Code Jython Python
Code

Matrix - Memory

0

10

20

30

40

50

Python Jython Java Code

GUI - Memory

4

https://gist.github.com/norcal82/4accc0d968444859b408
https://www.computerhope.com/jargon/g/gui.html
https://www.ibm.com/developerworks/java/tutorials/j-jython1/j-jython1.html
https://www.ibm.com/developerworks/java/tutorials/j-jython1/j-jython1.html
https://www.britannica.com/technology/Java-computer-programming-language
https://www.britannica.com/technology/Java-computer-programming-language
https://jaxenter.com/java-know-your-history-149484.html
https://jaxenter.com/java-know-your-history-149484.html
https://www.tiobe.com/tiobe-index/
https://www.jython.org/
https://pythoninstitute.org/what-is-python/

Realtime Multi-Camera Virtual Reality Video Streaming

Ryan Rowe
Winona State University

Computer Science
rrowe222@gmail.com

Abstract

Realtime Virtual Reality (VR) streaming has multiple limitations,
most predominantly bandwidth of the communication method
between a headset viewing device and the transmission device.
Limiting the number of video streams with wider angle lenses and
a higher resolution per camera is the best way to limit the amount
unnecessary data streaming over the network connection.
Selective video compression can also improve the performance of
the stream, however on cheap consumer hardware, overuse of
compression can overtax the transmission device.

Categories and Subject descriptions
[Human Computer Interaction], [Networking]. Video
compression standards, interaction with a virtualized
environment. – data compression, data streaming, virtual reality
interaction, video editing

General Terms
Measurement, Experimentation, Human Factors, Performance,

Keywords
VR, Virtual Reality, Streaming, Raspberry Pi, Index, Video
Compression, Virtual Environment, Projection mapping

1. Introduction
These proceedings are an overview of history of VR and how
using consumer level hardware, a space can be projected from a
transmission device to a virtual reality headset for viewing.

The first Virtual Reality human computer interface was
invented in 1990 by NASA [1] with the “Virtual Interface
Environment Workstation” (VIEW) The goal of which was to
enable the user to interact with a 3D computer generated
environment with their own hands acting as the input method.
NASA had planned on using this to control distant rovers,
however, the technology of the mid 1980s and early 1990s was
not advanced enough to support such a task.

Modern VR hardware and software has made significant
advancements in the comfort of using such interfaces. Motion
sickness, headaches, and eye strain were significant hurdles to
overcome in developing VR technology. Accurately tracking the
user’s eyes and head significantly reduced the discomforts of
using VR interfaces for most users.

2. Background

2.1
Viewing a completely virtual environment to a headset has certain
advantages over viewing a real-world video stream. Since the
developer of a VR application has total control over the
environment, the developer can take steps to reduce physical
discomforts and can make affordances to the user about the
environment in which they are interacting. The virtual
environment can be scaled depending on the user’s height and
viewing position. Virtual camera angles are controlled by the
user, and the user will put themselves in the best position for
viewing the content of the environment. Viewing a real-time real-
world environment does not have this luxury. User is entirely at
the mercy of the placement of the physical cameras and
transmission equipment. The physical location of the headset is
also a factor, since transmission over the internet requires a
considerable amount of bandwidth that may be limited
somewhere along the way.

2.2
Localized streaming of Virtual Reality video has the advantage of
a high-speed Local Area Network (LAN) or a point to point
network (Ad-Hoc). The position of the transmission device and
the headset is limited in distance but provides a much higher
bandwidth for a higher quality stream.

Low bandwidth connections are particularly unwanted, since
video hitching and frame latency can cause significant
disorientation and motion sickness in the user. Using a lower
resolution video stream over the internet would create another
problem in the form of visibility. VR headsets tend to have a
higher resolution than standard monitors because the screens are
so close to the users eyes, but even then, the so called “Screen
Door Effect” [2] more formally known as “Fixed Noise Pattern”
is a visual artifact caused by the relatively low pixel density of a
screen. Although a VR headset screen is typically higher, the
distance from the user’s eye is so small, that significantly higher
density screens are needed to reduce the eye strain.

5

Because of this issue, low quality video streams will be stretched
across the low-density screen and visual quality issues as well as
compression artifacts will be significantly more distracting and
even render the video stream incompressible due to how close the
user’s eye is to the screen.

3. Video Compression

3.1
Data compression is the primary way large chunks of data can be
sent over the internet quickly. Lossy compression, or where the
original data is compressed with a loss of information. Most video
streamed over the internet from services like Twitch [3] and
YouTube [4] use a lossy video coded called x2.64. x2.64 is an
older codec and has since been improved upon with codecs such
as x2.65, VP9/10, and AV1.

Figure 1 (video bitrates based on 1080p 60fps)

Lossless video compression doesn’t technically exist. Instead
different video algorithms are rated on their loss ratios. Which is
just the RAW video data rate/ compressed data rate. This is
measured in bits/second, or bitrate. The higher the bitrate, the
more data is preserved in the form of color reproduction, edge
preservation, and even framerate.

3.2
Video streamed over the internet is usually 30 or 60 frames per
second. Meaning a new picture is being displayed once every
33.33ms or 16.67ms respectively. For virtual reality, the more
frames being displayed to the user, the smoother and less
fatiguing the experience is. As such the minimum video framerate
for VR is 60, but preferably 120 or 144 frames per second. With
new frames being displayed every 8.3ms and 6.9ms respectively.
Figure 1 has a visual representation of different frame timings.

4. Data Connections

4.1
Local wireless connections for consumer hardware are some
variant of the IEEE 802.11i standard. Currently the two most
common 802.11 network types are 802.11n at 2.4Ghz and
802.11ac at 5Ghz. These will serve as the communications
standards for the Ad-Hoc networks that will be tested. 802.15
Bluetooth will also be tested, as Bluetoothii is often used as a local
communication standard for low bandwidth requirement data
transmission.

Figure 2 (Ad-Hoc Bandwidth)

33 MB/s 25 MB/s 16 MB/s

360 MB/s

0 MB/s
50 MB/s

100 MB/s
150 MB/s
200 MB/s
250 MB/s
300 MB/s
350 MB/s
400 MB/s

x.264 x.265 VP9 RAW

Bitrate

150 MB/s

900 MB/s

16 MB/s
0 MB/s

200 MB/s

400 MB/s

600 MB/s

800 MB/s

1000 MB/s

2.4Ghz
802.11n

5Ghz 802.11ac 802.15
Bluetooth

Bandwidth

5 ms 6.944444444 ms 8.333333333 ms
16.66666667 ms

33.33333333 ms
40.04805767 ms

0 ms

10 ms

20 ms

30 ms

40 ms

50 ms

200 FPS 144 FPS 120 FPS 60 FPS 30 FPS 24.97 FPS

Frame Timings/Frame Rate

Table 1 (Frame Timing Data)

6

4.2
802.11ac [5] is the fastest connection that will be testing, clocking
in at nearly 1Gb/s. While 802.11n is an older standard it is still
widely used as legacy devices do not support faster connections
and some newer low-end consumer hardware still doesn’t support
the newer 802.11 standard. Bluetooth is a relatively low speed
connection but is enough for the more compressed video
standards.

5. Streaming hardware

5.1
The transmission hardware being tested is a Raspberry Pi 3 B+
[6]. With a 1.4GHz quad core processor, the Raspberry Pi 3 B+
has enough processing power to perform most compression tasks
on the fly and is the most widely available small form factor
computing device.

5.2
Two camera methods were used to achieve 360-degree video. An
eight-camera setup, capturing 45-degrees of space a piece, and a
two-camera setup with a spherical mirror used to capture 180-
degrees of space. Each camera was capturing at 1080p 60 frames
per second.

Table 2 (Streaming Data)

Every camera’s footage was captured and then re-projected onto
the inside of a three-dimensional sphere with the Virtual Reality
headset at the center. The center of the sphere was always
parented to the headset, so even if the user moved in space, they
could not get closer to any surface of the sphere.

5.3
A Valve Index [7] was used as the Virtual Reality headset. The
Valve Index was used over a Google Cardboard to eliminate any
processing bottlenecks on the viewing end of the stream. The
Valve Index also has a higher DPI and refresh rate, which helped
reduce the screen door effect and motion issues.

6. Streaming Software

6.1
Video from the Raspberry Pi transmission device was fed into a
custom spherical projection mapping [8] software to project the
camera view onto the inside of a three-dimensional sphere. This
was done so all video streams were equidistant from the virtual
viewing device.

6.2
Dynamic resolution scaling can be used to regulate the workload
of the compression algorithm. Passing the video into a game
engine such as Unity or Unreal 4, the developer can set a frame
time budget for the engine, so an individual frame is down
sampled to achieve a better framerate and deliver a smoother
viewer experience at the cost of frame quality and resolution.

Required
Bandwidth for 8
Camera (Mb/s)

Required
Bandwidth for 2
cameras

Available
bandwidth

Bandwidth Δ for 8 Bandwidth Δ for 2

RAW + 5GHz 2880 MB /s 720 MB /s 900 MB /s -1980 MB /s 180 MB /s

RAW + 2.4GHz 2880 MB /s 720 MB /s 150 MB /s -2730 MB /s -570 MB /s

RAW + Bluetooth 2880 MB /s 720 MB /s 16 MB /s -2864 MB /s -704 MB /s

H.264 + 5GHz 264 MB /s 66 MB /s 900 MB /s 636 MB /s 834 MB /s

H.264 + 2.4GHz 264 MB /s 66 MB /s 150 MB /s -114 MB /s 84 MB /s

H.264 +
Bluetooth

264 MB /s 66 MB /s 16 MB /s -248 MB /s -50 MB /s

VP9 + 5GHz 128 MB /s 32 MB /s 900 MB /s 772 MB /s 868 MB /s

VP9 + 2.4GHz 128 MB /s 32 MB /s 150 MB /s 22 MB /s 118 MB /s

VP9 + Bluetooth 128 MB /s 32 MB /s 16 MB /s -112 MB /s -16 MB /s

Figure 3 (Spherical Projection
Map)

7

7. Experiment

7.1
Nine total tests were performed, each test was done with one
compression method and one network type. Each test was done
over a 30 second interval. No motion was applied to the cameras
or transmission device itself. The scene observed was a room with
the window open. So, there was some motion from objects in the
room moving.

8. Analysis
Bandwidth was the largest obstacle to overcome. Overtaxing the
network connection with data caused frame drops and stuttering
on the headset.

8.1
RAW video was used as a control with the expectation that while
it would produce the highest quality video, it would not be
feasible to consistently stream uninterrupted video across any of
the tested network connections. Utilizing eight cameras produced
the highest quality images, but the lowest quality streaming
experience. Frequent frame drops and stuttering were common.
Utilizing two cameras worked significantly better due to the
decreased bandwidth requirements of two video streams over
eight.

8.2
H.264 compression was used since it is the standard codec used
by mainstream online streaming platforms. Performance with
eight cameras and two cameras was generally stable on the 5GHz
802.11ac connection, with minimal frame drops and stuttering.
2.4GHz performance struggled with eight cameras, again
producing noticeable frame drops and stuttering.

Had the video had more motion, H.264 might have struggled
more, since H.264 strips away what it considers “unnecessary”
data and utilizes previous frame data to construct a frame. This
saves data but produces noticeable visual artifacting if there is
significant motion in small details, even at high frame rates this
is noticeable if the scene is moving enough.

8.3
VP9 is a Google developed standard mainly target at mobile
platforms. And it is easy to see why. VP9 had the lowest
bandwidth overhead with a measly 128MB/s for 8 cameras. VP9
performed well on both 2.4GHz and 5GHz connections.

However, the reason VP9 performs so well is that the video is
heavily compressed, on mobile devices this is not noticeable, and
since the compression workload is being performed on a server,
the video stream to a mobile device is smooth. Using a Raspberry
Pi to compress the video did have a noticeable impact on the
transmission device. Although the video was visually smooth on
both 2.4GHz and 5GHz, there was a noticeable delay in the
stream. When monitoring the Raspberry Pi performance metrics,
the CPU and memory utilization was often at 100%.

8.4
Out of all the network types, 802.11ac performed the best.
802.11n consistently fell in the middle and Bluetooth was unable

to keep up the data being streamed, even with VP9 compression
on two cameras, making it unviable for this type of video
streaming.

While 802.11ac performed the best, because of the 5GHz signal,
there was a limitation on the distance and number of obstructions
in between the transmitter and the headset. This did not present as
an issue in the experiment but is a potential limitation for this type
of streaming in other conditions and locations.

9. Conclusion
Realtime Virtual Reality video streaming is possible locally with
specific equipment and affordances, such as a high-speed point to
point connection, a powerful transmission and compression
device and minimal obstruction. However, practically, this type
of streaming has many limitations. Using the two-camera setup
had less bandwidth overhead but produced a stretched image that
still had the cameras visible to the user. The surface of the mirror
was also an issue, since any imperfections in the reflective coating
would distort the light being captured. Defining “Down” was also
a challenge, with the eight-camera setup, down was predefined
with the arrangement of cameras, but if there was any movement
of the cameras though space, “Down” might need to be shifted to
reduce motion sickness issues for the user.

10. Further Work
To better this experimental setup, a more powerful transmission
device could be used to more effectively compress the video
streams. This would allow more aggressive compression methods
to be used to then stream less data over the network connection
and make slower connections more viable. More video
compression algorithms could also be tested. In this experiment,
H.264, and VP9 were used because they were the most popular,
however, VP10 is a newer standard developed by Google, but not
widely available. H.265 HEVC is a new codec continuing from
H.264, but again, is not in general use for streaming.

11. References

[1
]

NASA, "The Virtual Interface Environment Workstation
(VIEW), 1990," NASA, [Online]. Available: The Virtual
Interface Environment Workstation (VIEW), 1990.

[2
]

M. Rouse, "screen door effect," whatis.com, 2017.
[Online]. Available:
https://whatis.techtarget.com/definition/screen-door-effect.

[3
]

"Twitch.tv encoding standards," Twitch.TV, [Online].
Available: https://stream.twitch.tv/encoding/.

[4
]

Google, "Youtube live streaming standards," Google,
[Online]. Available:
https://support.google.com/youtube/answer/2853702?hl=en
.

8

[5
]

IEEE, "802.11-2016 - IEEE Standard for Information
technology--Telecommunications and information
exchange between systems Local and metropolitan area
networks--Specific requirements - Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY)
Sp," 07 12 2016. [Online]. Available:
https://standards.ieee.org/standard/802_11-2016.html.

[6
]

"Raspberry Pi B+," [Online]. Available:
https://www.raspberrypi.org/products/raspberry-pi-3-
model-b-plus/.

[7
]

Valve, "Valve Index," Valve, [Online]. Available:
https://www.valvesoftware.com/en/index/headset.

[8
]

M. Calabretta, "Spherical Map Projections," 15 12 1992.
[Online]. Available:
https://library.nrao.edu/public/memos/aips/memos/AIPSIM
_107.pdf. [Accessed 1 4 2020].

9

Comparing Image Classification with Feature Extraction
Barett Jones

Winona State University
Winona, Minnesota

bgjones15@winona.edu

ABSTRACT
Image classification in today’s world is extremely important and
advancements are constantly being made to improve performance
and efficiency. There are many different mediums that are taking
advantage of image classification. An example would be medical
fields. Image classification is used to analyze X-RAY images to
attempt to identify cancer spots. There are many different factors
that come into play with classifying images. Training these
models can be very time consuming and there can be techniques
implemented to speed up this process. One technique would be
reducing details within the picture and removing redundancies.
Research has been done to test feature extraction within the image
prior to training convolutional neural networks. Features
considered were: canny edge, histogram of oriented gradients, and
shape index. Results have shown that feature extraction can
provide faster training times, but does not conclusively show an
increase in accuracy. The control group provided the highest
accuracy without the use of any feature extraction methods.

General Terms
Measurement, Documentation, Performance, Reliability,
Experimentation.

Keywords
Machine Learning, CNN, Neural Network, Feature Extraction,
Image Classification, Canny Edge, Shape Index, Histogram of
Oriented Gradients.

1. INTRODUCTION
1.1 CNN
Convolutional Neural Networks (CNN) are a class of artificial
neural networks (ANN) that typically are applied to deep image
learning [2]. There are many different fields use image
classification. Another field that uses image classification are
hospitals. There are many advanced CNN that are used to help
detect early signs of cancer [3]. Being able to detect these cancers
early is essential to receive treatments that may potentially save
the patients’ life.

1.2 Feature Extraction
Something that will be considered in future work is feature
selection and deriving features from different kinds of datasets.
An example of this would be feature selection on an animals’
dataset. Features that could be extracted would be fur and
characteristics of legs or eyes. This research will focus on the
Fruits 360 dataset. This dataset is provided by Kaggle and
contains thousands of images of fruits with labels [4]. A subset of
these fruits will be used for simplicity and getting a better
understanding of the extractions affects. Feature extraction of an
image is transforming the image, typically detail reductions and
removal, to bring out specific traits of an image. This research
considered three different kinds of features:

• Edges: Canny Edge
• Shape: Shape Index
• Direction: Histogram of Oriented Gradients

The features were extracted before training all on the same model.
The model used was a simple convolutional neural network
consisting of just dense layers [1]. These features were compared
to the original image. The accuracy, training time, and loss metric
at the end of training were all measured and recorded.

2. BACKGROUND RESEARCH
There is much research out there regarding feature extraction being
used for large datasets to improve performance while also keeping
an adequate accuracy. Most of these findings, however, do not
include a comparison of feature extractions prior to the training.
Also, a lot of the papers use complex feature extraction techniques
that incorporate many different features [9].
For large datasets feature extraction has been shown to greatly
improve performance time. It also has created a reduction in
memory usage due to less feature space and processing needs.

3. METHODOLOGY
3.1 Data
3.1.1 Collection
Data was collected from the fruits 360 dataset provided on Kaggle
[4]. This consists of 120 fruits and vegetables and a total collection
of 82213 images. The images are 100x100 pixels, which was left
the same for uniformity. The dataset was previously split into a
testing and training set and labeled is its corresponding directory.

3.1.2 Cleaning
Most of the cleaning process was just sub-setting the data. From the
120 fruits, 10 fruits were selected based on individual
characteristics that made them more unique than their counterparts.
The fruits selected were: banana, strawberry, kiwi, pear, apple,
raspberry, blueberry, tomato, and pineapple.

COPY RIGHT HERE

10

3.2 Feature Extraction

3.2.1 Edge

Canny edge detection was used to extract the edge features from
the images. This is an algorithm designed to reduce noise from the
image and only capture the edges of the main points of the object
[6]. There are four main stages of this algorithm.

• Noise reduction
• Pinpointing gradient edges
• Edge finding
• Thresholding

Noise reduction is the first process. Due to canny edge being very
susceptible to noise a gaussian filter is used to help reduce that.
Gaussian filters blend together pixels so there is a blurriness feel to
the image.

After noise reduction edge gradients are calculated. This is
calculated both horizontally and vertically. These edge gradients
will be used to find the edges [7].

To find the edges, each pixel and its neighbors are compared to
check the direction of their edge gradients. If these gradients are not
the same direction it is considered an edge.
Finally, thresholding of the edges takes place. This will compare
the intensities of each of the previous edges and create a threshold
value to consider it an edge or not. If any edge is connected to
another in range edge and is also above the threshold or within it, it
will also be considered an edge.

3.2.2 Shape

Shape index is used for intensifying certain shapes within an image.
The desired shape that was set for these images were circular. This
shape was selected because most of the fruits were circular shape.
Shape index may not completely be able to capture the shape of the
fruit, but it is used for capturing circular aspects of the image and
create a 3D visualization of the fruit. More experimenting could be
done with different shapes.

3.2.3 Direction

Histogram of oriented gradients (HOG) will be used to calculate
direction within the images. It is like the canny edge algorithm in
calculating the edges, but it also calculates the direction of the
edges and textures [6]. There are also many steps in the HOG
algorithm.

• Calculating gradients
• Calculating gradients in cells
• Normalization
• Visualizing feature vector

Figure 1. Banana example without feature extraction

Figure 2. Canny edge banana

Figure 3. Gaussian filter example

Figure 4. Shape index banana

Figure 5. Histogram of oriented Gradients banana

11

Like in canny edge the gradients are calculated the same both
vertically and horizontally. Each pixel will have a gradient value
that will be compared to surrounding pixels.
Then the image is broken up into different cells where each
individual cell will have a gradient calculated. For this research
each 100x100 image was divided into a 6x6 grid. Within each of
the cells a direction is formed by comparing local maxima gradient
values then moving outward to minima values.
The image is then normalized to create a more accurate transition
between the gradients. This will reduce the chance of a drastic
change in direction throughout the image, which is what we want.
After each of the individual cells have calculated their gradients,
visualization is used to see the direction of each of the cells.
Visualization is aided by code by showing shapes with elongated
shapes.

3.3 Training

A convolutional neural network was used to train the dataset after
the features were extracted. To try and reduce any aid from the
network only dense layers were used. Dense layers are layers that
reduce the feature space and create a fully connected network. This
would allow the features to be trained without a bias in the training
process coming from max pooling layers. Max pooling layers
would reduce the dimensions of the layer, while increasing the
feature space [2, 10].
Tensorflow and Keras was used to help aid the training process [8].
These are both python libraries that are used for creating machine
learning models and training. Tensorflow handled most of the
training aspects, while Keras was used for building the sequential
model [1, 10].
Each feature dataset was put through the same model with the same
number of epochs. 20 epochs were chosen as that is the default
value for Tensorflow models. They were in batches of 60 and the
time was recorded by the software to start recording when the
model began and ended its training process. Early stopping was
implemented, but the only model that stopped early was the control
group. Because this did not correctly measure the amount of time it
would take to run through each epoch, early stopping was not
considered when measuring time. The accuracy was also measured
after the model was done training. It was evaluated using the testing
set, so no images were used to validate the model that also went
through training. Also, the validation loss metric was measured at
the end of training. This metric measures how well the model is.
Typically, this is the measurement that you try to optimize. The
higher the model metric the worse the model did training. Most of
the optimization for this metric would be towards changing the
model rather than the dataset, so it is not that important for this
research [5].

4. RESULTS ANALYSIS
4.1 Accuracy

For accuracy, the control group provided the highest accuracy,
followed by edge and HOG. This was as expected as the control
group kept all its features and had the most amount of pure details
within the image.
HOG and canny edge produced a pretty similar image after feature
extraction so it makes sense that they both provided close to the
same accuracy. They still provided a very high accuracy too, so it
might be useful to use these features because it contains a lot less
details within the image and would not need as much memory if
optimized.
Shape index came in at the lowest accuracy of the models tested. It
is believed that the shape index brought a lot of extra noise within
the image, that made it less accurate. More experimenting would
need to be done to test whether the shape index parameters could
be modified to create better results.

Table 1. Accuracy Recordings

Trial Validation
Accuracy Test Accuracy

Shape Index 0.8479 0.7575

Canny Edge 0.9563 0.86

HOG 0.9375 0.8737

Normal 0.9979 1

4.2 Loss

As mentioned previously, loss is not the most important for this
research. It was mostly included to show that with model

Figure 6. Convolutional Neural Network

Figure 7. Accuracy results

Figure 8. Loss results

12

optimization, feature selection. As shown, canny edge has the
highest loss. This means that the model could be optimized more to
potentially increasing the performance and accuracy of the images.
The control group had a loss of < 0.01. Because the loss is so low
the model is already close to optimized for them.

Table 2. Loss Recordings

Trial Validation
Loss Test Loss

Shape Index 0.4929 7.23E-01

Canny Edge 0.154 0.9716

HOG 0.4121 0.671

Normal 0.0067 1.02E-04

4.3 Time

For the time, canny edge took the least amount of time to train. The
other tests were very similar to the control group showing that they
do not actually make that great of an impact for speeding up the
training process. However, there was a significant reducing in
training using the canny edge there is potential for dramatically
increasing time complexity for larger datasets.

Table 3. Time Recordings

Trial Time

Shape Index 1:09:24

Canny Edge 0:54:15

HOG 1:09:03

Normal 1:12:02

5. CONCLUSION
Overall, the feature extraction process did not make extreme
changes during the training. However, there are some main points
that should be made about these tests. The dataset used was small
and the changes were not extremely different, but with a higher
dataset it can be expected to see bigger gaps between these
numbers. The results are very promising showing that there is
potential to increase the time complexity using feature extraction.
Something also not recorded was the amount of memory required.
Using feature extraction would require less memory than a detailed
picture due to a lot of removed pixels.
This research also shows that the accuracy is not far off not using
feature extraction. This can be a form of accuracy tradeoff for
increased performance with time and memory. If further tests were
conducted a more concrete conclusion could be made, but for now
canny edge and using the edge feature seems to show the biggest

change in time while also keeping close to high accuracy compared
to the other features.

6. FUTURE WORK
Much more work could be done to help improve this project.
Something to consider would be trying different types of models
with the convolutional neural network. It would be interesting to
see how that would affect different times and if it would make a
difference on if more hidden layers were used.
Something else that could be changed is using different data. For
this research only, a subset of one dataset was used. Using different
datasets could show much different results and objects that were
not as simple could so that the feature extraction methods would
yield different outcomes.
Lastly, many more feature extraction methods could be used and
optimizing the current parameters for feature extracting would be
helpful. Some other features that could be extracted might be
texture and corners.

7. ACKNOWLEDGEMENTS
I would like to give a special thanks to Dr. Mingrui Zhang for the
help with this research. He was my advisor and helped with
planning and continuing work with this project. He also taught
machine learning which started my interest in image classification.
Without him, this research would not have been what it is. I would
also like to thank Dr. Sudharasan Iyengar and Dr. Shimin Li for
teaching this research practicum class. They provided immense
help to all of us with preparation and questions. And lastly, thank
you to all faculty and staff members who have taught me something
and I would not be here if it were not for them.

8. REFERENCES
[1] Guide to the Sequential model - Keras Documentation.

Retrieved April 22, 2020 from https://keras.io/getting-
started/sequential-model-guide/

[2] Grogan, Michael. 2019. Image Recognition with Keras:
Convolutional Neural Networks. Medium, Towards Data
Science.

[3] Hong Wu, Hao Zhang, and Chao Li. 2011. Medical image
classification with multiple kernel learning. In Proceedings of
the Second International Conference on Internet Multimedia
Computing and Service (ICIMCS ’10), Association for
Computing Machinery, Harbin, China, 189–192.

[4] Horea Muresan, Mihai Oltean, Fruit recognition from images
using deep learning, Acta Univ. Sapientiae, Informatica Vol.
10, Issue 1, pp. 26-42, 2018.

[5] Mohammed, Ma’amari. 2018. How to Make A CNN Using
Tensorflow and Keras. Medium.

[6] OpenCV-Python Tutorials — OpenCV-Python Tutorials 1
documentation. Retrieved April 22, 2020.

[7] skimage — skimage v0.17.dev0 docs. Retrieved April 14,
2020 from https://scikit-image.org/docs/dev/api/skimage.html

[8] TensorFlow. 2020. Convolutional Neural Network (CNN).
Retrieved from https://www.tensorflow.org.

[9] Zhou Yawen, Dong Guangjun, and Xue Zhixiang. 2016.
Hyperspectral image tensor feature extraction based on fusion

Figure 9. Time results

13

of multiple spectral-spatial features. In Proceedings of the
2016 International Conference on Intelligent Information
Processing (ICIIP ’16), Association for Computing
Machinery, Wuhan, China, 1–8.

[10] Z. Zhu, D. Liang, S. Zhang, X. Huang, B. Li, and S. Hu.
Traffic-sign detection and classification in the wild. In CVPR,
pages 2110–2118, 2016.

14

Comparing self-extracted to third-party audio features for music
genre classification

Bradley Erickson
Winona State University
BErickson15@winona.edu

ABSTRACT
There is no definitive way to determine what genre music falls
into. Conducting an analysis into the different audio features could
prove useful in creating an automated process for determining
genre. Using self-extracted audio features and third-party audio
features, we create two artificial neural networks that will classify
the song genre. Comparing our models with test data, we find
self-extracted features do a better job at predicting genre.

KEYWORDS
genre, classification, neural network

1 BACKGROUND
Song genres are primarily relative to the listener and there is no
clear-cut way to classify which genre a song belongs to. With the
power of machine learning, researchers have taken a crack at au-
tomating this process using artificial neural networks. Conducting
this and other audio analysis can prove useful to music companies
that wish to understand what customers enjoy the most. Other
researchers have created convolutional neural networks to classify
music by training on chunks of sound instead of various features
[1–3]. For comparing data, two mirror artificial neural networks
(ANN) will be created. One trained on the features extracted di-
rectly from the audio and the other trained using third-party song
metrics. The two models will be compared to see which method
has the better prediction accuracy.

2 DATA
We will focus on 10 musical genres, or categories, for classification:

(1) Blues
(2) Classical
(3) Country
(4) Disco
(5) Hip-hop
(6) Jazz
(7) Metal
(8) Pop
(9) Reggae
(10) Rock

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Proceedings of 20th Winona Computer Science Undergraduate Research Seminar, May 1,
2020, Winona, MN

2.1 Self-extracted
Our first model will train using the GTZAN dataset which was
created for extracting features and classifying music into genres [4].
This dataset contains 1,000 30 second song clips spanning across
the 10 genres. We will use visual representation of frequencies, or
spectrograms, to extract various features from the audio file. The
following metrics will be extracted and used as input for our model:

(1) Zero crossing rate
Description: Rate of signal sign changes
Usage: Good for detecting percussive sounds

(2) Chroma Shift
Description: Map hertz to binned pitch class
Usage: What notes are being played

(3) Spectral centroid
Description: Brightness of tone
Usage: Distinguish between sounds

(4) Spectral Bandwidth
Description: Range of hertz
Usage: Specific frequency at interval

(5) Spectral Rolloff
Description: Central frequency
Usage: Approximates maximum or minimum frequency

(6) Tempo
Description: Estimated beats per minute
Usage: Determine speed of song

(7) Root mean square
Description: Perceived loudness of clip
Usage: Overall volume of track

(8) Mel-frequency cepstral coefficients
Description: Magnitude of shortened clip
Usage: Good for detecting level of voices

2.2 Third-party
For our second model, we will use data scraped from the Spotify
API [5]. With this API, we will gather song metrics for inputs to
our model and genres to for the output. Spotify does not include in-
formation about how they determine or detailed descriptions of the
metrics they provide. The following metrics with brief descriptions
will be used:

(1) Key
Description: Estimated key using standard pitch class

(2) Mode
Description: Major or minor

(3) Time signature
Description: Estimated time signature

(4) Acousticness
Description:Confidence of track being acoustic, non-electric

15

(5) Danceability
Description: How suitable a track is for dancing

(6) Energy
Description: Perceptual measure of intensity and activity

(7) Instrumentalness
Description: Confidence a song has no vocals

(8) Liveness
Description: Presence of audience

(9) Loudness
Description: Overall loudness in decibels

(10) Valence
Description: Musical positiveness

(11) Tempo
Description: Estimated tempo in beats per minute

3 METHODS
3.1 Data manipulation
The self-extracted data will be pulled from a spectrogram. An exam-
ple spectrogram is shown in Figure 1. We will create a spectrogram
for each song clip in the GTZAN dataset. Using the Librosa pack-
age in Python, we will extract our desired features and store them
in a csv file. To obtain the third-party data, we query the top 100

Figure 1: Example spectrogram. Color corresponds to inten-
sity of sound.

songs for each of our genres using the Spotify API. For each song
returned, we query our desired features. We store the features and
genre label in a csv file. With both of our datasets, we transform
the each feature to a normal distribution using Yeo-Johnson power
transformations. Additionally, we will scale the distributions to use
a [0, 1] range. Figure 2 shows a feature before and after the data
manipulations.

Figure 2: Example feature before and after transformation.

3.2 Model creation
With how complex music is, we want our classifier to have a deeper
understanding of the inputs. This can be accomplished with an
ANN, artificail neural network. Since, ANNs are a field of complex
neurons and each input touches each neuron, this will allow our
models to learn about relationships between our inputs. To compare
the datasets, we will create two ANNs that are mirrored in structure.
Our final model is shown in Figure 3 We start with a 64-node
hidden layer with a ReLU output to provide a large initial layer on
our model. We add a batch-normalization layer to keep the mean
outputs of the first layer close to 0 with a standard deviation close
to 1. This will help to not overfit the training data. We add a 32-node
and a 16-node layer, both using ReLU as output. Lastly, we have a
10-node layer with a softmax output. One node for each genre.

Figure 3: Neural network model structure.

3.3 Training
We split the data into training and test sets using an 80%-20% split,
stratifying on genre. With each training dataset, we will conduct
Monte-Carlo cross-validation to train 20 models. Wewill train using
20 epochs and a 64-unit batch size. These parameters yielded the
best performance without overfitting. Finally, we will average the
validation accuracy from each set of 20 models for comparison.

4 RESULTS
Figure 4 shows the self-extracted test data’s actual versus predicted
results for their model. This model did an outstanding job predicting
data in the classical, metal, and pop genres. On the other hand, this
model did a poor job predicting data in the rock genre, classifying
40% of the data-points as disco.
Similarly, Figure 5 shows the third-party test data’s actual versus
predicted results. This model only did well classifying data-points
in the classical genre. This model did a poor job classifying data in
the blues, pop, and rock genres. We notice that data belonging to
pop and hip-hop are often misclassified as one another.
Table 1 shows the average validation accuracy and the test accuracy
for each of our models. The self-extracted model correctly classified
the validation data, on average, 6.32% better than the third-party
model. For the test data, the self-extracted model correctly classified
by 13% better than the third-party model. These results show the
self-extracted data is better for predicting genre in a neural network
than the third-party data.

5 FUTUREWORK
There are a few ways we can improve this work. First, we could
use different classification methods, such as k-nearest neighbors or

16

Figure 4: Self-extracted model confusion matrix.

Figure 5: Third-party model confusion matrix.

Table 1: Final accuracy percentages

Avg. validation accuracy Test accuracy
Self-extracted 52.97% 58%
Third-party 46.65% 45%

a tree-based method. Additionally, we could expand the datasets to
cover other genres and include more songs in our current genres.
Lastly, the best option for comparison would be to use the same
songs in each dataset.

6 REFERENCES
REFERENCES
[1] Ahrendt, Peter, et al. Decision Time Horizon for Music Genre Classification Using

Short Time Features. 6 Sept. 2004.
[2] Jeong, Il-Young, and Kyogu Lee. Learning Temporal Features Using a Deep Neural

Network and its Application to Music Genre Classification. Ismir. 2016.
[3] Li, Tom LH, Antoni B. Chan, and Andy HW Chun. Automatic musical pattern

feature extraction using convolutional neural network. Genre 10 (2010): 1x1.
[4] Tzanetakis, George, and Perry Cook. Musical genre classification of audio signals.

IEEE Transactions on speech and audio processing 10.5 (2002): 293-302.
[5] Spotify for Developers API.

https://developer.spotify.com/documentation/web-api/

17

https://developer.spotify.com/documentation/web-api/

Performance Analysis of Heap, Merge, and Insertion Sort
Siddhant Grover

Department of Computer Science
Winona State University

Winona, Mn, 55987

sgrover16@winona.edu

ABSTRACT
Numerical Data often has to be sorted for its application in different
contexts and different fields. The data available is sorted through
different algorithms based on different factors like time, efficiency,
complexity, etc. This project focusses on taking large-size arrays
and comparing the sorting through Heap, Merge and Insertion sort
algorithms in two high-level languages: Java and Python

General Terms
Algorithms, Performance, Languages, Theory.

Keywords
Heap Sort, Merge Sort, Insertion Sort, Complexity, Space, Time,
Java, Python.

1. INTRODUCTION
An algorithm focusses on several/few steps to provide a method to
solve a problem. It can be defined as a well-formed procedure that
takes input and provides output. Different algorithms can be used
to solve one single problem[1]. The algorithm is chosen based on
factors like efficiency, overhead, time, space, complexity, etc.
Sorting is the method to organize/sort large numbers of items in a
specific order. Sorting is an essential data structure operation,
which performs easy searching, arranging, and locating the
information. A simple sorting example would be sorting distances
from short to long, for a pizza company to deliver food. Sorting
algorithms usually take in a large amount of randomized data and
return a sorted list of that data.
This research project focusses on a performance analysis of three
such sorting algorithms: Heap Sort, Merge Sort, Insertion Sort;
These algorithms are tested in two high-level programming
languages: Java, which is a compiled language and Python which
is an interpreted language.

Figure 1:Sorting Example

2. SORTING ALGORITHMS
Sorting is a basic function that organizes a collection of randomized
objects in a certain order.

It is a trivial operation that is majorly used in data industries to
organize a large collection of data. Sorting plays a huge role in
searching data as well. Searching can be optimized in an
environment where the data is already sorted. Searching would take
longer to work on a collection of unsorted data as compared to
sorted data. Some real-life examples of sorting would include File
Directory systems, Words in a Dictionary, Inventor Management,
Route locating systems, etc.[2].

2.1 Heap Sort
The understanding of the Heap data structure plays a huge role to
truly understand the working of the Heap Sort Algorithm. Heap is
a tree-based data structure. A tree data structure is a collection of
nodes connected by directed (or undirected) edges. A tree can be
empty with no nodes or a tree is a structure consisting of one node
called the root and zero or more subtrees[2].

Figure 2: Tree data structure.

A heap is a tree data structure that satisfies the following properties.
1. Heap is always a complete binary tree. Every node part from a
leaf should have two child nodes[1].
2. All nodes are either greater than or equal to or less than or equal
to each of its children. This means if the parent node is greater than
the child node it is called a max heap. Whereas if the parent node
is lesser than the child node it is called a min heap[1].

Figure 3: Min heap versus Max heap

18

Heap sort creates a max heap from the array and the element on the
top of the heap is then separated and placed at the n-1th position of
the array. The new heap has one lesser element and the next max
element will be placed at the n-2th position. This keeps going on
until the heap has only one element. The working of heap sort is
shown below[1].

Figure 4: Working of Heap Sort.

2.2 Merge Sort
Merge Sort is a divide and conquer based algorithm that uses heavy
recursion to sort an array. Divide and Conquer is a strategy used by
algorithms to increase efficiency[2]. As the name suggests Divide
and Conquer Algorithms consist of two parts: Divide-divide the
problem into smaller sub-problems and the sub-problems are
solved recursively, and Conquer-The solutions of the smaller sub-
problems are merged together to find the solution of the original
problem. Merge sort follows the same ideology. It divides the array
into two halves recursively and then merges the sub-arrays. The
working of heap sort is shown below[2].

Figure 5: Working of Merge Sort.

2.3 Insertion Sort
Insertion Sort is a simple sorting algorithm that follows the ‘one at
a time’ methodology. In simple terms, it can be compared to sorting
cards, where the 1st card is assumed to be sorted[2]. As cards are
picked, they are compared with each of the already sorted cards in

hand. Eventually, all the cards will be sorted as we go through each
card in the pack[1]. At each iteration, insertion sort removes one
element from the input data, finds the location it belongs within the
sorted list and inserts it there. It repeats until no input elements
remain[3]. Sorting is typically done in-place, by iterating up the
array, growing the sorted list behind it. The working of insertion
sort is shown below.

Figure 6: Working of Insertion Sort.

3. RESEARCH
The goal of this research project is to analyze these sorting
algorithms on large-size numerical data. There has been previous
work done to understand and compare different sorting algorithms.
This research extends on previous understanding and research of
sorting algorithms to two languages and shows a literal time
comparison of the sorts in both languages. While time is a huge
factor, the analysis further includes factors apart from time like
simplicity and space constraints. The algorithms stated above are
implemented in Java -compiled language and Python-interpreted
language. Python being an interpreted language takes longer to run,
however, the purpose of analyzing the algorithms in two different
languages is to see the timing trend and pattern based on the size of
the array in both languages[4].

3.1 Environment
The research is conducted on HP Elitebook x360 1032 G2 18
Microsoft Operating System, Windows 10, version: 1909,
Processor: Intel® Core™ i5-72000U CPU @2.5 GHz, Installed
Ram: 4 8GB. The Eclipse IDE, version: 2019-12 (4.14.0), Build id:
0191212-1212.Python3.7.6,PyCharm CommunityEdition 2019.3.3

3.2 Data
The data used for this project is purely Numerical. For Java, large
size sorted and unsorted arrays consisting of 1-n distinct elements
are used, where n varies from 50K to 10000K. In Python, large size
sorted and unsorted arrays consisting of 1-n distinct elements are
used, where n varies from 5K to 1000K. This is done to check the
breaking point in terms of the number of elements at which the
algorithms show visible time difference due to their complexity.

3.3 Methodology
Each Sorting Algorithm is implemented in both the programming
languages as functions, and these functions are run over different
sized arrays in Java and Python.

19

3.3.1 Best Case Scenario
The array created is in ascending order from 1-n elements, where n
is the size of the array.

3.3.2 Average Case Scenario
Every individual array is shuffled randomly between 4 and 7 times
to create a randomly distributed unsorted array. The array is not
shuffled more than 7 times to prevent over shuffling the array and,
in some way, leading to a more sorted array.

3.3.3 Worst Case Scenario
Heap Sort algorithms convert an array into a heap and thus there is
no definite case of the worst-case scenario and thus a randomized
array is used[2,3]. The worst case for a merge sort would be where
there would be the greatest number of comparisons for the merge
sort algorithm to make. This is done by creating two auxiliary
arrays left and right and storing alternate array elements in them.
This is done recursively on both left and right arrays, till only
distinct elements are left[1]. These elements are put together to
form the worst-case array. Insertions sort’s worst-case array would
simply be a sorted array in reverse order, i.e. the largest element
first and the smallest element at the last position[3].

3.4 Obtaining Results
The Heap sort, Merge sort and Insertion sort functions are called on
every individual array in both languages. The time taken to sort the
array for each algorithm is noted. This whole process is repeated
for 10 iterations on each different array size mentioned above. The
average values obtained after performing the sorts are noted. The
time values for the different size arrays are then put together and
visualized through Tableau.

4. RESULTS
The results of this research consist of how long it took to perform
the sorts while the analysis includes the reasoning and other factors
of sorting.

4.1 Sorted Array
Sorting a sorted array presents a good idea of how well the
algorithm will perform on a nearly sorted array[2]. The real-life
application will be in context of nearly sorted set of data that needs
to be sorted. The three algorithms were passed through a sorted
array and the time taken was noted. Heap and Merge sort take a
similar amount of time to sort the array, while Insertion sort takes
the least time to sort a sorted array. As the number of elements
increase, a much wider difference between the time taken by
Insertion and Merge/Heap sort is seen.

Graph 1: Time taken to sort a sorted array in Java

Table 1: Time taken(milliseconds) to sort a sorted array by
Insertion sort in Java.

Size Time (ms)
50K 7.8
100K 9.2
250K 13
500K 17.8
750K 18.3
1000K 19
2500K 21
5000K 25
7500K 27
10000K 32

The data obtained for insertion sort is shown above.
The maximum time taken by insertion sort on a sorted array of
10000K element on an average is around 32 milliseconds, while it
takes more time than that by the other sorting algorithms to sort
100K elements. This is due to the fact that the algorithm for
Insertion sort uses comparison and then switching, and since it’s a
sorted array no element has to be displaced from its location in the
array. In Python, Heap Sort and Insertion sort behave similarly but
merge sort behaves slightly different. Merge sort behaves faster for
larger size data in both the cases.
Graph 2:time taken to sort a sorted array in Python.

Table 2: Time taken(seconds) to sort a sorted array by Insertion
sort in Python.

Size Time (s)
5K 0.00199866
10K 0.00199819
25K 0.00703454
50K 0.01094365
75K 0.02797771
100K 0.02100396
250K 0.06605411
500K 0.14139819
750K 0.19499683
1000K 0.2761302

20

Python programs run comparatively slower than Java and thus the
comparison for Python is done in seconds[4].

4.2 Unsorted Array
Insertion sort which took the least time to sort a sorted now takes
the longest time for an unsorted array. The reason being that the
sorted array had no switching after all the comparisons made.
However, in an unsorted array, it has to compare every element to
every other element in the list, and then the elements are displaced
and put in their right position. Merge and Heap, however, have
different methods that do not require comparing every element to
the other. While Heap requires elements sort through a heap, Merge
sort uses a divide and conquer approach with recursion.

Graph 3: Time taken to sort an unsorted array in Java(minutes)

Graph 4: Time taken to sort an unsorted array in Python(minutes)
As the number of elements increases, a large time difference is seen
from the graph. The comparison on the graph shows that after 250K
elements in java and 25K elements in Python wide time differences
to sort the data are visible. An interesting comparison from graph 3
for 7500K elements is shown in the table below to see the time
difference the different algorithms take.

Table 3:time taken to sort 7500k elements in java
Sort Heap Merge Insertion
Time Taken 3.04 seconds 1.42 seconds 6.46 hours

5. ANALYSIS
The analysis is done on a series of factors such as time complexity,
space complexity, number of elements to be sorted, simplicity of
the algorithm, etc. Every algorithm has a series of advantages as
well as a series of shortcomings over the other.

The Big O notation plays a huge role in comparing algorithms for
usage. It is defined as an upper bound of an algorithm, it bounds a
function only from above. Mathematically f(n) = O(g(n)) if there
exists a positive integer n and a positive constant c, such that
𝑓𝑓(𝑛𝑛) ≤ 𝑐𝑐.𝑔𝑔(𝑛𝑛)∀ 𝑛𝑛 ≥ 𝑛𝑛 [2].

5.1 Heap Sort
Table 4: Heap Sort Complexity Analysis[3]

 Complexity
Best Case 𝑂𝑂(𝑛𝑛 log 𝑛𝑛)*

Average Case 𝑂𝑂(𝑛𝑛 log 𝑛𝑛)

Worst Case 𝑂𝑂(𝑛𝑛 log 𝑛𝑛)

Space 𝑂𝑂(1)

* 𝑂𝑂(𝑛𝑛 log𝑛𝑛) for distinct keys or 𝑂𝑂(𝑛𝑛) for equal keys.

5.1.1 Advantages
1. Time Complexity of the algorithm(in general) is𝑂𝑂(𝑛𝑛 log 𝑛𝑛),
therefore it takes an almost equal amount of time to sort in all cases
for a given size.
2. The space required is constant. The algorithm does not require
multiple arrays[3].
3. Non-recursive algorithm.
4. In-space and non-recursive nature make it suitable for large data
sets[3].

5.1.2 Disadvantages
1. Works slower than the Merge Sort with the same time
complexity 𝑂𝑂(𝑛𝑛 log 𝑛𝑛).
2. Has to be converted to a heap data structure[1].
3.Unstable Sort: the relative ordering of elements is not
preserved[3].

5.2 Merge Sort
Table 5: Merge Complexity Analysis[3]

 Complexity
Best Case 𝑂𝑂(𝑛𝑛 log 𝑛𝑛)

Average Case 𝑂𝑂(𝑛𝑛 log 𝑛𝑛)

Worst Case 𝑂𝑂(𝑛𝑛 log 𝑛𝑛)

Space 𝑂𝑂(𝑛𝑛)

5.2.1 Advantages
1. Time Complexity of the algorithm(in general) is𝑂𝑂(𝑛𝑛 log 𝑛𝑛),
therefore it takes an almost equal amount of time to sort in all cases.
It is comparatively a faster algorithm.
2. Works faster than Heap Sort algorithm,𝑂𝑂(𝑛𝑛 log 𝑛𝑛) complexity,
for larger datasets.
3. Merge sort breaks the input into chunks, each of which can be
sorted at the same time in parallel[3].
4. It is a stable sort[3].

5.2.2 Disadvantages
1. Recursion is required to sort data

21

2. Merge sort takes up O(n) extra space, O(log(n)) space for the
recursive call stack[3].

5.3 Insertion Sort
Table 6:Insertion Sort Complexity Analysis[3]
 Complexity
Best Case 𝑂𝑂(𝑛𝑛)

Average Case 𝑂𝑂(𝑛𝑛2)

Worst Case 𝑂𝑂(𝑛𝑛2)
Space 𝑂𝑂(1)

5.3.1 Advantages
1. Simple Algorithm, easy to understand and implement.
2. It is very efficient (near O(n) complexity)for nearly sorted
data[3].
3. The space required is constant. The algorithm does not require
multiple arrays or recursion.
4. It is a stable sort.

5.3.2 Disadvantages
1 Has the worst time complexity for randomly sorted data.
2. Takes the longest time for unsorted large data sets.

5.4 Which algorithm is the best?
The question that arises is, which algorithm works the best and
should be used. The answer is simply “it depends”. The analysis
above shows that all sorts have their own sets of disadvantages and
advantages. Insertion sort is a simple algorithm to implement and
works the fastest for nearly sorted data, while heap and merge sort
algorithms work at a faster speed, however, they are more complex
and require more space[1]. Heap sort requires constant space, but
also is an unstable sort, while merge sort takes more space and
requires recursion but takes the least amount of time to sort.

Graph 5:Merge vs Heap in Java

The graph shows that Merge sort starts working faster after 2500K
elements in Java. In Python, the same change is seen however at
50K elements.

Graph 6: Merge vs Heap in Python
The graphs above show the time taken to sort an unsorted array in
Java and Python. It is visible that while quite close to each other,
Merge sort works faster than Heap sort. Insertion sort, on the other
hand is a simple algorithm with the worst time complexity for a
randomized dataset, however, it works the fastest for sorted and
nearly sorted data. The advantages and disadvantages of every
sorting algorithm lead the user to choose based on time, simplicity,
and space constraints.

6. CONCLUSION
Sorting is an essential data structure operation, which performs
easy searching, arranging, and locating the information. Sorting is
a huge part of applications that are used on a daily basis. This
project focused on analyzing three different sorting algorithms in
two different languages. While the trends remain similar, the
breakpoints at which the algorithms start behaving differently is
surely noticeable and should be taken into consideration while
choosing a programming language. It would be unfair to name one
algorithm as the best. Factors like space, size, time play a huge role
and an algorithm should be chosen based on these factors. While
some algorithms may perform faster than the other, they may also
require a larger overhead and thus might not be the best option.
Thus, all factors should be taken into consideration along with the
resources available by the user to choose a sorting algorithm for a
program.

7. ACKNOWLEDGEMENTS
Special Thanks to the Computer Science Department of Winona
State University, my academic advisor, Dr. Tim Gegg-Harrison,
my professors and mentors- Dr. Sudharsan Iyengar, Dr. Shimin Li,
Dr. Joan Francioni, Dr. Yogesh Grover, and my peers

8. REFERENCES
[1] Heineman, G. T., Selkow, S. T., & Pollice, G. T. (2009).

Algorithms in a Nutshell. Retrieved from
https://www.oreilly.com/library/view/algorithms-in-
a/9780596516246/ch04s06.html.

[2] Goodrich, M., & Tamassia, R. (2015). Algorithm design and
applications. John Wiley & Sons Inc.

[3] Pathak, D. K., Sharma, V. K., & Rastogi, M. (2017).
Performance Analysis of Various Sorting Algorithms.
International Journal of Advanced Research in Computer and
Communication Engineering, 6(2).

[4] H, S. C. (2013). A Byte of Python . Minneapolis, MN: Open
Textbook Library.

22

Facebook Privacy Settings: Individuals belief on
privacy versus their settings

Callie Kitoski
Winona State University Computer Science Department

175 West Mark Street
Winona, MN 55987
+1 (507) 457-5000

Ckitoski16@winona.edu

ABSTRACT
This study looks at the difference between an individual’s
settings on Facebook versus their desired privacy. After the
issues regarding Facebook's privacy issues people seemed to
be more aware of their privacy online. The survey was
administered, where participants shared their privacy settings
so an analysis could be made. With the data in this study
compared those to the desired level of privacy they want as
well as the level of privacy they believe they currently have.
The correlation between the two being drawn will result in an
understanding of the difference between them in respect to
the participating settings on the Facebook platform.

KEYWORDS
Data privacy, human factors, Facebook, security, social
media, protection, privacy settings

1. INTRODUCTION
The way privacy has evolved through the years with the
extensive access to the internet worldwide has posed some
concerns towards the privacy of users. Privacy itself can be
defined as protection of an individual’s information from
another party and or individual. With privacy being
important in many aspects of life being able to reassure the
users that their information and data is only available to
people they want is crucial to their feeling of privacy.
Privacy has had its downfall into being considered as more of
a want then a need. Privacy, in a sense, can be nonexistent
but it does not have to be. The thing with privacy is it is
perceived as being all or nothing when that does not have to
be the case [1]. There are things that can be implemented to
improve individuals' feelings of privacy online. Laws and
legislation should be passed to protect user’s information
online. It is a simple way that gives users reassurance that
someone has their back regarding their personal information
online. According to an IEEE-USA position statement they
state there are 4 main categories that public transparency,

disclosure for users, control, and notification [2]. Privacy of
individuals are not being treated at the level it should be.
With the condensing into these four categories of the main
issues that need to be changed and addressed. The access to
people’s information without protection is being accessed
and being used in ways they the users do not know are.
Legislation in the works and being introduced to congress in
recent years.
One recent bill following Facebook’s Privacy issue in 2018
is one that requires the user to opt-in, indicating they are
aware of the data being collected from them on many social
media platforms, as well as it requires then to be notified
exactly when it's being gathered, shared, and sold to other
parties [3]. This is the direction the legislation needs to be
progressing as the ways we use resources online advance and
are more available to a wider range of users.
Social media, in general, have developed their way and
methods to help aid individual privacy on the platforms, but
recently some of those have not been keeping user’s data as
private as they indicated. Facebook and Cambridge Analytica
in 2018 received fines due to the exchange of Facebook
user’s personal information, Facebook is due to pay several
fines for this incident, even one to U.K.'s Information
Commissioner's Office [4]. This situation changed several
things in privacy. Them agreeing to paying the fine was
tremendous in the aspect that they did in fact do that and are
going to be held accountable for their actions, but a fine only
really goes so far. There was no concrete information on
what happened to the user’s data. The users were not
provided reassurance or information on the data that was
collected, and Facebook had no way for them to provide the
users with this type of information. Facebook admitted to
their role in the transfer of the user’s data from there
platform to Cambridge Analytica, which was done without
any consent [5]. This issue with Facebook revealed a lot
about the privacy individuals are receiving, by them not fully
disclosing the information they are collecting and putting
them up to be questioned on why this information needs to
be collected and at what level of security is this information
on these users being held at to protect them.
The prediction about the result I have in mind is that the
Facebook privacy they want will not match what they believe
they are receiving as well as settings will need to be more
private (only me, friends, specific friends) rather than public.

2. BACKGROUND INFORMATION
Facebook's privacy settings are a separate tab within the
settings labeled privacy. There are two sections in the
privacy settings tab, your posts and how people find and

23

contact you. For this study I choose to focus on how people
find and contact your settings and use those for the survey.
This category has five questions within it regarding those
settings. Those regarding sending you friend requests, seeing
your friend list, looking up via email, looking up via phone
number, and can search engines outside Facebook link to
your profile.

3. METHODS
Survey method is being selected as that is the most beneficial
way to the individual population in retrieving the data
pertaining to their settings and beliefs. The research proposal
had to be approved by IRBNet due to the use of the human
subjects in the research. Since participants had to be
informed of their rights a consent form was attached to the
survey to provide the participants with that information as
well a contact for questions and concerns regarding the
research that was being done. To keep participants as
anonymous as can be, the only personal information about
themselves collected was an age range that they fell into on a
given set of options. This was to protect the individuals who
participated in the survey as it was their personal Facebook
settings being collected for the survey data. Survey questions
included opinion based and specific setting questions. The
data was collected and transferred to a spreadsheet. Once all
the information was collected and transferred, evaluating the
data began.
Ideally participants would be contacted randomly and asked
to respond to the survey on their settings, but the resources
were not as readily available to do that with the given state of
the survey. Participants were selected using a few different
ways. The first way was by using email groups that already
existed and sent the survey to those on the mailing list
explaining the research that was being done, and if the
individuals have the requirements to participate in the survey
(having a Facebook account and being 18 years or older).

4. RESULTS AND ANALYSIS

Figure 1: contrast of how private they feel they are on

Facebook then how private they want to be

 Mean Median Mode

How
private
they feel

4.2941176470588 4 3 with 9
occurrences

How
private
they want
to be

7.843137254902 8 9 or 10
with 11

occurrences
each

Table 1: statistics for the data in figure 1

The graph in figure 1 visually depicts the contrast between
the participants feeling of their privacy on Facebook and the
level of privacy they want while table one shows the
statistics of it. As you can see there is a clear difference in
the mean, median, and mode trends between the statements
of how they feel and the level of privacy they want. The
difference in the mean values is 3.5490196078432 which
when considering the scale was one to ten that is a significant
difference in the values indicating that the gap between them
is a testament to users feeling of privacy. The median reflects
a similar concept with their feeling of privacy being four and
their desired privacy being eight. Now the mode which
depicts the number that appears most shows a similar trend
with the level of privacy they feel they have most occurring
at three and the level of privacy they want occurring most at
nine and ten. This information indicates that users are feeling
a loss on Facebook with their privacy and there is a clear
desire for my privacy to the users.

Figure 2: Settings regard who can look them up from the

number they provided

In figure 2 it displays the participants settings regarding who
can look up their profile by their phone number. 31% of the
participants have no restrictions on individuals looking them
up via their phone number. This means they have the lowest
level of privacy on people finding their profile. Then 37% of
the participants do not allow anyone to look them up via their
phone number. Making that feature not being used to access
their profile and providing the most privacy from people
finding them via their phone number. Now the middle two
settings of Friends of Friends, and Friends offer different
populations. With friends of friends the population is still a
large population, given that it is multiplying your friends by

0

2

4

6

8

10

0

2

4

6

8

10

How private do you want your information to be on
Facebook

How private do you feel your data is on Facebook

31%

28%
4%

37%

Everyone Friends

Friends of Friends Only me

24

their friends. It is leaving a door open into people being able
to view things and see your profile.

Figure 3: Settings regarding who can look them up using

the email they provided

In figure 3, the setting itself resembles that of what would be
done in figure 2 with individuals being looked up via an
outside source, in this case it is their email. People are more
willing to allow everyone to look them up via their email
then with their phone number, as shown in figure 2. Phone
numbers as shown in figure 2 are something that participants
seemingly want more privacy, this may be because people
see more of a separation between themselves and their email
than with a phone number and would be more difficult for
users to see and use that information to find them on the
platform.

Figure 4: Settings regarding who can see their friends list

This data as depicted in figure 4 shows that there is a clear
privacy desire. It indicates that over 90% of the participants
want their friends list only shown to their own friends if not
less users. This would show that there is a higher level of
privacy regarding how people will know if you know another

person and limit the access of the distance connections
between people. Mutual friends on Facebook shows who you
have in common with another person is a feature that
displays those connections you have with the other users on
the platform. This mutual friend connection will, in some
encounters I have seen, only show you who you have in
common. With that you can see those connections to the
other individuals which then depicts a higher level of privacy
on one’s profile.

Figure 5: Settings regarding who can send them friend

requests

Figure 5 shows that people are very open to everyone
sending them friend requests. This in respect to visibility of
their friends list as in figure 4 shows that this could open a
door into a privacy risk if you accept a friend request of
someone you do not necessarily know. It is interesting to see
the population of individuals who only allow people with
mutual friends send them a request, this is in line with the
participants desire for more privacy on Facebook, as well it
would limit the number of people you would need to go
through on your request list because the requesting
population would be smaller.

Figure 6: Settings regarding if search engines outside of

Facebook can link your profile

In figure 6 it shows users do not prefer having their profile
appear in search results on other sites such as Google. This
protects them from being searched on Google and

37%

22%
6%

35%

Everyone Friends

Friends of Friends Only me

45%

4%4%

47%

Friends Only me

Public Specific Friends

82%

18%

Everyone Friends of Friends

73%

27%

No Yes

25

immediately found on Google. This protects their privacy on
Facebook by keeping it only on Facebook. This follows the
trend of wanting more privacy than they are receiving on
Facebook.

5. CONCLUSION
Overall, the research shows that the level of privacy that they
are receiving and the level of privacy they want have a
significant difference. People want more privacy than they
believe they are receiving. Facebook should alter and
improve the level of privacy they can offer so that users feel
more protected on social media and can market that to gain
users. Privacy is something we feel like is going away but it
does not have to be. Privacy can be altered and improved for
the users benefit. The internet in general changes too
frequently, it may be hard to keep up with it, but is still a
benefit to the user to feel protected and safe while online.

6. FUTURE WORK
The idea of future work that could be done is lengthy. One
being having a larger more random pool of individuals
complete this same or similar survey and then compare their
results as done in this study. Another direction is to take this
but do it with several other social medias and compare their
privacy settings to the level of privacy wanted to have. With
a continuation of that you could then compare social media
against one another to see which one’s users feel most
private on and as well as which one offers the most privacy
on the social media.

ACKNOWLEDGEMENTS
Thanks to Dr. Nicole Anderson for her advising with this
research. Thanks to ACM SIGCHI for allowing us to modify
this template for the research paper.

REFERENCES
[1] Jennifer Granick. 2015. DATA AND PROTECTING
THE RIGHT TO PRIVACY. The Center for Internet and
Society at Stanford Law School (September 2015).
[2] Jim Isaak and Mina J. Hanna. 2018. User Data Privacy:
Facebook, Cambridge Analytica, and Privacy
Protection. Computer 51, 8 (August 2018), 56–59. DOI:
http://dx.doi.org/10.1109/mc.2018.3191268
[3] IEEE-USA Board of Directors. 2018. Digital Personal
Privacy, Awareness and Control. (June 2018).
https://ieeeusa.org/wp-
content/uploads/2018/08/DigitalPrivacy0618.pdf
[4] Paolo Zialcita. 2019. Facebook Pays $643,000 Fine For
Role In Cambridge Analytica Scandal. (October 2019).
Retrieved April 26, 2020 from
https://www.npr.org/2019/10/30/774749376/facebook-pays-
643-000-fine-for-role-in-cambridge-analytica-scandal
[5] Electronic Privacy Information Center. EPIC - In re
Facebook - Cambridge Analytica. Retrieved April 26, 2020
from https://epic.org/privacy/facebook/cambridge-analytica/

26

Machine Learning Algorithm Accuracy for Time Series Prediction

Isaac Plevak
 Computer Science Department

 Winona State University
yp5798hc@go.minnstate.edu

ABSTRACT
Time series forecasting using machine learning is a common
method of forecasting. Throughout time many algorithms have
been used to complete this task. In this project an older algorithm,
the multilayer perceptron (MLP), is compared to a newer
algorithm, the long short-term memory (LSTM). Throughout
testing the LSTM was able to give more accurate results than the
MLP for the datasets used.

KEYWORDS
Time series forecasting, Machine learning

1 INTRODUCTION
Time series data is data arranged in time order. In other words,
time series data is data gathered multiple times throughout time.
A business can view daily sales and get an idea of what time of
year is the busiest in terms of sales. This is valuable information
for many businesses and organizations. Being able to interpret
this data is a useful tool and many algorithms have been designed
to assist in forecasting this data. These range from simple
algorithms to complex deep neural networks. These neural
networks are becoming increasingly more common and accurate
as time goes on.

The long shot-term memory (LSTM) algorithm is a machine
learning algorithm built off of a recurrent neural network (RNN).
RNN is designed to learn time series data more accurately than
other algorithms. It achieves this by receiving an input from the
previous time step as well as its features. This allows data from
previous time steps to affect the current time step. The major
problem of RNNs is the vanishing gradient problem. This
problem occurs during the backpropagation algorithm of the
training phase of RNN. The gradient used to update the weights
of the RNN gradually decreases and thus affects how well the
algorithm learns. LSTM includes an extra gate called the forget
gate which affects the gradient and prevents the vanishing
gradient problem.

MLP is a simpler and older algorithm. MLP takes in a set of
inputs or features and applies a weight to them and gives an
output. MLP can be used for many different types of datasets,

from image recognition to time series. In this case MLP is our
older algorithm to compare to our newer algorithm in the LSTM
for time series datasets.

2 HYPOTHESIS
The long short-term memory algorithm will give more accurate
results than a multilayer perceptron on certain time series datasets.

3 METHODS
In this project two common machine learning algorithms, the
multilayer perceptron and the long short-term memory recurrent
neural network, are compared using time series datasets. Both
algorithms were trained with the same two datasets and are
compared both visually and comparing their mean squared error
on the testing set. Python was the language used for this project
and the algorithms were from the Keras library.

3.1 DATASETS
The datasets used are of airline passenger data and stock prices.
These were chosen because of the real-world application of these
datasets and how they varied. The airline passenger dataset has a
distinct pattern to it throughout time, while the stock price dataset
is far more unpredictable. This was done to test multiple
scenarios for each of the machine learning algorithm. Some
datasets will have a pattern to them while others will appear to be
totally random. Each machine learning algorithm learns data
differently, thus some will learn a pattern better than a more
random dataset. Graph 1 is of the airline passenger dataset and
graph 2 is of the stock price dataset. The training set was the first
two thirds of the dataset while the remaining one third was used
for testing.

27

Graph 1: Graph of Airline Passenger dataset

Graph 2: Graph of stock prices dataset

3.2 TRAINING
The MLP lookback was set to 30 for this project. The lookback is
the number of datapoints it will use per step. Basically, it will use
the last 30 datapoints to calculate the next output. In this case the
lookback is the number of features the MLP takes in as input. The
MLP was set to run 50 epochs for training (MLP ran through
training set 50 times).

The LSTM had one feature, the current time step. LSTM ran 25
epochs rather than 50, this was done for time purposes. LSTM
training takes longer than MLP training.

4 RESULTS
For the airline passenger dataset, the MLP was able to learn and
get the basic curve of the dataset as seen in Graph 3. The LSTM
learned the dataset better giving more accurate results. Graph 4
shows this.

Graph 3: Graph of MLP test for airline passenger dataset

Graph 4: Graph of LSTM test for airline passenger dataset

The MLP learns the basic form of the dataset but didn’t get it
down exactly. The mean squared error (MSE) of the MLP is on
average of 0.1029 for the test score while LSTM was roughly half
that. The mean square error is used to calculate average of the
square error of the algorithm. It is squared to make all errors
positive. A smaller MSE is better.

For the stock prices dataset, the MLP didn’t do nearly as well.
The MLP couldn’t learn the flow of the dataset at all. The LSTM
wasn’t precise but did learn the basic flow of the graph. Graph 5
shows the MLP for stock prices dataset and Graph 6 shows LSTM
for stock prices dataset.

0

200

400

600

800

Airline Passenger

0

20

40

60

80

100

120

140

Stock Price

28

Graph 5: Graph of MLP test for stock prices dataset

Graph 6: Graph of LSTM test for stock prices dataset

For the stock prices dataset, the MLP struggled to predict the
graph however the LSTM was able to predict the basic shape of
the graph. The MLP outputs a linear result where the data curve
is not. Even though the LSTM isn’t deadly accurate it follows the
same basic curve the dataset does, showing where the data spikes.
On average the MSE of the MLP was 0.1931 which is not an ideal
MSE. Once again, the LSTM achieved half the MSE with 0.0939
test score MSE.

5 ANALYSIS
Analyzing the results shows that the MLP was less affective at
learning the datasets than the LSTM. The MLP was able to learn
the basic trend of the airport passenger dataset but struggled to
learn the stock market dataset. The MLP output for the airport
passenger dataset followed the same curve as the dataset, even
though the values were not always very accurate. As for the stock
price data the MLP was unable to display the basic trend at all.
This is partially to do with the randomness of the stock market
dataset. Visually the airline passenger dataset has an obvious
pattern to it, while the stock prices dataset has no such pattern.

The LSTM was more accurate for both datasets. For the airline
passenger dataset, LSTM was able to output values closer to the
testing set values. The LSTM was also able to learn the basic
trend of the stock price data.

6 CONCLUSION
The LSTM algorithm achieved higher accuracy than the MLP did
for both datasets used in this project. Judging visually or by the
mean squared error, the LSTM is the more accurate algorithm for
time series forecasting.

The LSTM is a modern neural network developed to fix problems
that older neural networks suffered from. It is no surprise that it is
more accurate than the MLP, however it is still useful to know
how much more accurate it is. MLP has its own advantages over
the LSTM. One major advantage is speed. If a quick algorithm is
more important than an accurate one, the MLP is a very good
algorithm. However, if accuracy is important, then the LSTM is
will give better results.

These algorithms are used to help with making accurate
predictions but are rarely used alone. Stock prices rise and fall
often with little notice. This is because there are many things that
affect the prices. Far more things than what could be entered into
any algorithm. Thus, algorithms used in forecasting can help get
an idea of what the future holds if nothing dramatic happens.
Because of this accuracy is not always the most important feature
of a machine learning algorithm. There are a countless number of
algorithms and all have their own strengths and weaknesses.

ACKNOWLEDGMENTS
Thanks to Dr. Zhang, Dr. Iyengar, and Dr. Li for help with
understanding the algorithms in use and the workflow of this
research project.

REFERENCES
[1] Brownlee, Jason. “Time Series Prediction with LSTM Recurrent Neural

Networks in Python with Keras.” Machine Learning Mastery, 5 Aug. 2019,
machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-
networks-python-keras/.

[2] Brownlee, Jason. “How to Develop Multilayer Perceptron Models for Time
Series Forecasting.” Machine Learning Mastery, 5 Aug. 2019,
machinelearningmastery.com/how-to-develop-multilayer-perceptron-models-
for-time-series-forecasting/.

[3] “Keras: The Python Deep Learning Library.” Home - Keras Documentation,
keras.io/.

[4] Brownlee, Jason. “When to Use MLP, CNN, and RNN Neural
Networks.” Machine Learning Mastery, 19 Aug. 2019,
machinelearningmastery.com/when-to-use-mlp-cnn-and-rnn-neural-networks/.

[5] Mittal, Aditi. “Understanding RNN and LSTM.” Medium, Towards Data
Science, 12 Oct. 2019, towardsdatascience.com/understanding-rnn-and-lstm-
f7cdf6dfc14e.

29

	Proceeding_v0
	Announcement
	The 20th Winona Computer Science Undergraduate Research Symposium
	May 1, 2019
	10:00am to 12:30pm
	Winona State University Winona, MN
	Sponsored by the Department of Computer Science
	at Winona State University

	Proceeding_v0
	Proceeding_v0
	Final Draft
	1. INTRODUCTION
	2. BACKGROUND KNOWLEDGE
	3. METHODOLOGY
	3.1 Search
	3.2 Matrix
	3.3 Graphical User Interface (GUI)

	4. RESULTS AND ANALYSIS
	4.1 Time Trials

	4.2 Memory Usage
	5. CONCLUSION
	5.1 Continuing Research

	6. REFERENCES

	Final Paper FIXED
	Categories and Subject descriptions
	General Terms
	Keywords
	1. Introduction
	2. Background
	2.1
	2.2

	3. Video Compression
	3.1
	3.2
	4.1
	4.2

	5. Streaming hardware
	5.1
	5.2
	5.3

	6. Streaming Software
	6.1
	6.2

	7. Experiment
	7.1

	8. Analysis
	8.1
	8.2
	8.3
	8.4

	9. Conclusion
	10. Further Work
	11. References

	Paper Final Barett Jones
	1. INTRODUCTION
	1.1 CNN

	Convolutional Neural Networks (CNN) are a class of artificial neural networks (ANN) that typically are applied to deep image learning [2]. There are many different fields use image classification. Another field that uses image classification are hospi...
	1.2 Feature Extraction

	Something that will be considered in future work is feature selection and deriving features from different kinds of datasets. An example of this would be feature selection on an animals’ dataset. Features that could be extracted would be fur and chara...
	2. BACKGROUND RESEARCH
	3. METHODOLOGY
	3.1 Data
	3.1.1 Collection
	3.1.2 Cleaning

	3.2 Feature Extraction
	3.2.1 Edge
	3.2.2 Shape
	3.2.3 Direction

	3.3 Training

	4. RESULTS ANALYSIS
	4.1 Accuracy
	4.2 Loss
	4.3 Time

	5. CONCLUSION
	6. FUTURE WORK
	7. ACKNOWLEDGEMENTS
	8. REFERENCES

	paper_final
	Abstract
	1 Background
	2 Data
	2.1 Self-extracted
	2.2 Third-party

	3 Methods
	3.1 Data manipulation
	3.2 Model creation
	3.3 Training

	4 Results
	5 Future work
	6 References
	References

	paper_final_submission
	1. INTRODUCTION
	2. SORTING ALGORITHMS
	2.1 Heap Sort
	2.2 Merge Sort
	2.3 Insertion Sort

	3. RESEARCH
	3.1 Environment
	3.2 Data
	3.3 Methodology
	3.3.1 Best Case Scenario
	3.3.2 Average Case Scenario
	3.3.3 Worst Case Scenario

	3.4 Obtaining Results

	4. RESULTS
	4.1 Sorted Array
	4.2 Unsorted Array

	5. ANALYSIS
	5.1 Heap Sort
	5.1.1 Advantages
	5.1.2 Disadvantages

	5.2 Merge Sort
	5.2.1 Advantages
	5.2.2 Disadvantages

	5.3 Insertion Sort
	5.3.1 Advantages
	5.3.2 Disadvantages

	5.4 Which algorithm is the best?

	6. CONCLUSION
	7. ACKNOWLEDGEMENTS
	8. REFERENCES

	researchPaperFinal

	Isaac

