

The 24th Winona Computer Science

Undergraduate Research Symposium

April 23, 2024

2:00pm to 3:30pm

Watkins 209

Winona State University

Winona, MN

Sponsored by the Department of Computer Science

at Winona State University

ii

Table of Contents

 Title Author Page

Investigating How Illumination Affects Infrared Gesture

Recognition Lindsey Arndt 1

Enhancing R2L Intrusion Detection Using Decision Trees Stephen Sommer 6

A Data-Driven Approach to Keyboard Optimization David Sommerfield 11

Elephant: LLM System for Accurate Recantations Praise Chinedu-Eneh 18

Investigating How Illumination Affects Infrared Gesture
Recognition

Lindsey Arndt
Computer Science Department

Winona State University
Winona, MN 55987

507.457.5000,

Lindsey.arndt@go.winona.edu

ABSTRACT

The research aims to investigate the impact of illumination on the

accuracy and efficiency of infrared gesture recognition systems.

Specifically, the study seeks to explore whether infrared gesture

sensors exhibit greater accuracy in low illumination environments

compared to environments with high direct illumination.

The experimental setup includes a controlled environment with a

moveable light source and a table holding the infrared gesture

sensor. Fifty-six tests were conducted, with participants performing

gesture recognition tasks under varying illumination levels ranging

from 600 lux to 1200 lux. After experimentation, a t-test

determined if there is a statistically significant difference in the

accuracy of gesture recognition between the two groups.

The findings of this study show the threshold illumination is at 1070

lux. An increased illumination after the threshold causes gesture

detection failure. Results compared to natural illumination from the

sun, it is predicted there will be inconsistent gesture detection

specifically under a clear sky in the afternoon.

1. INTRODUCTION

In recent years, the field of human-computer interaction (HCI) has

witnessed a surge in the development and utilization of gesture

recognition technologies for various applications ranging from

gaming and virtual reality to smart home control and industrial

automation. Among these technologies, infrared gesture sensors

such as hands-free faucets, dryers, alarm clocks, and lamps have

emerged as promising solutions due to their ability to accurately

capture and interpret hand movements in real-time. However, the

effectiveness of infrared gesture sensors is known to be influenced

by environmental factors such as lighting conditions, which can

significantly impact their performance and reliability in the real

world.

The motivation for this study stems from the critical need to

understand the environmental factors that affect the functionality of

infrared sensors, important to the future development of the

technology.

To achieve this goal, the research focuses on analyzing the unified

components that comprise infrared gesture sensors and their

interactions with varying lighting conditions. By collecting

comprehensive information about the design, operation, and

sensitivity of infrared gesture sensors, the study aims to explain the

mechanisms underlying their performance in different lighting

environments.

The research conducted aligns with a study presented in the article

titled "Gesture Recognition using Reflected Visible and Infrared

Light Wave Signals” [6]. Employing experimental techniques

aimed at manipulating environmental conditions, the gesture sensor

underwent testing under conditions of high illumination juxtaposed

with indirect low illumination. Interestingly, both this article and

"A novel hand gesture recognition method based on infrared

information" [7] reported no significant change in accuracy under

low illumination conditions. In response to this finding, the gesture

sensor underwent further testing under even brighter illumination.

The paper titled "Neuromorphic silicon retina array detects the

direction of a moving object" [2] provides insights into the

processing of infrared information within an infrared sensor. The

study examines the detection of each finger using the infrared

sensor. Given the project's focus on light source accuracy, a specific

gesture, namely the upwards gesture, has been selected for testing

with the sensor. The positioning of the light source behind the hand

in front of the infrared sensor and individual testing on each side

have been chosen for optimal evaluation accuracy.

1.2 Infrared Sensors

Infrared sensors emit light within the infrared spectrum. According

to a newsletter from the International Commission on Non-Ionizing

Radiation Protection, infrared, also known as thermal radiation, is

above red visible light from 780 nanometers to 1000 micrometers

on the electromagnetic spectrum [3]. Infrared naturally comes from

solar radiation and fire. Artificial sources include lamps, heating

devices, remote control, and the newly popular infrared saunas. The

light can be seen as a dim red glow coming out of the sensor.

Infrared sensors work by emitting infrared light and collecting

reflections of light off objects that pass through. The reflection of

light is collected by a light sensor. A program interprets any

changes in the reflection as gestures. A specific gesture is

determined by an algorithm that analyses the data. A popular

algorithm for gesture recognition is Dynamic Time Warping. As

mentioned in the Application of dynamic time warping algorithm

for pattern similarity of gait, “The dynamic time warping (DTW)

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

Proceedings of the 24th Winona Computer Science Undergraduate

Research Seminar, April 23, 2024, Winona, MN, US.

1

algorithm was developed to solve the difficulties in analyzing

pattern similarity for time- series data.” “DTW is known as the best

algorithm for evaluating the similarity between two time-series data

that vary in time frames as well as nonlinear time-series data.” [5]

For gesture sensor recognition, the algorithm DTW can record the

changes to the reflected infrared light and determine the direction

of motion by comparing the pattern in the time-series data.

2. HYPOTHESIS

Infrared gesture sensors have greater accuracy in low illumination

than high direct illumination.

3. METHODS

For this study, the researcher utilizes a programmable robot known

as ClicBot, developed by KEYi Technology, and founded by

Jianbo. The ClicBot is equipped with an infrared gesture sensor that

offers users the ability to program and customize gesture

recognition functionalities according to their preferences. To

investigate the impact of environmental lighting conditions on the

accuracy of infrared gesture recognition, the ClicBot is subjected to

alternating environments. These environments include low

illumination between 600 and 800 lux and high direct illumination

between 900 and 1200 lux. As shown in Figure 1 and Figure 2, the

illumination is placed directly in front of the gesture sensor. The

light source moves forwards and backward to adjust to the

illumination being tested as demonstrated by the x. The

Illumination is calculated using a brightness meter placed directly

in front of the infrared sensor before each test. The gesture is

conducted 5 inches away from the sensor each time. Upon testing,

7 inches was the farthest away the sensor would detect motion. It

was deemed reasonable to choose 5 inches as the distance because

it provided sufficient proximity to the sensor for accurate gesture

detection. Additionally, the arms on the assembled ClicBot

extended 4 inches from the sensor, making it an ideal reference for

gesture movement.

Table 1. Summary of equipment used

Equipment Manufacturer Quantity

ClicBot Brain KEYi Technology 1

Illumination Kit (2 x 16'' x

16'') 50W / 5500K / 90 CRI

LED Bulbs

RALENO 1

Table 1

Digital Illuminance Light

Meter 0-200,000

Measurement Range Lux

Meter

Dr. Meter 1

After conducting the indoor controlled experiment, the ClicBot was

used to test gesture recognition outside in the natural environment.

During the indoor experiment, the illumination source was focused

and concentrated by using a single light in a dark room. In a natural

setting, the illumination source comes from the sun. Sun rays are

scattered filling a larger area causing illumination to hit front, back,

and sides of the sensor. Establishing a direct pathway from the sun

to the ClicBot posed a challenge, and although it wasn't flawless,

every effort was made to achieve the best possible outcome. The

ClicBot was brought outside in an afternoon partly cloudy sky. A

measurement of 1466 lux was obtained when the infrared sensor

was facing the sun straight on, while 1090 lux was read when facing

horizontal to the ground. A cloud covered for a brief period

measuring at 260 lux. Each set of illuminations were tested 10 times

with the same upward gesture as tested indoors.

Analysis of the data presented in Table 2 reveals significant

variation in illumination levels and accuracy. As mentioned

previously, there are numerous challenges in the natural

environment to conduct a consistent controlled experiment. The

scattering of sun rays through the atmosphere can change the

illumination level even during an experiment. The readings were

taken with the best effort. On a cloudy day, there may not be any

reason for concern with gesture recognition. However, there is a

chance recognition accuracy will be inefficient. It is reasonable to

conclude that numerous factors contribute to these fluctuations in

lux readings. Consequently, caution should be exercised when

interpreting results obtained from natural settings.

Table 2. Natural Illumination Results

Illumination Lux % Accurate

1466 50%

1090 40%

260 100%

Figure 1. Experiment room

2

Figure 2. Layout of experiment

3.1 Analysis

A logistic regression was performed to ascertain the effects of

illumination on the likelihood that greater accuracy in low

illumination than high direct illumination. A logistical regression is

performed because there are two different value means in which the

data is normally distributed, and variances are unknown. A p-value

is significant when the value is below .05%. A software called JMP

was used to conduct the method by comparing the illumination in

lux to the response classification. The logistic regression model was

statistically significant (1, N =55) = 44.55, p < .0001. The model

explained 15.0% of the variance in gesture accuracy and correctly

classified 80.0% of cases. The logistical regression results are

shown in Table 3. As shown in Table 3, the standard error is

0.0409851. This standard error means that, on average, the

estimated coefficient for the independent variable illumination

level in the logistical regression model can be expected to vary by

approximately 0.0409851 units from the true population

coefficient. If the study were to be replicated, the estimated

coefficient for illumination level threshold to fall within

±0.0409851 lux of its current value about 95% of the time. The

results went into the creation of Figure 2 showing the probability

of gesture recognition in correlation with illumination levels.

Table 3. Parameter estimates

Term Estimate Std Error P-Value < .0001

Illumination -0.09404 0.0409851 0.0215

Figure 3 is a graph representing the probability of accurate gesture

recognition on illumination level using the logistic plot created by

the JMP software. The x-axis holds the illumination level in lux and

the y-axis holds the probability of accurate gesture recognition. As

shown, there is a drop in probability of accurate recognition from

100% accuracy at 1000 lux to 0% accuracy at 1200 lux. The blue

line in figure 3 shows this threshold where gesture recognition fails

to recognize any gesture. Keeping that in mind, the graph shows the

trend. Tracking the threshold line, looking at 600 lux, it is

presumable that gesture recognition is 100% as for all the lux range

up until 1000 lux.

Figure 3. Probability of accurate gesture recognition on

illumination level

To maintain consistency and accurately track gesture recognition

accuracy, the ClicBot and light source stays at the same height. The

light is facing the ClicBot straight onto the sensor. The light is

moved to change its distance to the ClicBot for the purpose of

adjusting the illumination. Upon recognizing a gesture, the ClicBot

emitted a sound corresponding to the recognized gesture using a

simple if-then statement. The response was categorized as accurate

if the gesture is correctly identified, inaccurate if there is a

misinterpretation, or fail to process if the gesture is not recognized.

Data collection involved recording the accuracy of gesture

recognition for each gesture in both low illumination and high

direct illumination environments. This data is documented in a

spreadsheet, as illustrated in Table 2. Subsequently, a logistical

regression was conducted to visualize the accuracy of gesture

recognition in each environment.

3.2 Data Collection

Data was collected shown in the data collection sheet in Table 4.

The distance is measured in inches from the illumination source to

the infrared sensor. This distance is correlated with the brightness

of illumination. The closer the light is, the higher the illumination

is. We use distance the gauge the illumination because the light

itself is unable to adjust its brightness. The illumination in lux is

taken from the Digital Illuminance Light Meter. The measurement

3

is taken at the very front of the infrared sensor at the same location

each time. The illumination written down is the number that

showed most prominently on the scanner. The illumination would

adjust by 10 to 15 lux, so a medium was used for monitoring

purposes. Accurate Response percentage shows the percentage of

accurate gesture recognition for each 5 illumination tests. This

response percentage was taken by recording how many gestures

were accurately recognized or failed to be recognized. Illumination

level categorized the level most fitting in correlation to the

illumination measurement in lux. Low illumination categorized lux

from 530 to 790 and anything below this lux until 100 lux not tested

in this study. This illumination could be seen outside naturally on a

cloudy or partly sunny day. High illumination categorized the lux

between 970 and 1174 also including any lux above this. High

illumination can be seen in nature on a partly cloudy to full sun day,

specifically in the afternoon.

Table 4. Data collection sheet

Distance

(inches)

Illumination

(lux)

Accurate

Response %

Illumination

Level

12.25 530 100 low

11.12 636 100 low

9.5 720 100 low

8.75 790 100 low

7.12 970 100 high

7.865 1070 100 high

7.225 1075 40 high

7.125 1080 40 high

7.25 1096 40 high

6.65 1111 0 high

6.55 1174 0 high

4. CONCLUSION

Based on the statistically significant results from the logistical

regression, it can confidently be said that gesture recognition is

more accurate in low illumination than high illumination. This

statement is concurrently validated for outdoor natural lighting. As

a result, there should be caution when utilizing infrared sensors

outdoors.

As concluded, there is a challenge with sensing gestures in high

illumination indoor and outdoor. Compared to turning up the

brightness on a photo, excessive illumination can cause information

to be washed out. This abundance of light can overwhelm the

sensor with information, representing the reflections from hand

movements insignificant. The proposed issue also relates to why

there is no incorrect gesture detected; rather, there is simply a

failure to detect any gesture. One potential solution to this problem

could involve the same principle as enhancing photos. Increasing

contrast causes lines to become more prominent. However,

implementing this solution is easier said than done. If it proves to

be impractical, it may be advisable to suggest regulations on the

usage of these devices. Regulations can specify when and where

infrared gesture sensors should be employed. For example, there

should be a warning on devices for minimizing exposure to direct

sunlight while using the product.

5. ACKNOWLEDGMENTS

Our thanks to ACM SIGCHI for allowing us to modify templates

they had developed. Thank you to my advisors on this project

Mingrui Zhang and Sudharsan Iyengar for their help and guidance.

Another big thank you to Tisha Hooks for assisting with data analysis

on this project and to Collin Engstrom for naming the ClicBot for

experimentation Marcy.

6. REFERENCES

[1] Aupal, M. (2015-2016). What is an IR Sensor.

TeachEngineering. Retrieved from

https://www.teachengineering.org/lessons/view/mis_se

nsor_lesson01

[2] Cha, Y., Lee, J., Kim, Y., Jeon, Y., Lee, D. S., & Lee,

H. J. (2021). Neuromorphic silicon retina array detects

the direction of a moving object with sub-millisecond

latency. Proceedings of the National Academy of

[3] International Commission on Non-Ionizing Radiation

Protection (CNIRP). (n.d.). Infrared Radiation.

Retrieved from

https://www.icnirp.org/en/frequencies/infrared/index.ht

ml#:~:text=Common%20natural%20sources%20are%

20solar,infrared%20saunas%20for%20health%20purp

oses.

[4] Keyi Technology. (n.d.). Module. Retrieved from

https://keyirobot.com/pages/module

[5] Lee HS. Application of dynamic time warping

algorithm for pattern similarity of gait. J Exerc Rehabil.

2019 Aug 28;15(4):526-530. doi:

10.12965/jer.1938384.192. PMID: 31523672; PMCID:

PMC6732547.

[6] Yu, L., Abuellaz, H., Islam, M. Z., O’Hara, J. F.,

Crick, C., & Ekin, S. (2020). Gesture Recognition

using Reflected Visible and Infrared Light Wave

Signals. ResearchGate. Retrieved from

https://www.researchgate.net/publication/343005783_

Gesture_Recognition_using_Reflected_Visible_and_In

frared_Light_Wave_Signals

[7] Sciences. Retrieved from

https://www.pnas.org/doi/full/10.1073/pnas.20210771

18

[8] Wang, J., Zhang, J., Zheng, Z., Xie, L., Zhang, C., &

Li, Y. (2022). A novel hand gesture recognition

method based on infrared information. Optik, 254,

166672. DOI: 10.1016/j.ijleo.2021.166672

4

https://www.teachengineering.org/lessons/view/mis_sensor_lesson01
https://www.teachengineering.org/lessons/view/mis_sensor_lesson01
https://keyirobot.com/pages/module
https://www.researchgate.net/publication/343005783_Gesture_Recognition_using_Reflected_Visible_and_Infrared_Light_Wave_Signals
https://www.researchgate.net/publication/343005783_Gesture_Recognition_using_Reflected_Visible_and_Infrared_Light_Wave_Signals
https://www.researchgate.net/publication/343005783_Gesture_Recognition_using_Reflected_Visible_and_Infrared_Light_Wave_Signals
https://www.pnas.org/doi/full/10.1073/pnas.2021077118
https://www.pnas.org/doi/full/10.1073/pnas.2021077118

Enhancing R2L Intrusion Detection Using Decision Trees
Stephen Sommer

Computer Science Department
Winona State University

steven.sommer@go.winona.edu

ABSTRACT

This research investigates how Decision Trees, a type of machine

learning tool, can improve Intrusion Detection Systems (IDS) to

identify Remote to Local (R2L) attacks. Traditional Intrusion

Detection Systems (IDS) are struggling to cope with the growing

complexity and frequency of attacks. This research explores

whether Decision Trees and using it with combined datasets can

provide a better solution. We utilized two widely available datasets,

KDD Cup 1999, and NSL-KDD, to assess the effectiveness of

Decision Trees. By applying Decision Trees to each dataset

individually and then to a combined version, the combined

approach resulted in an IDS with 99.93% accuracy, a 91% detection

rate for R2L attacks, and only an 8% false alarm rate. While the

improvement in overall accuracy over the individual datasets

(99.90% for KDD Cup 1999 and 99.83% for NSL-KDD) is modest,

it lays the groundwork for further refinements and potentially even

greater accuracy gains in the future.

Categories and Subject Descriptors

D C.2.0 [Computer-Communication Networks]: General – security

and protection

K.6.5 [Management of Computing and Information Systems]:

Security and Protection – intrusion detection.

General Terms

Algorithms, Performance, Experimentation, Security, Verification.

Keywords

Remote to Local (R2L), Intrusion Detection Systems (IDS),

Artificial Intelligence (AI), Machine Learning, Decision Tree

Dataset Analysis, Cloud Computing Security, KDD Cup 1999,

NSL-KDD, Intrusion Detection Accuracy.

1. INTRODUCTION
In the age of advancing technological landscape, characterized by

the rise of artificial intelligence and big data, the internet is playing

a vital role in nearly every aspect of our lives, from conducting

global business deals, to attending virtual classrooms, and stay in

touch with family and friends. However, this increasing reliance on

digital networks also exposes us to cybersecurity threats and

attacks. Cyber-attacks fall into four main categories such as Denial-

of-Service (DoS), Remote-to-Local (R2L), Unauthorized Access to

Local Superuser (Root) Privileges (U2R) and Probing. To protect

us from these attacks there are Intrusion Detection Systems. An

Intrusion Detection System is a security tool designed to monitor

network or system activities for malicious or suspicious behavior.

It works by analyzing incoming traffic, identifying patterns that

may indicate unauthorized access or potential threats, and alerting

system administrators or security personnel to take appropriate

action.

Traditionally, Intrusion Detection Systems (IDS) relied on

predefined signatures to identify known attack methods, but, with

the constantly evolving tactics of cybercriminals, this approach

often proves inadequate. However, through the integration of

Artificial Intelligence (AI) technologies, IDS can now harness

advanced algorithms and machine learning techniques. This

enables them to enhance their detection capabilities significantly,

empowering them to adapt and respond more effectively to the

ever-changing landscape of cyber threats. Despite these

advancements, AI-enhanced IDS face specific challenges. The

training of these systems need a vast amount of labeled data, which

can be challenging and time-consuming to gather. Moreover,

ensuring the transparency and explainability of AI decisions is vital

for preserving trust and security. Biases in the training data can

result in inaccurate detections or even discrimination.

This research focuses on using Decision Tree Classifiers to

improve how Intrusion Detection Systems detect Remote-to-Local

(R2L) attacks. In an R2L attack, an attacker sends data packets over

a network to gain unauthorized access to a machine as a regular

user. Unlike attacks that target the network itself, R2L attacks try

to exploit weaknesses in a system's security to gain access.

Attackers might use brute-force password cracking, exploit

software vulnerabilities, or trick users into running malicious code.

Their goal is to steal information, damage data, or prevent

authorized users from accessing the system.

2. HYPOTHESIS
By incorporating multiple datasets into a decision tree classifier,

intrusion detection systems can achieve greater accuracy, leading

to a higher rate of R2L attack detection with fewer false alarms.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

Proceedings of the 24thWinona Computer Science Undergraduate

Research Seminar, April 23, 2024, Winona, MN, US.

5

3. METHODOLOGY

3.1 Datasets
This research evaluates an Intrusion Detection System (IDS) using

two publicly available datasets: KDD Cup 1999 and NSL-KDD.

Both datasets contain labeled network traffic data, including

normal traffic, various attack types and the features to look out for

to indicate the possibility of an attack.

• KDD Cup 1999: The KDD Cup 1999 dataset serves as a

standard benchmark dataset extensively used for

evaluating intrusion detection systems. It contains a

substantial volume of network traffic data, encompassing

both normal and various types of attacks. The dataset

contains a total of 494,021 data points, with 97,278

labeled as anomalies and 396,743 as normal.

• NSL-KDD: The NSL-KDD dataset is another widely

adopted dataset in the realm of intrusion detection. It

represents an enhanced version of the original KDD Cup

1999 dataset, addressing certain limitations such as

redundancy and imbalance in class distribution. The

NSL-KDD dataset contains a total of 2,406,084 data

points. Of these data points, 2,396,857 are labeled as

normal and 9,227 are labeled as anomalies.

3.2 Combined Dataset
To enhance the diversity and resilience of our training data, we

combined the KDD Cup 1999 and NSL-KDD datasets into a

unified dataset. This merged compilation broadens the scope of

network traffic samples, encompassing a variety of attack types and

normal behaviors. Sticking to a single dataset for training could

limit a model's adaptability to unforeseen data. By fusing the KDD

Cup 1999 and NSL-KDD datasets, our consolidated dataset

provides a more inclusive depiction of network traffic behaviors.

This, in turn, facilitates the development of machine learning

models capable of discerning a wider array of anomalies and

intrusions. The diversity within our training data fosters the

creation of models that can adeptly adjust to evolving cyber threats

and fluctuations in network landscapes. Moreover, the combined

dataset enables researchers and practitioners to explore the

similarities and differences between the two datasets, potentially

uncovering valuable insights into the characteristics of network

attacks and normal traffic across different contexts and time

periods.

3.3 Preprocessing the Data
The initial phase of this research entails parsing the kddcup.names

file to extract and categorize its features for analysis. These features

encompass various indicators relevant to security assessments, such

as duration, source bytes, destination bytes, number of failed login

attempts, number of compromised or hacked systems in a network,

a user has obtained root access or escalated privileges, switch user

attempted, and logged in as a guest, among others. These attributes

provide insights into potential R2L (Remote-to-Local) attack

scenarios, highlighting patterns associated with prolonged

connection times, data transmission volumes, brute force password

attacks, compromised states, and unauthorized access attempts,

including tactics like guest logins. Subsequently, the analysis

extends to different types of R2L attacks, including 'ftp_write',

'guess_passwd', 'imap', 'multihop', 'phf', 'spy', 'warezclient', and

'warezmaster'. Each of these attack types represents distinct forms

of security breaches or suspicious activities, such as unauthorized

file transfers via FTP, repeated password guessing attempts, illicit

access to email servers, suspicious routing behaviors, exploitation

of web server vulnerabilities, covert surveillance activities, and

involvement in the distribution of pirated software, potentially

involving malware dissemination. These insights aid in identifying

and understanding the diverse tactics employed by attackers in R2L

attack scenarios. Following initial steps, such as addressing missing

values and multicollinearity, categorical features are converted into

numerical representations via feature mapping. Irrelevant features

are then removed to streamline the dataset. Subsequently, the

dataset is split into subsets for normal records and R2L attack

records from the other types of cyber-attacks, facilitating machine

learning model training. This includes feature identification and

target label assignment, followed by division into training and

testing sets using sklearn's train_test_split function, ensuring

accurate model evaluation.

3.4 Decision Tree Classifier
The Decision Tree Classifier is a tool used in machine learning to

create models that can classify data into different categories. It

relies on a decision tree structure, which is like a flowchart with

nodes representing decisions and branches representing possible

outcomes. This classifier is particularly useful for tasks like

intrusion detection in computer networks because it's easy to

understand how it reaches its conclusions, and it can handle

different types of data, like numbers and categories, effectively.

In this process, we use a specific implementation of decision trees

called DecisionTreeClassifier from a Python library called scikit-

learn, often abbreviated as sklearn. This library provides a

straightforward yet powerful way to build models using decision

trees. We start by training the model, which means we show it

examples of network traffic labeled as normal or malicious, and it

learns from these examples. Then, we evaluate how well it

performs on data it hasn't seen before, using a separate testing

dataset.

To get started, we import several important libraries we'll need,

such as DecisionTreeClassifier from sklearn, along with others like

cross_val_score for cross-validation, train_test_split to split our

data, accuracy_score to measure accuracy, and pandas for data

manipulation. We also do some preprocessing on our data, like

converting categorical features into a format the model can

understand using one-hot encoding, and splitting our data into

training and testing sets, with 70% of the data for training and 30%

for testing.

Next, we create an instance of the DecisionTreeClassifier class.

Then, we use a technique called cross-validation on our training

data. This involves splitting our training data into 10 smaller

subsets, training the model on 9 of them, and testing it on the

remaining one. We do this process 10 times, each time with a

different subset held out for testing. This gives us a more robust

estimate of how well our model will perform on unseen data.

After cross-validation, we train the model on the entire training set

and then use it to make predictions on the test set. Finally, we can

evaluate the performance of our model by comparing its predictions

to the actual labels in the test set. This gives us a measure of how

accurate our model is at classifying network traffic as either normal

or malicious.

6

4. RESULT AND ANAYSIS

4.1 Results
The results indicate that the use of a combined dataset significantly

enhances intrusion detection accuracy. The IDS achieves high

accuracy, detection rate, and maintains a low false alarm rate. As

shown in Table 1:

Table 1. Comparison of Intrusion Detection Performance

Across Datasets

Name Accuracy Detection Rate
False Alarm

Rate

KDD Cup

1999
99.90% 83% 8%

NSL-KDD 99.83% 89% 10%

Combined

Datasets
99.93% 90% 8%

These results demonstrate the superiority of the IDS utilizing the

combined dataset over those relying on individual datasets alone.

The combined dataset shows promise for enhanced intrusion

detection. While the current improvement in accuracy over

individual datasets (99.93% vs. 99.83-99.90%) is modest, it lays

the groundwork for further refinements and potentially even greater

accuracy gains in the future. Moreover, the detection rate for the

combined dataset reaches 90% representing a notable improvement

over the individual datasets. Additionally, the combined dataset

achieved a noteworthy 90% detection rate, surpassing the

performance of individual datasets. Importantly, the false alarm

rate remained low at only 8%, demonstrating the IDS's ability to

differentiate between normal and abnormal network activity. These

findings strongly support the value of integrating diverse datasets

to improve the overall performance of intrusion detection systems.

4.2 Classification Report
Analyzing the classification reports for KDD-CUP 1999, NSL-

KDD, and the combined dataset reveals generally promising

performance across all. Notably, most reports show consistently

high accuracy (often 1.00) for normal traffic classification,

indicating the model's ability to accurately identify normal network

activities.

Precision tells us how accurate our "malicious" detections are,

indicating the proportion of times the model flagged something and

it actually turned out to be a true threat.

Recall, on the other hand, focuses on how well the model identifies

all malicious activities, ensuring it doesn't miss any threats.

The F1-score provides a single measure of how well the model

identifies true threats. It considers both precision (accurately

identifying malicious traffic) and recall (catching most of the

malicious activity). The high precision and recall scores we see

suggest the model excels at both accurately flagging threats and

minimizing missed threats.

Support shows the number of instances in each category (malicious,

normal, etc.). This helps us interpret precision and recall, especially

for less common activities.

Figure 2.1 Classification Report for KDD-CUP 1999

Figure 1.2 Classification Report for NSL-KDD

Figure 1.3 Classification Report for the Combined Dataset

4.3 Analysis
In this research, I initially explored various machine learning

algorithms but ultimately focused on Decision Trees to delve into

how Artificial Intelligence reaches decisions, particularly in

Intrusion Detection Systems (IDS). As I constructed the decision

tree and merged datasets, I observed that the KDD-Cup 1999 set

had 76, NSL-KDD had 85 and the Combined Decision Tree had

66 leaves.

7

Figure 2.1. Decision Tree from KDD Cup 1999

Figure 2.2 Decision Tree from NSL-KDD

Figure 2.3 Decision Tree – Combined Dataset

8

Figure 3. Decision Tree- Combined Dataset

Even though these are huge trees, I recognized that the cyan color

indicated normal traffic, which was abundant in the dataset.

However, I was uncertain about the significance of the other colors.

To decipher this, I limited the maximum nodes to 10 (see Figure 3

below), enabling me to delve into each node's details and

understand how the IDS made its decisions.

Through this analysis, I observed that light blue color is normal

traffic, Pink represents the Warez client R2L attack, where a user

attempts to access copyrighted software illegally. Red signifies the

Warez master R2L attack, where copyrighted software illegally is

orchestrated on a larger scale. Yellow indicates a hacker attempting

to hack an account. The darker colors corresponded to higher

confidence levels in the IDS's decisions. At the root node, the root

of the node detects the temperature of a CPU.

• High CPU Temperature (>= 26°C): The IDS checks for

a sudden spike in temperature and if there is then it might

indicate an attack

• Low CPU Temperature (< 26°C): The IDS analyzes the

source port of the traffic. Repeated traffic from the same

source port is likely legitimate, like you are accessing

your own account. However, if traffic exhibits constant

switching of source ports, it could indicate a potential

attack.

Gini means how well the decision tree can split data into different

groups, like normal and attack traffic. A lower Gini score means

the split is better at separating the data. "Sample" is just how many

data points end up at a particular decision point in the tree during

training. "Value" is the actual CPU temperature for each piece of

data that ends up at a decision point. "Class" is the category the

decision tree is trying to guess if it is normal traffic or a R2L attack.

4.4 ROC Curve Analysis
The Receiver Operating Characteristic (ROC) curve is a valuable

tool in machine learning, visualizing a classification model's

performance across different thresholds. It helps assess the trade-

off between the model's ability to correctly identify malicious

traffic (True Positives) and avoid flagging normal traffic as

suspicious (False Positives).

While both KDD CUP 1999 and NSL-KDD achieve good

performance, the combined approach achieves the best

performance with an AUC of 0.91. The Area Under the Curve

(AUC) summarizes the overall performance of the model across

all thresholds. This is evident in the ROC curves themselves. The

combined dataset's curve is closest to the top-left corner,

indicating a good balance between accurately detecting malicious

traffic and minimizing false alarms.

Figure 4. ROC Curve for all Datasets

9

5. CONCLUSION
In conclusion, this research has shed light on the potential of

decision trees as a valuable tool for enhancing Remote to Local

(R2L) intrusion detection. By leveraging the combined strengths of

multiple datasets, like the KDD Cup 1999 and NSL-KDD datasets

used in this research, the research demonstrates a slight

enhancement in detection rates for R2L attacks.

This is particularly noteworthy when considering the low false

positive rate achieved by the model. These findings pave the way

for the development of more robust intrusion detection systems

capable of proactively mitigating R2L attacks and bolstering

overall cybersecurity posture. However, there are still challenges to

overcome. One major hurdle is the evolving nature of cyber threats.

Attackers continuously develop new techniques, and decision trees

trained on historical data may struggle to identify novel attack

patterns. Additionally, the effectiveness of decision trees can be

hampered by data quality issues and class imbalance within

intrusion detection datasets. Another challenge is the limited time

available for research, which can restrict the scope and depth of

investigation.

To address these challenges, future research can explore strategies

for continuous learning and adaptation of the decision tree model.

This could involve incorporating real-time threat intelligence feeds

or employing online learning algorithms that can update the model

as new data becomes available. Furthermore, investigating

techniques to handle class imbalance, such as oversampling or cost-

sensitive learning, could improve the model's ability to detect rare

R2L attacks. By implementing these strategies, we can strive

towards developing intrusion detection systems that remain vigilant

in the face of ever-changing cyber threats.

6. ACKNOWLEDGMENTS
I would like to express my sincere gratitude to Dr. Mingrui Zhang

and Dr. Sudharasan Iyengar for their guidance and support

throughout this research. Their mentorship in both planning and

executing this project has been invaluable. I am also grateful to Dr.

Collin Engstrom for his insightful teachings on machine learning,

which have greatly inspired my pursuit of knowledge in this field.

Special thanks are due to Eric Wright and Nadia Miranda for their

support and assistance, not only in my research but also throughout

my undergraduate studies. Lastly, I want to extend my heartfelt

appreciation to my girlfriend, Micayla. Her support and

encouragement throughout this research journey, despite the

technical nature of the subject matter, has been a constant source of

motivation.

7. REFERENCES
[1] S.Mukkamala, A. H. Sung, and A. Abraham, “Intrusion

detection using an ensemble of intelligent paradigms,” J.

Netw. Comput. Appl., vol.28 no.2, pp. 167-182, Apr. 2005

[2] KDD CUP 1999 Data. (n.d.).

https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[3] NSL-KDD Data. (n.d.).

https://www.kaggle.com/datasets/hassan06/nslkdd/data

[4] Jjj Tsai, C., Hsu, Y. F., Lin, C., & Lin, W. (2009). Intrusion

detection by machine learning: A review. Expert Systems

With Applications, 36(10), 11994–12000.

https://doi.org/10.1016/j.eswa.2009.05.029

[5] GeeksforGeeks. (2022, January 14). Intrusion detection

system using machine learning algorithms.

https://www.geeksforgeeks.org/intrusion-detection-system-

using-machine-learning-algorithms/

[6] Samunnisa, K., Kumar, G. S. V., & Madhavi, K. (2023).

Intrusion detection system in distributed cloud computing:

Hybrid clustering and classification methods. Measurement:

Sensors, 25, 100612.

https://doi.org/10.1016/j.measen.2022.100612.

[7] ACM SIG PROCEEDINGS template.

http://www.acm.org/sigs/pubs/proceed/template.html

[8] Samunnisa, K., Kumar, G. S. V., & Madhavi, K. (2023).

Intrusion detection system in distributed cloud computing:

Hybrid clustering and classification methods. Measurement.

Sensors, 25, 100612. https://doi.org/10.1016/j.measen.2022.1

10

http://www.acm.org/sigs/pubs/proceed/template.html

A Data-Driven Approach to Keyboard Optimization
David Sommerfield

davidsommerfield.zg@gmail.com
Winona State University

Computer Science Department
Winona, Minnesota, USA

Abstract
Keyboard layout optimization has historically relied on ob-
servations and theory instead of statistically robust modeling.
QWERTY, a product of these observations, was popularized
by its usage on typewriters in the 1870s and remains the
de facto keyboard layout today. Furthermore, the search
space for layouts grows factorially, making it impossible to
search exhaustively. To address these two issues, we propose
a layout-creation method that uses metaheuristic optimiza-
tion, corpus data from the web, and real-world typing data.
The typing data and corpus are decomposed into sequences
of two and three, referred to as bistrokes and tristrokes. From
these sequences we construct a regression model for pre-
dicting typing speed by using average typing time, corpus
frequency, and positional features. An objective function
is established for the optimization by multiplying the sum
of each tristroke’s occurrence count by its predicted typing
time, effectively estimating the layout’s typing time across
the corpus. Then, we apply customized simulated annealing
to converge towards a near-optimal keyboard arrangement.
The result is a keyboard layout with an estimated 6% im-
provement over QWERTY’s typing time.

1 Introduction
The most widely adopted keyboard layout, QWERTY, was
first created for typewriters by Christopher Sholes in the
early 1870s. It was further developed and popularized with
the success of the Remington No. 2 typewriter, which fea-
tured the layout [13]. The design of the typewriter informed
the design of computer keyboards, keeping the QWERTY
layout. Today, 150 years since its invention, QWERTY is the
most common keyboard layout and by extension the most
common means of human-computer interaction, extending
even to mobile devices. The continued usage of QWERTY
has led to concerns about its antiquated design posing risks
of injury or discomfort for its users [1]. Having recognized
this issue, many have sought to create keyboard layouts that
mitigate QWERTY’s shortcomings.
In the 1930s, Dvorak proposed more rigorous methods

of evaluation for layout optimization, marking perhaps the
first venture into using statistics for this problem. Numerous
ergonomic factors have since been identified from studies

Proceedings of the 24th Winona Computer Science Undergraduate Research
Seminar, April 23, 2024, Winona, MN, US

like these. However, the effect of these ergonomic factors is
seldom numerically measured to determine an evaluation
model. Instead, researchers tend to rely on these observa-
tions to inform theoretical models. There are several standard
practices derived from these observations: optimizing the
distance between keys, choosing columns according to per-
ceived finger dexterity, limiting the occurrence of so-called
single-finger bigrams, assuming perfect touch typing, and
considering relative character frequencies [12].

Despite advancements since the proliferation of QWERTY,
the field still faces challenges in quantifying the precise im-
pact of each ergonomic factor on typing efficiency and user
comfort. Underscoring these considerations is the challenge
of the search space itself; optimizing for 𝑛 keys creates a
search space of 𝑛! potential layouts, making keyboard opti-
mization a non-trivial problem in combinatorial optimization.
Consequently, researchers have used various metaheuristic
approaches to effectively explore this search space, includ-
ing simulated annealing [10], ant colony optimization [5],
swarm optimization [14], genetic algorithms [9], and more.

2 Methodology
2.1 Data Processing
Two datasets are used to estimate the typing time. The first
dataset, the iWeb corpus [3] is one of the largest available
collections of English text and uses a systematic selection of
websites to ensure data quality. This corpus data is used for
frequency analysis of characters and character sequences.
The second data set, The 136M Keystrokes Dataset from
Aalto University [4], contains typing test performance data
totaling about 8,228 hours from 168,000 participants. Partici-
pant metadata enables a controlled analysis of four layouts:
AZERTY, Dvorak, QWERTY, and QWERTZ.

Several steps are taken to ensure the keystroke data pro-
duces a quality analysis. First, data undergoes normalization,
where it is segmented into distinct sessions and users and
occasional errors in the source are corrected. Then, the data
is updated to reflect the accuracy of each keystroke through
approximate string matching.

When determining string correctness, three types of typ-
ing errors must be accounted for: insertion, deletion, and
swapping [11]. For each typing session, a keystroke validity
record is generated. Validity is updated on a per-window
basis to account for navigation within the typing session
using arrow keys or backspacing. Anytime the user makes a

11

Table 1. Types of Error Handled by Approximate String
Matching

Typing Error String typed
None But thank you for the offer
Insertion But thankk you for the offer
Deletion But tha k you for the offer
Substitution But thabk you for the offer

move with the arrow keys or backspaces, the typing record is
updated to reflect the correctness of each keystroke typed in
the window before it; the corrected window is appended to
the keystroke validity record, then a new window is created
starting from the last arrow key or backspace typed. Once
the last keystroke has been processed, the remaining window
is updated to reflect correctness and pushed to the keystroke
validity record. The validity record is then used to determine
the type of errors made so that the analysis can only include
correctly typed keystrokes. Insertion and replacement errors
need no adjustment because if a substring is not found to
be a match during string matching, it is deemed incorrect.
However, the case of deletion is handled differently because
of the fact that a keystroke that results in a deletion error can
be both correct and incorrect – incorrect for the preceding
string and correct for the proceeding string.

Table 2. Top 5 Bigrams and Trigrams Extracted from the
Corpus

Bigram Occurences Trigram Occurences
th 9709171 the 6076523
he 8552661 ing 3227179
in 7913861 and 2998065
an 6389345 ion 1716878
er 6348583 ent 1519196

After preprocessing, a sliding window decomposes the cor-
pus and keystroke data. The character sequences from the
corpus decomposition are referred to as ngrams, with ngrams
of length two and three being referred to as bigrams and
trigrams, respectively. The sequences attained from the key-
stroke data are referred to as nstrokes, with nstrokes of
length two and three referred to as bistrokes and tristrokes,
respectively. Every ngram encountered in the corpus is stored
alongside its frequency of occurrence. Whereas each cor-
rectly typed nstroke is recorded as a tuple of its characters
and a positional vector indicating the keys used to type them,
the tuple is a key for storing each unique nstroke’s typing
times. For instance, the identifier for the nstroke represent-
ing the string ’the’ on AZERTY, QWERTY, and QWERTZ
keyboards would be ((-1, 3), (1, 2), (-3, 3), ’the’) and this would
be used to store the typing duration of each instance of this
pattern regardless of layout.

Table 3. Keyboard Character Mapping for QWERTY

Q W E R T Y U I O P

A S D F G H J K L ;

Z X C V B N M , . /

SPACE

(−5, 3) (−4, 3) (−3, 3) (−2, 3) (−1, 3) (1, 3) (2, 3) (3, 3) (4, 3) (5, 3)
(−5, 2) (−4, 2) (−3, 2) (−2, 2) (−1, 2) (1, 2) (2, 2) (3, 2) (4, 2) (5, 2)
(−5, 1) (−4, 1) (−3, 1) (−2, 1) (−1, 1) (1, 1) (2, 1) (3, 1) (4, 1) (5, 1)

(0, 0)

2.2 Data Analysis
Our analysis limits the data used to typing sessions from
participants who reported using 9 to 10 fingers for typing
because they are most likely to adhere to touch typing prac-
tices. Touch typing is a standardized method where typists
use muscle memory to locate keys without looking at the
keyboard, and it is the most widely used keyboard input
methodology. Although, in practice, users may deviate from
perfect touch typing, this approach is chosen because it en-
ables a systematic examination of typing patterns while still
reflecting the effect of shortcuts the participants take.

2.2.1 Bistroke Analysis
The bistroke analysis reveals that frequency is the most sig-
nificant predictor of typing time, and as seen in figure 1
the typing speed follows a logarithmic curve with frequency,
demonstrating that bistrokes with a high frequency are aided
by muscle memory regardless of placement. After account-
ing for the effect of a bistroke’s frequency, we can determine
the influence of key placement and positional relationships
to other keys. Naturally, the analysis reveals that the rel-
ative dexterity of each finger plays a role in typing keys
assigned to that finger, with pinkies being far slower than
the other fingers and the middle and index being faster. In-
terestingly, the top row is predicted to be faster than the
home row by a marginal amount, which realistically may be
the case for QWERTY users as an adaptive behaviour. This
likely represents a bias in our data. An analysis of positional
relationships reveals three major categories of bistroke:

• ALT (Alternating Bistroke): a bigram typed on both
hands by alternating sides of the keyboard. This is the
fastest category.

• SHB (Same-hand Bistroke): a bigram typed with the
same hand. This category is typically slower due to
the need for sequential finger movements on the same
hand and, therefore, greater coordination.

• SFB (single-finger Bistroke):. A bigram typed using
the same finger twice. This is the slowest category,
because the keys cannot be hit in rapid succession. It
is especially slow for data at high words per minute.

12

An important takeaway from this analysis is that how much
a feature contributes to the speed prediction changes depend-
ing on the WPM range of the data. Therefore, our proposed
keyboard optimization methodology considers this and opti-
mizes for specified ranges.

103 104 105 106 107

Number of Occurrences

100

200

300

400

500

Av
er

ag
e

Ty
pi

ng
 T

im
e

(M
illi

se
co

nd
s)

thhe
inanerre

on
at
ndoren

es

ou
to
ng

te

ti
itar
st
ed

isal
ha

ntve
le

seasea

ofme

ll
ronehico

de

riur
io

liicraom
ce
beelca

il

si
chfo

ta
ma
hous

et
ut
la

ac

wi

ec
rs

pe
ns
ly

ot
ee
lo

yo
di
so

gepr

ct

ow

un

wass
tstr

no

rt
ad

ie

nc

we

ol

em
aiid
ke
mo

ul

wh
ay

pl

ir
nioo
amsh

na
po

pa

im

fi
os

ig
vi

s.s,

mi

ld

av

ev

iv
su

ghwo

opabfery

do

mp

iatubl
bo

e.

ci

ag

ck

ovsa
tyodbu

e,

fr
ttif

ex

da

rd

ap
sp

lseyba

eiup
uc

gr

ff
ak
pp
ep

cl

cr

ki

go

cu
rn

giht

rm
fa

oc

ga

ef

ewds
ue
ug
rk

pi

t.

lu

du

ny

sc

qu

um

ye
au
ua
ru

lt

byui

t,

ysbiva

eg

oi
rr

y,

fu

ud

rc

ok
mu

d.

tl

ip

n,
n.

og

mm

drft
brpu

y.

nn

r,
rg

wn

d,

hr

r.
ob
my

nk

mb

ik
pt
rleonu

msoaksgu

afib
tw

ccnlju

ub

xp

rv

gngs

nf
ph
ps

dd

iz

aw

flkn

sk
glvo

dy

nv

sl

tc

ze
xt

hu

g.eb

sy
sm

oe

l,
g,

ws
l.

jolf
hy

eq

oy

rf

lpyi

bs

m.

dl

rp

ek

cysn
gg

wr

je

h,

lv

o,

dg

h.

lk

tm

m,

sw

xi

eh

dn
lm
xa
hn

rb

a,
k.
o.

gy

xc

yt

k,

ix

yp

dv

a.

yl

cs

nm
xe

ax

ym

az
p.

ox

ufuy

za

hs
lw

ka

hl

ya

ah

sf

w,

pmrw

kl
w.

eu
nj
tn

py

p,

ohdm

oj

yn
wl

bb

lc

c.yb

iq

iu

gt

lrfy

tf

ky
rh

yc

aj
f.

bt

lb

sd
dw
ae

yw

hm

nh

f,

ja

sb

ko

yd

u.c,

nr

yr

pd

tb

tp

uofs

mf

ez
mn
nb

vy

nw

u,hb

ozwt
db

i,

ku

lgb.

i.

dc

bv

zy

ml

dh
kf

x.

dt
dfb,

uv

ao

pgnq
wy

sg

aa

ji

aq

kb

nx

wk

ij

z,

gf

bd

kdwm

cm

iw

xl

zh

Figure 1. Relationship Between English Bigram Frequency
and Typing Time on QWERTY

104 105 106 107

Number of Occurrences

100

150

200

250

300

Av
er

ag
e

Ty
pi

ng
 T

im
e

(M
illi

se
co

nd
s) SFB

Non-SFB

Figure 2. The Effect of SFBs and Frequency on Typing Time
(> 80WPM)

2.2.2 Tristroke Analysis
Several features unique to trist-rokes are identified but are
not found to be very statistically significant for the cost func-
tions defined, so we choose not to include them to avoid over-
fitting. The exception for this is the single-finger-skipstroke
category. Like the single-finger bistroke, it is two strokes
sharing a finger, but instead, it is separated by one stroke in
between. These are important to analyze as for fast typists,
single-finger skipstrokes behave more like delayed single-
finger bistrokes. Other tristroke features merit future explo-
ration.

2.3 Creating the Objective Function
The goal of the objective function is to, for a specific WPM
range, predict the typing time of a corpus given a layout. To
achieve this, we create a cost function that evaluates each
trigram in the corpus, predicts its typing time multiplied
by its occurrence count, and takes the sum of the results.
Using a manually devised cost function from our findings
instead of using a neural network or similar methods, we
prevent overfitting on the limited dataset. From here, we
use the Levenberg-Marquardt algorithm to fine-tune the free
parameters in the cost function to best fit the data. Each cost
function outlined below was curated to describe the trends
outlined in the data analysis while keeping the number of
parameters minimal to ensure generalizability.

To derive the tristroke cost function, we must first derive
a bistroke cost function. The bistroke function, denoted as
𝐶 (𝑏), takes a bistroke 𝑏 of category 𝑖 = {1, 2, 3}, with base po-
sitional penalties 𝑃𝑥 and 𝑃𝑦 , categorical positional penalties
𝑃
(𝑖)
𝑥 and 𝑃 (𝑖)

𝑦 , and a frequency penalty 𝑓 (𝑏) and predicts the
time to type it. Following our analysis, the frequency penalty
is put into a logarithmic function with the free parameters
𝑝1, 𝑝2 and 𝑝3. The columnar penalties 𝑃𝑥 and 𝑃 (𝑖)

𝑥 are deter-
mined by taking the absolute value of the x-coordinate from
the second key in the bistroke. Each possible column value
is assigned a free parameter to weigh its significance.
Similarly, row penalties are determined based on their y-

coordinate, with each possible y-coordinate being assigned a
free-parameter. We can safely assume that most participants
use a row-staggered layout. On a row-staggered keyboard,
the top row has a −0.25 key offset and the bottom row has
a 0.5 key offset. For single-finger bistrokes, we introduce a
distance parameter Δ to represent the row-stagger adjusted
distance between keys; for other cases, Δ defaults to 1. We
add a free-parameter 𝑝4 to the distance to establish a base-
line penalty weight that determines the amount that distance
contributes on top of this effect and to prevent Δ from be-
coming zero and negating the placement penalties. Finally,
we set the bistroke cost function to the product of the finger
penalties and the frequency logarithm to amplify the impact
of features across different frequency ranges:

𝐶 (𝑏) = (𝑝0 log(𝑓 (𝑏) + 𝑝1) + 𝑝2)

×
(
1 + 𝑃𝑥 (𝑏)𝑃𝑦 (𝑏) + 𝑃

(𝑖)
𝑥 (𝑏)𝑃 (𝑖)

𝑦 (𝑏) (Δ + 𝑝4)
)

For the tristroke cost function 𝐶 (𝑡), we take the sum of the
cost of its constituent bistrokes 𝑏1 (𝑡) and 𝑏2 (𝑡), then add a
small penalty for the trigrams associated skipstroke 𝑠 (𝑡), if
it is a single-finger skipstroke. The single-finger skipstroke
penalty, like the single-finger bistroke penalty, considers
positional penalties 𝑃𝑥 and 𝑃𝑦 as well as a distance penalty
(Δ + 𝑝5). It should be noted that the single-finger skipstroke

13

penalty defaults to 0 if there is no single-finger skipstroke.
𝐶 (𝑡) = 𝐶 (𝑏1 (𝑡)) +𝐶 (𝑏2 (𝑡)) + 𝑃𝑥 (𝑠 (𝑡))𝑃𝑦 (𝑠 (𝑡)) (Δ + 𝑝5)

Finally, the data is limited to a desired WPM range. The
bistroke cost function is then fit to the bistroke data, and the
tristroke cost function is fit to the tristroke data. The MAE
of the fit changes depending on the WPM, but the 𝑅2 metric
stays the same. For 80WPM, this results in 𝐶 (𝑏) having an
MAE of 12 milliseconds and an 𝑅2 of 0.78. 𝐶 (𝑡) is intention-
ally made less accurate to not overfit with an MAE of 26
milliseconds and an 𝑅2 of 0.42. The cumulative cost 𝐶 (𝑙) for
a layout 𝑙 is the sum of each typable tristroke’s predicted
typing time multiplied by its number of occurrences, effec-
tively estimating the typing time for a given layout across
the corpus:

𝐶 (𝑙) =
∑︁
𝑡 ∈𝑇

(𝐶 (𝑡) × 𝑓 (𝑡))

this is the objective function passed onto the simulated an-
nealing algorithm for optimization.

2.4 Simulated Annealing
Simulated annealing is a metaheuristic optimization tech-
nique inspired by the annealing process in metallurgy, where
metals are cooled gradually to achieve a stable state with
minimized energy [8]. In the context of keyboard optimiza-
tion, it is used as an iterative algorithm that explores dif-
ferent keyboard layouts by gradually accepting key swaps
that reduce the overall energy (i.e. predicted typing time).
Unlike gradient descent and other methods that always aim
for an absolute minimum, simulated annealing allows for
occasional acceptance of higher-cost solutions to explore a
broader search space, preventing the algorithm from getting
stuck in local optima. Eventually, simulated annealing con-
verges towards a stable, low-cost configuration – the global
minimum or an approximation of it.
Selecting the parameters in simulated annealing for con-

vergence can be challenging, usually requiring experimen-
tation or domain knowledge [2]. We outline a dynamic ap-
proach to setting the initial temperature and termination
criterion to address this. This ensures layouts can be ex-
plored across a variety of data modifications. For instance,
we may want to analyze layouts at different ranges of words
per minute (WPM), or we may only want to optimize for
a subset of the total keys. For such cases, the cost function
may evaluate to drastically different values, and the number
of swaps necessary to converge on a layout may change,
necessitating different parameters.
2.4.1 Transitions
The first step in implementing simulated annealing is defin-
ing a comprehensive set of solutions that represent potential
configurations for the optimization. It is essential that the
solution space is consistent and that changes are gradual
enough to allow simulated annealing to converge. For key-
board optimization, we establish a solution to be a mapping

between keys and positions on a matrix as seen in table 3.
The data structure used to map keys and positions consists
of two hashmaps. One hashmap maps coordinates to keys
and the other keys to coordinates. By using hashmaps, the
two operations that need to be performed on the matrix,
look-ups, and swapping, can be done in constant time. Fur-
thermore, the coordinate system devised helps encapsulate
real-world usage of the keyboard by encoding position in
a way that is descriptive of relevant relationships: fingers
are grouped by absolute value, the hand is determined by
sign, and distance is easily calculated. The neighborhood of
a given layout consists of all layouts that can be generated
as the result of a single key pair swap.
The probabilistic criterion governing the acceptance of

candidate solutions in the simulated annealing algorithm
is derived from the Boltzmann distribution function, a fun-
damental concept in statistical mechanics used to describe
the likelihood of particles inhabiting various energy states
within a system [7]. This criterion is mathematically repre-
sented as follows:

𝐴(𝑖) =
{
exp

(
−Δ𝐸

𝑇

)
, if Δ𝐸 > 0

1, otherwise

Here, Δ𝐸 represents the change in energy within the system
or, in this case, in the estimated typing time between the
current layout and the candidate layout, and 𝑇 denotes the
temperature parameter of the system. If the change in typing
time is negative (Δ𝐸 < 0), indicating an improvement in
estimated typing time, the candidate layout is accepted with
certainty. However, if the change in estimated typing time is
positive, indicating a worsening layout, the candidate layout
is accepted with a probability determined by the Boltzmann
factor, which is more likely to accept slight decreases in
performance over large ones.

This choice of probabilistic criterion allows the simulated
annealing algorithm to converge on an optimal or near-
optimal solution through gradual refinement [6]. Initially,
the temperature is high, allowing the algorithm to explore
the solution space and escape local minima by occasionally
accepting suboptimal moves. As the algorithm progresses
and the temperature decreases, the probability of accepting
suboptimal moves diminishes. The reduction in temperature
is controlled by a cooling schedule, which dictates how fast
and effectively the algorithm converges to a solution. We
adopt a monotonically decreasing geometric cooling sched-
ule, defined as follows:

𝑇𝑖 = 𝛼𝑖𝑇0

where 𝑇0 is the initial-temperature and 𝑎 is the cooling-rate,
0 < 𝑎 < 1.
2.4.2 Setting the Initial Temperature
Before any transitions are performed, an initial tempera-
ture must be set for the cooling schedule to iterate on. A

14

0 5000 10000 15000 20000 25000
Iteration

5.2

5.3

5.4

5.5

5.6

Pr
ed

ict
ed

 Ty
pi

ng
 T

im
e

(M
illi

se
co

nd
s)

1e10
Layout 1
Layout 2
Layout 3

Figure 3. Convergence of Estimated Typing Time during
Simulated Annealing

common approach to setting the initial temperature is manu-
ally estimating the initial temperature based on the problem
domain and the characteristics. This initial temperature is
frequently chosen so that the acceptance probability at the
beginning of simulated annealing is approximately equal
to some value. Lacking relevant literature for our problem
domain, we resort to the approach outlined in Ben-Ameur
[2]. We set a variable 𝜒0 to be the desired initial acceptance
probability of suboptimal transitions at the beginning of the
algorithm. An iterative method is employed to compute the
initial temperature 𝑇0 such that the acceptance probability
approaches 𝜒0. To compute the acceptance probability 𝜒 (𝑇)
for a given 𝑇 , first, we randomly generate a set S of positive
transitions (i.e., transitions where 𝐸𝑏𝑒 𝑓 𝑜𝑟𝑒 < 𝐸𝑎𝑓 𝑡𝑒𝑟), where
each transition 𝑠 represents a swap of two keys. To derive the
final conditional expectation for accepting a positive transi-
tion, we take the ratio between the probability of accepting
a positive transition 𝑠 and the probability of generating the
transition 𝑠:

𝜒 (𝑇𝑛) =

∑
𝑠∈𝑆 exp

(
−𝐸𝑎𝑓 𝑡𝑒𝑟 (𝑠)

𝑇𝑛

)
∑

𝑠∈𝑆 exp
(
−𝐸𝑏𝑒𝑓 𝑜𝑟𝑒 (𝑠)

𝑇𝑛

)
Then, to find 𝑇0, we define an initial guess temperature 𝑇1,
and use a recursive formula until |𝜒 (𝑇𝑛) − 𝜒0 | ≤ 𝜖 for some
error 𝜖 :

𝑇𝑛+1 = 𝑇𝑛

(
ln(𝜒 (𝑇𝑛))
ln (𝜒0)

)
2.4.3 Termination Criterion
Finally, we establish the termination criterion for the simu-
lated annealing process to be the point at which the number
of iterations lacking improvement reaches the probabilistic
threshold that all potential swaps have been evaluated. We

do this to ensure the simulated annealing algorithm has set-
tled on some minima while allowing sub-optimal swaps to
be heuristically accepted, potentially escaping local minima.
To find the termination criterion, let 𝑆 be the number

of iterations to evaluate all potential swaps. Let 𝑘 be the
number of keys, for 𝑘 keys, the number of swappable key
pairs𝑛 =

(
𝑘
2
)
. We consider 𝑆 =

∑𝑛
𝑖=1 𝑠𝑖 , where 𝑠𝑖 is the number

of iterations required to evaluate the 𝑖-th pair after 𝑖 −1 pairs
have been evaluated.
The probability 𝑃𝑖 of selecting a new pair to swap is

𝑃𝑖 =
𝑛−(𝑖−1)

𝑛
= 𝑛−𝑖+1

𝑛
. Consequently, 𝑠𝑖 follows a geomet-

ric distribution with an expectation of E(𝑠𝑖) = 𝑛
𝑛−𝑖+1 .

By the linearity of expectations, we derive:

E(𝑆) = 𝑛

𝑛∑︁
𝑖=1

1
𝑖

To increase performance, we use the approximation:

E(𝑆) = 𝑛 log𝑛 + 𝛾𝑛 + 1
2
+𝑂

(
1
𝑛

)
where 𝛾 ≈ 0.5772156649 is the Euler-Mascheroni constant.
Since the number of iterations must be a positive integer, we
set our final stopping point to be:⌈(

𝑘

2

)
log

(
𝑘

2

)
+ 𝛾

(
𝑘

2

)
+ 1
2

⌉
The layout produced in this paper optimizes for the main
block of 30 keys. So the number of possible swaps is

(30
2
)
=

435 resulting in a stopping point of
⌈(30

2
)
log

(30
2
)
+ 𝛾

(30
2
)
+ 1

2
⌉
=

2, 895 iterations lacking improvement.

3 Results
For the final layout, we choose to use the 30 most common
characters in our corpus, which is the alphabet, plus the
addition of four special characters: the comma, period, hy-
phen, and apostrophe. This layout differs by 2 characters
from the QWERTY layout, so to compare the final layout
with QWERTY requires we only predict the time for strings
in the corpus that can be typed on both layouts. Although,
the average typing speed was 47 WPM, we set the target
WPM to ≥ 80 as a litmus test for proficiency. This results in
single-finger bistrokes having a greater impact and frequency
having less of an impact. Optimizing for an above average
WPM like this is desirable if the goal is to raise the upper
threshold of potential typing spped. Using the methodology
in this paper, one could also aim to optimize for the average
user, improving the mean speed. The resulting layout can be
seen in table 4.

The predicted time to type the iWeb corpus on QWERTY
is 54,934,581,797 milliseconds, dvorak is 52,565,248,833 mil-
liseconds, a speed up of 4%, and the layout produced in
this paper is predicted to take 51,429,827,290 milliseconds, a
speed up of 6%. Our analysis revealed positional categories
of bistroke that played a significant role in the prediction of

15

Table 4. Generated Layout for Typing Speeds ≥ 80 WPM

M R T C W , K A E ’

L N D S V Y U O I G

H X Z B F . - Q J P

SPACE

typing speed. Namely, ALTs which are shown to be faster,
and SFBs which are shown to be slower. For QWERTY, 18.3%
of all bistrokes are ALTs and 5.7% of them are SFBs, dvo-
rak has 33.6% ALTs and 2.8% SFBs, and the layout produced
in this paper has the best result of 33.6% ALTs and 1.4%
SFBs. The fact that speed optimization yields only marginal
improvements in typing efficiency is not unexpected, but
remains a valuable take away as it suggests prioritizing the-
oretical features over solely focusing on speed optimization
may offer more substantial benefits.

4 Future Work
Future research lies in addressing the biases introduced by
the similiarities of the QWERTY, AZERTY, and QWERTZ
layouts, since they hinder the objective function’s ability to
generalize. To facilitate this future research, an open-source
tool called Kiakl was developed to crowd-source data from
alternative keyboard layouts. Further avenues of future in-
vestigation include exploring the inclusion of more optimiza-
tion criteria, such as finger dexterity and speed as proxies
for comfort, as well as investigating more efficient variations
of the simulated annealing algorithm.

References
[1] TK Amell and S Kumar. 2000. Cumulative trauma disorders and key-

boarding work. International journal of industrial ergonomics 25, 1

(2000), 69–78.
[2] Walid Ben-Ameur. 2004. Computing the Initial Temperature of Simu-

lated Annealing. Computational Optimization and Applications 29, 3
(01 Dec 2004), 369–385. https://doi.org/10.1023/B:COAP.0000044187.
23143.bd

[3] Mark Davies. 2018. The iWeb Corpus. Available online at https:
//www.english-corpora.org/iWeb/..

[4] Vivek Dhakal, Anna Feit, Per Ola Kristensson, and Antti Oulasvirta.
2018. Observations on Typing from 136 Million Keystrokes. In Pro-
ceedings of the 2018 CHI Conference on Human Factors in Computing
Systems (CHI ’18). ACM. https://doi.org/10.1145/3173574.3174220

[5] Jan Eggers, Dominique Feillet, Steffen Kehl, Marc Oliver Wagner, and
Bernard Yannou. 2003. Optimization of the keyboard arrangement
problem using an ant colony algorithm. European Journal of Opera-
tional Research 148, 3 (2003), 672–686.

[6] Vincent Granville, Mirko Krivánek, and J-P Rasson. 1994. Simulated an-
nealing: A proof of convergence. IEEE transactions on pattern analysis
and machine intelligence 16, 6 (1994), 652–656.

[7] Stewart Harris. 2004. An introduction to the theory of the Boltzmann
equation. Courier Corporation.

[8] Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. 1983. Opti-
mization by simulated annealing. science 220, 4598 (1983), 671–680.

[9] Lorie M Liebrock. 2005. Proceedings of the 2005 ACM symposium on
Applied computing. ACM.

[10] Lissa W Light and Peter G Anderson. 1993. Typewriter keyboards via
simulated annealing. AI Expert (1993).

[11] Gonzalo Navarro. 2001. A guided tour to approximate string matching.
ACM computing surveys (CSUR) 33, 1 (2001), 31–88.

[12] Marc Oliver Wagner, Bernard Yannou, Steffen Kehl, Dominique Feil-
let, and Jan Eggers. 2003. Ergonomic modelling and optimization of
the keyboard arrangement with an ant colony algorithm. Journal of
Engineering Design 14, 2 (2003), 187–208.

[13] Koichi Yasuoka and Motoko Yasuoka. 2011. On the Prehistory of
QWERTY. Zinbun 42 (2011), 161–174.

[14] Peng-Yeng Yin and En-Ping Su. 2011. Cyber Swarm optimization
for general keyboard arrangement problem. International Journal of
Industrial Ergonomics 41, 1 (2011), 43–52.

16

https://doi.org/10.1023/B:COAP.0000044187.23143.bd
https://doi.org/10.1023/B:COAP.0000044187.23143.bd
https://www.english-corpora.org/iWeb/
https://www.english-corpora.org/iWeb/
https://doi.org/10.1145/3173574.3174220

Disclaimer: The contents of this paper are reproduced from the 2024 IEEE 14th Annual

Computing and Communication Workshop and Conference (CCWC), held at the University of

Nevada, Las Vegas, USA, from January 8th to 10th, 2024.

17

Elephant: LLM System for Accurate Recantations
Praise Chinedu-Eneh

Department of Computer Science
Winona State University

Winona, MN 55987, USA
praiseneh@icloud.com

Trung T. Nguyen
Department of Computer Science

Winona State University
Winona, MN 55987, USA
trung.nguyen@winona.edu

Abstract—This paper investigates the crossroads between
Large Language Models (LLMs), Information Retrieval (IR),
and the growing issue of misinformation in this current age of
the Internet. Large Language Models, including the GPT and
LLaMA series (both implemented in this paper), have given us
profound insight into how we interact on the Internet and in
real life. They have also innovated the way we interact with
information. However, these innovations also pose significant
shortfalls, particularly in the domain of misinformation from
the text. The main contribution of this paper lies in developing
a proposed strategy to mitigate the risks of misinformation
seen on the Internet and generated from LLMs with a focus
on public individuals by recanting statements they have made
and the retrieval of said statements. We propose a multi-
faceted approach that includes utilizing GPT3.5 and the open
source LLaMA2 LLMs, finetuning data curation, and integrating
accuracy mechanisms to ensure the most relevant and accurate
information is retrieved. The efficacy of this methodology is
measured using a cosine similarity metric. Considering that the
recanting of this model must be at or as close to the original
statement as possible, this metric is deemed most fitting. Findings
later in this paper deemed a similarity recall of 90.42% on
average with the GPT3.5 variant and 88.29% on average with
the LLaMA2 variant, both in zero-shot examples, indicating the
core semantic meanings were retrieved with variations on the
format of illustration.

Index Terms—Information Retrieval, LLMs, Information Re-
cantations, Misinformation, Machine Learning, Artificial Intelli-
gence

I. INTRODUCTION

The rapid evolution of Large Language Models (LLMs)
like GPT and LLaMA series has significantly impacted how
we interact with and retrieve information online. This paper
delves into the intersection of LLMs and Information Retrieval
(IR), focusing on addressing the challenge of misinformation
prevalent in the digital age.

A. Background and Evolution

We begin by exploring the development of traditional text
information retrieval methods and their transformation with
the advent of LLMs. The progression from early hypothet-
ical computerized systems in the mid-20th century, such as
the ”Memex” concept by Vannevar Bush [1], to modern
IR algorithms highlights a significant shift towards more
sophisticated techniques. This shift is further accentuated by
introducing LLMs, which bring an unprecedented ability to
understand context, generate coherent responses, and process
vast datasets.

The evolution of search engines, particularly with the emer-
gence of Google and its PageRank algorithm [2], marks a
pivotal shift in IR. This era saw the application of advanced
NLP techniques and graph-based algorithms, enhancing the
relevance and contextuality of search results.

A brief overview of the neural network architecture that
underpins LLMs sets the stage for understanding their capa-
bilities and limitations. These models, mirroring aspects of the
brain’s neural network, have revolutionized data processing
and retrieval and introduced challenges, especially in misin-
formation.

B. Proposed Approach

This work mainly contributes to developing a strategy
to mitigate misinformation risks by recanting statements
made within multiple broad documents, utilizing GPT3.5 and
LLaMA2 LLMs. This includes fine-tuning data curation and
integrating accuracy mechanisms, assessed using a cosine
similarity metric to ensure precise and reliable information
retrieval.

The paper aims to offer a comprehensive analysis of LLMs
in the context of IR and misinformation, providing insights
and methodologies to leverage these models responsibly in
our increasingly digital society.

In summary, our contributions are listed below:
• A multi-faceted information retrieval approach utilizing

GPT3.5 and LLaMA2 models, including fine-tuning LLM
data curation and topic modeling steps.

• A comprehensive study of accuracy mechanisms using
cosine similarly and topic verification to ensure the most
relevant and accurate information is retrieved.

• A proposed strategy to mitigate the risk of misinformation
generated by public individuals and online statements.

II. RELATED WORKS

This section reviews significant literature on Information
Retrieval (IR) and Natural Language Processing (NLP), partic-
ularly focusing on the integration of modern NLP techniques
with IR systems and the use of Large Language Models
(LLMs).

A. Early Approaches in IR

Gerald Salton (1971) [3] explored the System for the
Mechanical Analysis and Retrieval of Text (SMART), which

979-8-3503-6013-4/24/$31.00 © 2024 IEEE
18

allowed for documents to be represented as vectors in a multi-
dimensional space. This key feature changed the landscape
of text retrieval. Karen Spärck Jones (1990) [4] discussed
the role of artificial intelligence in IR, marking a significant
development in the field. Karen Spärck Jones (1997) [5] ad-
dressed the role of linguistically motivated indexing (LMI) in
text retrieval. The paper reviewed historical and contemporary
research in automated LMI via NLP, concluding that while
LMI is not necessary for effective retrieval, it plays vital roles
within broader information-selection systems.

B. Traditional ML Techniques in IR

1) Information Retrieval Research and Digital Libraries:
Karen Spärck Jones (2006) [6] provided insights into the
history of IR research, emphasizing the value of statistical
techniques. The paper argued for the potential of these meth-
ods in the evolving landscape of digital libraries, which deal
with heterogeneous, large-scale, and dynamic content.

2) Natural Language Processing in IR: Matthew Lease
(2007) [7] explored methods for integrating modern NLP with
state-of-the-art IR techniques and emphasized the application
to conversational speech data. This research underlined unique
challenges in speech data retrieval compared to text.

3) Large-Scale IR in Software Engineering: Michael Un-
terkalmsteiner et al. (2023) [8] described applying IR tech-
niques in industrial-scale software engineering. Through an
empirical study, they illustrated the practical application and
evaluation of IR methods in test case selection.

4) Machine Learning in Dynamic IR: Sharon Jiang et
al. (2023) [9] conceptualized machine learning for dynamic
retrieval of Electronic Health Record notes. Their work high-
lighted the potential of EHR audit logs as a data source for
training models in clinical contexts.

C. Deep Learning and LLMs for IR

1) Large Language Models in IR: LLaMA 2 [10] and GPT
3.5 [11] mentioned throughout this paper are large language
models (LLM). These machine learning statistical models
make predictions on the next word to generate based on the
previous scope of words and its own training data. Yutao
Zhu et al. (2023) [12] provided a comprehensive survey on
integrating LLMs in IR systems. The survey covered aspects
like query rewriters, retrievers, rerankers, and readers, offering
insights into the evolving role of LLMs in IR. Roulin Peng
et al. (2023) [13] explored embedding-based retrieval using
domain-agnostic LLMs for extracting structured data from
agricultural documents, highlighting the potential of LLMs in
domain-specific applications. Yan Gong and Georgina Cosma
(2023) [14] presented Boon, a cross-modal search engine that
integrates the GPT-3.5-turbo LLM with the VSE network
VITR for enhanced image-based information retrieval. Chinese
IR Community (2023) [15] summarized the outcomes of a
strategic workshop, discussed the impact of LLMs on IR
research, and proposed new technical paradigms.

2) Toolkits and Synthetic Data Generation in IR: Hugo
Abonizio et al. (2023) [16] introduced the InPars Toolkit
for synthetic data generation in neural IR research and later
released InParse-v2 [17]. The toolkit provided a unified and re-
producible pipeline for synthetic data generation, encompass-
ing generation, filtering, training, and evaluation processes.

III. PROPOSED METHODOLOGY

Fig. 1: An Overview of the Proposed Elephant System

This section will present our proposed methodological
framework, the Elephant System.

A. Data Collection

This paper aims to establish a methodological framework
that allows LLM to accurately recount statements made within
a text document. We have seen a shift in habitual media
consumption from traditional print publications in recent years
towards digital mobile devices, particularly video content
on social media platforms. In alignment with these require-
ments, the dataset chosen for fine-tuning the LLM comprised
YouTube video transcripts. Specifically, a series of podcasts
from All-In with Chamath Palihapitiya, Jason Calacanis, David
Sacks, and David Friedburg [18] were selected as the pri-
mary data source. The rationale behind selecting this data
source stems from the long-form nature of podcasts. This
inherently allows the data source to include a plethora of
statements on various topics over an extended duration. These
data characteristics will present a diverse array of topics
challenging the LLM, requiring the LLM to maintain accuracy
and consistency across wide ranging subjects over lengthy
discourse. The dataset comprises transcripts from multiple
podcast episodes. This is done to ensure a broad representation
of topics, requiring the model to not only recant statements
from a topic within an episode but also related topics across
differing episodes. Given that this research serves as a proof
of concept, the dataset is static rather than dynamic. The
subset provides a sufficient snapshot of the series, enabling an
adequate evaluation of the LLM’s performance in recantation
tasks.

19

B. Elephant

Our proposed system, Elephant, is implemented in two
variants, LLaMA2-7B [10] and GPT 3.5 [11] models, both
designed with the capability for precise textual recall, as the
name suggests. This model demonstrates a robust ability to
accurately replicate statements from text documents, despite
the diverse and varied dataset from which it’s required to
recall. In practice, Elephant can sift through large volumes
of text and echo the original content with minimal deviation,
particularly useful in applications where verbatim recall is
necessary.

The illustration above, Fig. 1, illustrates a holistic represen-
tation of the proposed Elephant system. The diagram presents
four primary entities and three processing stages: the prompt
keyword extraction component, the prompt topic extraction
component, the database, and Elephant, the main LLaMA 2
or GPT 3.5 based model. Intermediate steps include the cosine
similarity measure, curation of the top N entities, and the
prompt tuning step. Starting with the incoming prompt, which
can be something such as ‘What was discussed about covid
and quarantines’, the diagram traces the workflow through
two phases, topic extraction, keyword extraction, and database
extraction, culminating at the core of the system—Elephant,
which is based upon either the LLaMA2 or GPT 3.5 archi-
tecture. The intermediary steps, including the application of
cosine similarity measures, the selection of the top N entities,
and the final prompt tuning stage, are also mapped to provide
insight into the system’s processing pipeline. Essentially, the
system will accept a user query prompt, assess the keywords
and topics of the prompt, retrieve and select further relevant
information on how to properly comply with the request, use
that information to generate text from the core model, and
then respond to the user. Applying this to statements provides
an easily accessible way to perform a look-up on public
individuals, allowing a more holistic assessment of whether
supporting the public individual aligns with their own ideas.

C. Prompt Deconstruction

Considering the diagram illustrated in Figure 1, examining
the individual components and their responsibilities within the
overall architecture is pertinent.

We can group the larger system into three smaller subsys-
tems of individual components. This section will focus mainly
on analyzing the first subsystem, Prompt Deconstruction.
Delineated by Fig. 2, prompt deconstruction is initialized by
an incoming prompt. The nature of these kinds of prompts
will be user queries. The overarching system, especially this
portion of the system, is predicated on the assumption that the
user is querying based upon prior knowledge of the general
nature of the subject entity the corpus is composed of. This
means the user will understand that the resultant text will
be a culmination of statements made by a particular entity,
whether an individual or an establishment. In this paper, the
entities in question are the proprietors of the podcast. Although
functionality could be extended to retrieve statements amongst
an array of entities, that is not the focus of this paper.

Fig. 2: A close up of the prompt construction step

1) Topic Extraction: The user prompt, once accepted, is
taken and deconstructed bidirectionally and then fed into a
topic extraction and a keyword extraction system, respectively.
The former, topic extraction, is done using a base LLaMA2-
7B model. Although other topic modeling approaches, such as
Latent Dirichlet Allocation (LDA) using tools like spaCy [19]
or Gensim [20], have been known to provide sufficient topic
words, the backbone of these approaches still tends to rely on
metrics adjacent to term frequency. This can lead to including
topic words with little to no meaning or relevance compared
to the scope of the episode entry from which it is derived. For
this reason, we found that using these packages in a domain
applicable to keyword extraction tends to produce higher
functioning results, which is mentioned later in this paper, and
using transformer models such as LLaMA2 or the GPT series
leads to better topic extraction. Due to the inherent attention
mechanism factor within transformer models, they can derive
semantic meaning with a higher degree of relevance. The
downside to such an approach is the embodiment of the main
contribution of this paper, the inconsistencies in the output
topic words extracted.

Fig. 3: An example of topic extraction prompt

This is mitigated via a three-step approach illustrated in Fig.
3. First, at the time of inference, the model parameters are set
to result in a more deterministic output. Setting the tempera-
ture output to an incredibly low floating-point number, in this
case 0.1, is a main contributor. Second, the prompt passed
through to the topic extraction model. This must be precise
in what and how the topics are extracted from the prompt

20

using the model. Attributes such as explicitly requesting the
number of topics, the composition of the topics—words,
phrases, or otherwise—and the format to provide them are all
necessary. To limit deviation, it is useful to explicitly state
what is not permittable to respond with. In this case, we
specifically requested the omission of brackets and parenthesis
when listing topics. Third, the nature of the embeddings being
compared will also mitigate deviation. This will be detailed
during the cosine similarity step.

2) Keyword Extraction: The latter, keyword extraction, uses
a multi-step process where the aforementioned spaCy and
Gensim packages are applied. Initially, the spaCy library is im-
ported and loads a natural language processing model through
which we pass the prompt. This will return a document repre-
sentation comprised of words parsed as text. A loop is initiated
on the document in which for each token in the document
if the token is not among the set of words deemed as ‘stop
words’, these include words such as ‘the’ and ‘is’, it will be
added to a list. We then use Gensim’s TextRank [20] keyword
package to extract the top N potential keywords. Then, for
each token, we generate the GPT2 embeddings, and then the
average embedding of all the tokens is calculated to represent
the overall semantic meaning of the text. We then generate
embeddings for each extracted keyword and calculate the
cosine similarity between the average text embedding and each
keyword. Finally, keywords with a cosine similarity above a
certain threshold are considered significant and appended to
the final list.

Fig. 4: An example of the database schema

3) Database: For this application, a Mongo Database was
used. The composition schema of each episode entry, refer-
enced in Fig. 4, is as follows: a reference id used to reference
which episode the entry came from. An entry date is used as
an indicator as to when the entry was added to the database.
Also, the transcript start property within the data is used to
identify at what point in the episode we are in. A sample
object is a property within the data, including the actual text
transcript. Finally, a topics array is within the data, indicating
the dominant topics associated with the episode entry, and a
keywords array contains the keywords of the episode entry.

4) Cosine Similarity: A critical step-component of the
Elephant system is its capability to ascertain the degree of re-
semblance between the incoming prompt and the vast number

of entries within its database. To accomplish this, the system
leverages a computed cosine similarity metric, a quantitative
measure of the cosine angle between two embedding vectors
in a multi-dimensional space, reflecting how closely aligned
the compared terms are in content and meaning.

Each transcript entry is converted into an embedding, essen-
tially a numerical representation that holds data, such as the
semantic meaning of the text, which is then compared against
the prompt embedding. Using PyTorch’s cosine similarity
function [21], we can leverage its efficiency to calculate cosine
similarity between embeddings. Furthermore, an additional
layer of comparing the topics and keywords of the prompt
with the entries in the database is also applied, producing a
similarity score, referred to as attribute similarity. In essence,
both an embedding-based similarity and an attribute-based
similarity are applied and are considered to indicate a quan-
titative measure of the overall resemblance to the prompt.
Subsequently, a combined similarity is calculated to create
a holistic similarity metric. This is done by averaging the
embedding similarity and the attribute similarity and is meant
to represent how closely an entry matches the incoming
prompt’s semantic content and thematic attributes.

D. Similarity Selection

This section overviews the next subsystem within the larger
Elephant system. It will focus mainly on selecting entries with
the highest similarity score and how they are tuned before
presenting them to the main Elephant model.

Fig. 5: An overview of Similarity Selection process

1) Top N Entries: After the computation and comparison
of cosine similarities, the scores are organized in descending
order, prioritizing entries with the highest levels of similarity.
The similarity values are floating point numbers ranging from
-1 to 1, with a value of 1 denoting perfect similarity. As
illustrated in Figure 3, this process culminates in selecting the
top N entries. This critical step hones the model’s focus on the
content most relevant to the given prompt, effectively serving
as a filter to enhance the precision of the model’s outputs.

Selecting the top N entries is instrumental in preventing the
model from being encumbered by an overabundance of data,
which could potentially dilute its attention capacity. Given
the architectural design of LLMs, there is a propensity for
the model’s attention to decay when processing excessive
amounts of information. The concept of attention refers to
the window of context the model can reflect upon within the
sequence or sequences of text. As the sequence gets longer,
information can slip in and out of this window based on a

21

TABLE I: A representation of topics and cosine similarity

Cosine Similarity (%) Topics

71.61% (0.4321)
facebook, google, microsoft, apple
amazon, twitter, peter thiel, mark zukerberg,
trump

65.53% (0.3105)
twitter, death, san francisco, google,
android, chief, product office, mobile coin,
angel investor, figma

65.01% (0.3002) girls, pain, twitter, phone monitoring, launch
startup science sores boys

64.73% (0.2945)
real estate, florida, facebook,
censorship, alternative, competition, platform,
management, excuse

criterion, causing the model to lose track of parts of the text,
known as attention decay. This decay can lead to less coherent
responses and, in some cases, generate responses that deviate
from factual accuracy, a phenomenon commonly referred to as
‘hallucination’ [22] within the field. By strategically limiting
the scope of data to the most relevant entries, we mitigate the
risk of such degradation, thereby preserving the integrity and
legibility of the model responses.

The selection of the top N entries, upon face value, may
seem trivial, but after closer inspection, this step is also crucial.
Table I depicts a selection of a few topics and their associated
cosine similarity after the initial prompt of ‘Did they ever
discuss Apple or the iPhone?’ In this study, we selected the top
N entries based on some arbitrary value, but in post evaluation,
we saw that the threshold of the relevance of the topics when
associated with cosine similarity is about 0.31. We omitted
the intermediary values for the sake of space, but as the table
represents, the topic of apple, still presents at a similarity score
of 0.4321, then around 0.3105, the topic of Apple specifically
is not present, but adjacent topics such as Twitter, Google and
San Francisco still exist. As we go below 0.31, topics tend to
lose representation of the original user query with topics such
as Real Estate. Considering this, it may be wise to select the
top N entries based on the cosine similarity value rather than
some arbitrary value. The consequences of this approach are
two-fold. The entries selected would have more relevance to
the initial query but at the cost of likely feeding the model
with too much incoming data, if the number of entries above
the threshold is substantial, negating the entire motive of this
curation step.

2) Prompt Tuning: The final step, prior to running inference
on the Elephant model, is prompt tuning. During this step,
the model is presented with the user’s initial prompt and the
associated entries it must quote from to respond accurately.
The model is set to have a behavioral pattern of a helpful
chatbot, ensuring its tone is adequate for human interaction.
Like the topic extraction step, it is crucial to have clear and
strict guidelines on how and what the model should be and
in what format. This would be the area where you would set
certain guidelines. In this study, the model was set to ensure it
includes the related links it’s quoting from and to urge the user
to follow those links for a more comprehensive understanding,
as these are just snippets. After these safeguards are in place,

the text is forwarded to the main inference model.

E. Model Output
The final subsystem of our proposed system, as depicted

in Fig. 6, is either a finetuned GPT 3.5 turbo model [23] or
a fine-tuned LLaMA2 model [10], specifically for accurate
information retrieval of statements made within a text corpus.
They were finetuned with data similar to an expected ques-
tion, retrieval, answer conversation format. Designed to select
individual quotes, Elephant outputs accurate quotes with the
help of the initial prompt tuning and prior steps. The max
tokens parameter is set to 1024 tokens. This allows the model
to generate many new tokens, although such a limit may never
be reached. Every other parameter is using the default value.
Alternatively, setting the temperature to a low value, such as
0.2 or 0.3, may also be beneficial.

Fig. 6: An overview of the Elephant output

IV. EXPERIMENTS AND RESULTS
Experiments were carried out on an array of prompts

tailored towards the nature of the data being retrieved on
the Elephant LLM, with both the GPT and LLaMA2 variants
tested. Moreover, the same prompt of ‘Did they ever discuss
Apple or the iPhone?’ was run through each model 10 times on
differing temperature parameters, and the cosine similarity was
calculated by comparison to the reference text embeddings.

A. LLaMA2 variant model
Regarding experiments run on the LLaMA2 variant and the

nature of this paper, experiments that consider the consistency
of the responses and the accuracy of the quotes within them
were the focus of evaluation. On each run, the model correctly
quoted the entries provided when responding to the user.
Unfortunately, the consistency of the model was in question.
Figure 5 depicts model responses, with the user prompt stated
at the top, and the various prompts listed subsequently as
‘Chatbot’. At a temperature value of 0.6, when a quote is
included, the model tends to replace statements with ellipses.
This suggests the model may have a propensity to paraphrase,
as seen in the first chatbot response, regardless of whether
it was explicitly directed not to do so. At a temperature of
0.1, the model tends to include the entire quote, regardless of
whether it was told explicitly to do so. Due to the deterministic
nature of a 0.1 temperature value, only one response was
displayed to avoid redundancy. Both values and the model
at large tend to include irrelevant quotes.

22

Fig. 7: The sample responses of LLaMA2 variant model

TABLE II: Performance results of the LLaMA2-based model

Avg (%) SD Var CV IQR Temp.
82.04%

(0.64070) 0.00127 1.61E-06 0.198% 0 0.1

83.22%
(0.66431) 0.04825 0.00233 7.264% 0.04902 0.2

85.32%
(0.70644) 0.06932 0.00481 9.813% 0.13126 0.3

85.08%
(0.70156) 0.0588 0.00346 8.381% 0.11366 0.4

88.29%
(0.76588) 0.03436 0.00118 4.486% 0.04259 0.5

B. LLaMA2 Results

Table II illustrates the relationship between temperature and
cosine similarity, considering the characteristic effect temper-
ature has on the output of the LLM and the overall cosine
similarity. As stated throughout this paper, cosine similarity is
the primary quantitative performance measure metric.

The columns in Table II are Average (Avg), Standard
Deviation (SD), Variance (Var), Coefficient of Variation (CV),
Interquartile Range (IQR), and Temperature (Temp), respec-
tively. The data within Table II suggests a trend where the
variability in the model responses, as indicated by the standard
deviation (SD), increases as the temperature increases, even-
tually peaking at a temperature of 0.3 and then starting to de-
crease. Considering that the average cosine similarity steadily
increases as temperature rises from 0.1 to 0.5, this suggests
that the LLaMA2 variant becomes less deterministic, which
aligns with the reference output improvement on average. We
can conclude that the LLaMA2 variant tends to produce more
varied responses in terms of similarity to the reference as the
temperature increases, but only up to a certain point. Beyond
that threshold, 0.3, the variability starts to decrease, while the
average similarity is independent of this trend and steadily
increases as temperature increases, indicating a potential sweet
spot around 0.4 to 0.5. This average may be increased by
supplying more data during the finetune process.

TABLE III: Performance results of the GPT 3.5-based model

Avg (%) SD Var CV IR Temp.
90.42%
(0.8083) 0.04054 0.00164 5.016% 0.00901 0.1

90.08%
(0.80155) 0.07958 0.00633 9.928% 0.11004 0.2

88.79%
(0.77581) 0.05336 0.00285 6.877% 0.09497 0.3

86.76%
(0.73528) 0.07015 0.00492 9.540% 0.12543 0.4

86.37%
(0.72745) 0.06546 0.00429 8.998% 0.10935 0.5

C. GPT 3.5

Expectedly, the GPT3.5 variant is evaluated in the same
way. Using the same user incoming prompt, the same system
message preamble, and being supplied the same transcript data
to base its response. Figure 6 depicts the general response
of the GPT3.5 variant outputs. The consistency of the model
fared much better in listing all the related quotes from the
provided transcript data, although in some cases, the model
did paraphrase, even when explicitly directed not to, it still
maintained the expectation of extracting each related quote.
For the sake of brevity, only one response is included, seeing
as subsequent responses were more of the same.

Fig. 8: The sample responses of the GPT3.5 variant model

D. GPT 3.5 results

According to the findings in Table III, the GPT3.5 variant
saw higher variance across the board and a higher average
similarity score. This indicates that for each temperature value,
the similarity was reasonably high, implying that it tends to
reference the correct transcripts but may slightly paraphrase
to some degree.

The average cosine similarity trends downwards as the
temperature increases, which opposes the previous trend in
the LLaMA2 variant, indicating that lower temperatures align
better with the reference text. This trend expectedly goes hand-
in-hand with the standard deviation as temperature increases,
signifying a less deterministic output than expected. The
relative spread of data in relation to the mean, as depicted

23

by the Coefficient of Variation (CV), is higher at temperatures
0.2, 0.4, and 0.5, suggesting the relative variability is greater
at these values. As the alignment trends upwards as the
temperature decreases and the higher CV values are at a
temperature of 0.2 and 0.4, we can surmise that the optimal
value is around 0.2.

V. CONCLUSION

This paper highlights the transformative potential of large
language models in generating, processing, and retrieving
information while applying a framework to mitigate misin-
formation. Our proposed Elephant model is fine-tuned from
two popular LLMs, GPT3.5 and LLaMA2. In addition, using
topic and keyword extraction alongside a cosine similarity
metric, our proposed model can mitigate the challenge of
misinformation in our digital society via accurate recantations
of information.

We collected podcast datasets, processed the data, and
fine-tuned two models following our approach. Then, two
experiments were conducted to verify the effectiveness of our
method. In the first experiment done using the LLaMA 2
variant, after extracting semantic meaning from the prompt
and comparing it with the database, the model’s output saw an
average similarity of 88.29% (0.76588) in comparison to the
reference text at a temperature of 0.5. In the second experiment
done using the GPT 3.5 variant, after the prompt deconstruc-
tion and similarity selection phases, the model’s output saw
an average similarity of 90.42% (0.8083) in comparison to
the reference text at a temperature of 0.1. There are, however,
limitations within this paper. Including comparative analysis,
particularly against existing IR methods, would be beneficial.
Although that would be optimal, this implementation does
apply human verification analysis.

It is no secret that information is power. While the function
of compiling information in aggregate to reach a conclusion
is innate in all individuals, the ability or availability to do the
necessary research may not be a resource readily available.
Before making a decision, it is paramount to understand the
nature of the decision and the stances of all major parties
involved. The proposition of this paper is an attempt to solve
this problem.

For future works, it is important to recognize that further
research and iterations upon this implementation would result
in better performance, highlighted below.

Data Decisions It may be beneficial to convert the data into
SQL schemas. This would likely improve the relevancy of the
data entries initially pulled, allowing for similarity calculations
on fewer entries. It is also important to recognize that using
more varied data. In the future, other forms of media may be
incorporated, as well as other metrics such as perplexity or
BLEU score.

Prompt Deconstruction Analysis Before extracting the
prompt, running an analysis to determine the nature of the
query would be useful. If the user requests a previous query
after extracting the topics and keywords from the prompt,
it may be worth keeping a record of past entries pulled if

that is what the prompt requests. If the user requests more
information on a topic, finding it and getting more context
may be a separate system to defer to.

REFERENCES

[1] V. Bush, “As we may think,” The Atlantic, 1945.
[2] L. E. Page and S. M. Brin, “The anatomy of a large-scale hypertextual

web search engine,” Computer Networks and ISDN Systems, 1998.
[3] G. Salton, The SMART retrieval system—experiments in automatic

document processing. Prentice-Hall, Inc., 1971.
[4] K. S. Jones, “The role of artificial intelligence in information retrieval,”

Journal of the American Society for Information Science, vol. 42, no. 8,
pp. 558–565, 1991.

[5] ——, “What is the role of nlp in text retrieval?” in Natural language
information retrieval. Springer, 1999, pp. 1–24.

[6] ——, “Information retrieval and digital libraries: lessons of research,”
in Proceedings of the 2006 international workshop on Research issues
in digital libraries, 2006, pp. 1–7.

[7] M. Lease, “Natural language processing for information retrieval: the
time is ripe (again),” in Proceedings of the ACM first Ph. D. workshop
in CIKM, 2007, pp. 1–8.

[8] M. Unterkalmsteiner, T. Gorschek, R. Feldt, and N. Lavesson, “Large-
scale information retrieval in software engineering-an experience report
from industrial application,” Empirical Software Engineering, vol. 21,
pp. 2324–2365, 2016.

[9] S. Jiang, S. Shen, M. Agrawal, B. Lam, N. Kurtzman, S. Horng,
D. Karger, and D. Sontag, “Conceptualizing machine learning for
dynamic information retrieval of electronic health record notes,” arXiv
preprint arXiv:2308.08494, 2023.

[10] Facebook, “Facebookresearch/llama: Inference code for llama models,”
https://github.com/facebookresearch/llama, 2023, accessed: 21-11-2023.

[11] OpenAI, “Openai,” https://openai.com/, 2023, accessed: 21-11-2023.
[12] Y. Zhu, H. Yuan, S. Wang, J. Liu, W. Liu, C. Deng, Z. Dou, and J.-

R. Wen, “Large language models for information retrieval: A survey,”
arXiv preprint arXiv:2308.07107, 2023.

[13] R. Peng, K. Liu, P. Yang, Z. Yuan, and S. Li, “Embedding-based
retrieval with llm for effective agriculture information extracting from
unstructured data,” arXiv preprint arXiv:2308.03107, 2023.

[14] Y. Gong and G. Cosma, “Boon: A neural search engine for cross-modal
information retrieval,” arXiv preprint arXiv:2307.14240, 2023.

[15] Q. Ai, T. Bai, Z. Cao, Y. Chang, J. Chen, Z. Chen, Z. Cheng, S. Dong,
Z. Dou, F. Feng et al., “Information retrieval meets large language
models: A strategic report from chinese ir community,” AI Open, vol. 4,
pp. 80–90, 2023.

[16] H. Abonizio, L. Bonifacio, V. Jeronymo, R. Lotufo, J. Zavrel, and
R. Nogueira, “Inpars toolkit: A unified and reproducible synthetic data
generation pipeline for neural information retrieval,” arXiv preprint
arXiv:2307.04601, 2023.

[17] V. Jeronymo, L. Bonifacio, H. Abonizio, M. Fadaee, R. Lotufo, J. Zavrel,
and R. Nogueira, “Inpars-v2: Large language models as efficient dataset
generators for information retrieval,” arXiv preprint arXiv:2301.01820,
2023.

[18] D. S. Chamath Palihapitiya, Jason Calacanis and D. Friedberg, “All-in
with Chamath, Jason, sacks & Sriedberg,” https://www.allinpodcast.co/,
[Accessed 21-11-2023].

[19] spaCy, “Spacy · industrial-strength natural language processing in
python,” https://spacy.io/, 2023, accessed: 21-11-2023.

[20] R. Řehůřek and P. Sojka, “Software Framework for Topic Modelling
with Large Corpora,” in Proceedings of the LREC 2010 Workshop on
New Challenges for NLP Frameworks. Valletta, Malta: ELRA, May
2010, pp. 45–50, http://is.muni.cz/publication/884893/en.

[21] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[22] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang,
A. Madotto, and P. Fung, “Survey of hallucination in natural language
generation,” ACM Computing Surveys, vol. 55, no. 12, pp. 1–38, 2023.

[23] OpenAI, “Openai platform,” hhttps://platform.openai.com/docs/models,
2023, accessed: 21-11-2023.

24

https://github.com/facebookresearch/llama
https://openai.com/
https://www.allinpodcast.co/
https://spacy.io/
http://is.muni.cz/publication/884893/en
hhttps://platform.openai.com/docs/models

	The 24th Winona Computer Science Undergraduate Research Symposium
	April 23, 2024
	2:00pm to 3:30pm
	Watkins 209
	Winona State University Winona, MN
	Sponsored by the Department of Computer Science
	at Winona State University

	3ef0023a-5a69-42df-8b3f-ca0b1af99322.pdf
	1. INTRODUCTION
	2. HYPOTHESIS
	3. METHODS

	4. CONCLUSION
	5. ACKNOWLEDGMENTS
	6. REFERENCES
	94efffd9-313e-4e56-a8f0-9d3fb485cc86.pdf
	1. INTRODUCTION
	2. HYPOTHESIS
	3. METHODOLOGY
	3.1 Datasets
	3.2 Combined Dataset
	3.3 Preprocessing the Data
	3.4 Decision Tree Classifier

	4. RESULT AND ANAYSIS
	4.1 Results
	4.2 Classification Report
	4.3 Analysis
	4.4 ROC Curve Analysis

	5. CONCLUSION
	6. ACKNOWLEDGMENTS
	7. REFERENCES

	53652afa-e50c-44cb-bc76-a8c89934cebf.pdf
	Abstract
	1 Introduction
	2 Methodology
	2.1 Data Processing
	2.2 Data Analysis
	2.3 Creating the Objective Function
	2.4 Simulated Annealing

	3 Results
	4 Future Work
	References

	63fc2829-98a8-4c9c-ac27-25a38b312b75.pdf
	Introduction
	Background and Evolution
	Proposed Approach

	Related Works
	Early Approaches in IR
	Traditional ML Techniques in IR
	Information Retrieval Research and Digital Libraries
	Natural Language Processing in IR
	Large-Scale IR in Software Engineering
	Machine Learning in Dynamic IR

	Deep Learning and LLMs for IR
	Large Language Models in IR
	Toolkits and Synthetic Data Generation in IR

	Proposed Methodology
	Data Collection
	Elephant
	Prompt Deconstruction
	Topic Extraction
	Keyword Extraction
	Database
	Cosine Similarity

	Similarity Selection
	Top N Entries
	Prompt Tuning

	Model Output

	EXPERIMENTS AND RESULTS
	LLaMA2 variant model
	LLaMA2 Results
	GPT 3.5
	GPT 3.5 results

	Conclusion
	References

