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ABSTRACT

The research aims to investigate the impact of illumination on the 

accuracy and efficiency of infrared gesture recognition systems. 

Specifically, the study seeks to explore whether infrared gesture 

sensors exhibit greater accuracy in low illumination environments 

compared to environments with high direct illumination.  

The experimental setup includes a controlled environment with a 

moveable light source and a table holding the infrared gesture 

sensor. Fifty-six tests were conducted, with participants performing 

gesture recognition tasks under varying illumination levels ranging 

from 600 lux to 1200 lux. After experimentation, a t-test 

determined if there is a statistically significant difference in the 

accuracy of gesture recognition between the two groups.  

The findings of this study show the threshold illumination is at 1070 

lux. An increased illumination after the threshold causes gesture 

detection failure. Results compared to natural illumination from the 

sun, it is predicted there will be inconsistent gesture detection 

specifically under a clear sky in the afternoon.  

1. INTRODUCTION

In recent years, the field of human-computer interaction (HCI) has 

witnessed a surge in the development and utilization of gesture 

recognition technologies for various applications ranging from 

gaming and virtual reality to smart home control and industrial 

automation. Among these technologies, infrared gesture sensors 

such as hands-free faucets, dryers, alarm clocks, and lamps have 

emerged as promising solutions due to their ability to accurately 

capture and interpret hand movements in real-time. However, the 

effectiveness of infrared gesture sensors is known to be influenced 

by environmental factors such as lighting conditions, which can 

significantly impact their performance and reliability in the real 

world. 

The motivation for this study stems from the critical need to 

understand the environmental factors that affect the functionality of 

infrared sensors, important to the future development of the 

technology.   

To achieve this goal, the research focuses on analyzing the unified 

components that comprise infrared gesture sensors and their 

interactions with varying lighting conditions. By collecting 

comprehensive information about the design, operation, and 

sensitivity of infrared gesture sensors, the study aims to explain the 

mechanisms underlying their performance in different lighting 

environments. 

The research conducted aligns with a study presented in the article 

titled "Gesture Recognition using Reflected Visible and Infrared 

Light Wave Signals” [6]. Employing experimental techniques 

aimed at manipulating environmental conditions, the gesture sensor 

underwent testing under conditions of high illumination juxtaposed 

with indirect low illumination. Interestingly, both this article and 

"A novel hand gesture recognition method based on infrared 

information" [7] reported no significant change in accuracy under 

low illumination conditions. In response to this finding, the gesture 

sensor underwent further testing under even brighter illumination. 

The paper titled "Neuromorphic silicon retina array detects the 

direction of a moving object" [2] provides insights into the 

processing of infrared information within an infrared sensor. The 

study examines the detection of each finger using the infrared 

sensor. Given the project's focus on light source accuracy, a specific 

gesture, namely the upwards gesture, has been selected for testing 

with the sensor. The positioning of the light source behind the hand 

in front of the infrared sensor and individual testing on each side 

have been chosen for optimal evaluation accuracy. 

1.2   Infrared Sensors 

Infrared sensors emit light within the infrared spectrum. According 

to a newsletter from the International Commission on Non-Ionizing 

Radiation Protection, infrared, also known as thermal radiation, is 

above red visible light from 780 nanometers to 1000 micrometers 

on the electromagnetic spectrum [3]. Infrared naturally comes from 

solar radiation and fire. Artificial sources include lamps, heating 

devices, remote control, and the newly popular infrared saunas. The 

light can be seen as a dim red glow coming out of the sensor. 

Infrared sensors work by emitting infrared light and collecting 

reflections of light off objects that pass through. The reflection of 

light is collected by a light sensor. A program interprets any 

changes in the reflection as gestures. A specific gesture is 

determined by an algorithm that analyses the data. A popular 

algorithm for gesture recognition is Dynamic Time Warping. As 

mentioned in the Application of dynamic time warping algorithm 

for pattern similarity of gait, “The dynamic time warping (DTW) 
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algorithm was developed to solve the difficulties in analyzing 

pattern similarity for time- series data.” “DTW is known as the best 

algorithm for evaluating the similarity between two time-series data 

that vary in time frames as well as nonlinear time-series data.” [5] 

For gesture sensor recognition, the algorithm DTW can record the 

changes to the reflected infrared light and determine the direction 

of motion by comparing the pattern in the time-series data. 

2. HYPOTHESIS

Infrared gesture sensors have greater accuracy in low illumination 

than high direct illumination. 

3. METHODS

For this study, the researcher utilizes a programmable robot known 

as ClicBot, developed by KEYi Technology, and founded by 

Jianbo. The ClicBot is equipped with an infrared gesture sensor that 

offers users the ability to program and customize gesture 

recognition functionalities according to their preferences. To 

investigate the impact of environmental lighting conditions on the 

accuracy of infrared gesture recognition, the ClicBot is subjected to 

alternating environments. These environments include low 

illumination between 600 and 800 lux and high direct illumination 

between 900 and 1200 lux. As shown in Figure 1 and Figure 2, the 

illumination is placed directly in front of the gesture sensor. The 

light source moves forwards and backward to adjust to the 

illumination being tested as demonstrated by the x. The 

Illumination is calculated using a brightness meter placed directly 

in front of the infrared sensor before each test. The gesture is 

conducted 5 inches away from the sensor each time. Upon testing, 

7 inches was the farthest away the sensor would detect motion. It 

was deemed reasonable to choose 5 inches as the distance because 

it provided sufficient proximity to the sensor for accurate gesture 

detection. Additionally, the arms on the assembled ClicBot 

extended 4 inches from the sensor, making it an ideal reference for 

gesture movement. 

Table 1. Summary of equipment used 

Equipment Manufacturer Quantity 

ClicBot Brain KEYi Technology 1 

Illumination Kit (2 x 16'' x 

16'') 50W / 5500K / 90 CRI 

LED Bulbs 

RALENO 1 

Table 1 

Digital Illuminance Light 

Meter 0-200,000 

Measurement Range Lux 

Meter 

Dr. Meter 1 

After conducting the indoor controlled experiment, the ClicBot was 

used to test gesture recognition outside in the natural environment. 

During the indoor experiment, the illumination source was focused 

and concentrated by using a single light in a dark room. In a natural 

setting, the illumination source comes from the sun. Sun rays are 

scattered filling a larger area causing illumination to hit front, back, 

and sides of the sensor. Establishing a direct pathway from the sun 

to the ClicBot posed a challenge, and although it wasn't flawless, 

every effort was made to achieve the best possible outcome. The 

ClicBot was brought outside in an afternoon partly cloudy sky. A 

measurement of 1466 lux was obtained when the infrared sensor 

was facing the sun straight on, while 1090 lux was read when facing 

horizontal to the ground. A cloud covered for a brief period 

measuring at 260 lux. Each set of illuminations were tested 10 times 

with the same upward gesture as tested indoors.  

Analysis of the data presented in Table 2 reveals significant 

variation in illumination levels and accuracy. As mentioned 

previously, there are numerous challenges in the natural 

environment to conduct a consistent controlled experiment. The 

scattering of sun rays through the atmosphere can change the 

illumination level even during an experiment. The readings were 

taken with the best effort. On a cloudy day, there may not be any 

reason for concern with gesture recognition. However, there is a 

chance recognition accuracy will be inefficient. It is reasonable to 

conclude that numerous factors contribute to these fluctuations in 

lux readings. Consequently, caution should be exercised when 

interpreting results obtained from natural settings.  

Table 2. Natural Illumination Results 

Illumination Lux % Accurate 

1466 50% 

1090 40% 

260 100% 

Figure 1. Experiment room 

2



 

Figure 2. Layout of experiment 

 

3.1   Analysis 

A logistic regression was performed to ascertain the effects of 

illumination on the likelihood that greater accuracy in low 

illumination than high direct illumination. A logistical regression is 

performed because there are two different value means in which the 

data is normally distributed, and variances are unknown. A p-value 

is significant when the value is below .05%. A software called JMP 

was used to conduct the method by comparing the illumination in 

lux to the response classification. The logistic regression model was 

statistically significant (1, N =55) = 44.55, p < .0001. The model 

explained 15.0% of the variance in gesture accuracy and correctly 

classified 80.0% of cases. The logistical regression results are 

shown in Table 3. As shown in Table 3, the standard error is 

0.0409851. This standard error means that, on average, the 

estimated coefficient for the independent variable illumination 

level in the logistical regression model can be expected to vary by 

approximately 0.0409851 units from the true population 

coefficient. If the study were to be replicated, the estimated 

coefficient for illumination level threshold to fall within 

±0.0409851 lux of its current value about 95% of the time. The 

results went into the creation of Figure 2 showing the probability 

of gesture recognition in correlation with illumination levels.  

 

Table 3. Parameter estimates 

Term Estimate Std Error P-Value < .0001 

Illumination -0.09404 0.0409851 0.0215 

 

Figure 3 is a graph representing the probability of accurate gesture 

recognition on illumination level using the logistic plot created by 

the JMP software. The x-axis holds the illumination level in lux and 

the y-axis holds the probability of accurate gesture recognition. As 

shown, there is a drop in probability of accurate recognition from 

100% accuracy at 1000 lux to 0% accuracy at 1200 lux. The blue 

line in figure 3 shows this threshold where gesture recognition fails 

to recognize any gesture. Keeping that in mind, the graph shows the 

trend. Tracking the threshold line, looking at 600 lux, it is 

presumable that gesture recognition is 100% as for all the lux range 

up until 1000 lux.  

 

 

Figure 3. Probability of accurate gesture recognition on 

illumination level 

 

To maintain consistency and accurately track gesture recognition 

accuracy, the ClicBot and light source stays at the same height. The 

light is facing the ClicBot straight onto the sensor. The light is 

moved to change its distance to the ClicBot for the purpose of 

adjusting the illumination. Upon recognizing a gesture, the ClicBot 

emitted a sound corresponding to the recognized gesture using a 

simple if-then statement. The response was categorized as accurate 

if the gesture is correctly identified, inaccurate if there is a 

misinterpretation, or fail to process if the gesture is not recognized. 

Data collection involved recording the accuracy of gesture 

recognition for each gesture in both low illumination and high 

direct illumination environments. This data is documented in a 

spreadsheet, as illustrated in Table 2. Subsequently, a logistical 

regression was conducted to visualize the accuracy of gesture 

recognition in each environment.  

 

3.2   Data Collection 

Data was collected shown in the data collection sheet in Table 4. 

The distance is measured in inches from the illumination source to 

the infrared sensor. This distance is correlated with the brightness 

of illumination. The closer the light is, the higher the illumination 

is. We use distance the gauge the illumination because the light 

itself is unable to adjust its brightness. The illumination in lux is 

taken from the Digital Illuminance Light Meter. The measurement 
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is taken at the very front of the infrared sensor at the same location 

each time. The illumination written down is the number that 

showed most prominently on the scanner. The illumination would 

adjust by 10 to 15 lux, so a medium was used for monitoring 

purposes. Accurate Response percentage shows the percentage of 

accurate gesture recognition for each 5 illumination tests. This 

response percentage was taken by recording how many gestures 

were accurately recognized or failed to be recognized. Illumination 

level categorized the level most fitting in correlation to the 

illumination measurement in lux. Low illumination categorized lux 

from 530 to 790 and anything below this lux until 100 lux not tested 

in this study. This illumination could be seen outside naturally on a 

cloudy or partly sunny day. High illumination categorized the lux 

between 970 and 1174 also including any lux above this. High 

illumination can be seen in nature on a partly cloudy to full sun day, 

specifically in the afternoon. 

 

Table 4. Data collection sheet 

Distance 

(inches) 

Illumination 

(lux) 

Accurate 

Response % 

Illumination 

Level 

12.25 530 100 low 

11.12 636 100 low 

9.5 720 100 low 

8.75 790 100 low 

7.12 970 100 high 

7.865 1070 100 high 

7.225 1075 40 high 

7.125 1080 40 high 

7.25 1096 40 high 

6.65 1111 0 high 

6.55 1174 0 high 

 

4. CONCLUSION 

Based on the statistically significant results from the logistical 

regression, it can confidently be said that gesture recognition is 

more accurate in low illumination than high illumination. This 

statement is concurrently validated for outdoor natural lighting. As 

a result, there should be caution when utilizing infrared sensors 

outdoors.  

As concluded, there is a challenge with sensing gestures in high 

illumination indoor and outdoor. Compared to turning up the 

brightness on a photo, excessive illumination can cause information 

to be washed out. This abundance of light can overwhelm the 

sensor with information, representing the reflections from hand 

movements insignificant. The proposed issue also relates to why 

there is no incorrect gesture detected; rather, there is simply a 

failure to detect any gesture. One potential solution to this problem 

could involve the same principle as enhancing photos. Increasing 

contrast causes lines to become more prominent. However, 

implementing this solution is easier said than done. If it proves to 

be impractical, it may be advisable to suggest regulations on the 

usage of these devices. Regulations can specify when and where 

infrared gesture sensors should be employed. For example, there 

should be a warning on devices for minimizing exposure to direct 

sunlight while using the product. 
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ABSTRACT 

This research investigates how Decision Trees, a type of machine 

learning tool, can improve Intrusion Detection Systems (IDS) to 

identify Remote to Local (R2L) attacks. Traditional Intrusion 

Detection Systems (IDS) are struggling to cope with the growing 

complexity and frequency of attacks. This research explores 

whether Decision Trees and using it with combined datasets can 

provide a better solution. We utilized two widely available datasets, 

KDD Cup 1999, and NSL-KDD, to assess the effectiveness of 

Decision Trees.  By applying Decision Trees to each dataset 

individually and then to a combined version, the combined 

approach resulted in an IDS with 99.93% accuracy, a 91% detection 

rate for R2L attacks, and only an 8% false alarm rate. While the 

improvement in overall accuracy over the individual datasets 

(99.90% for KDD Cup 1999 and 99.83% for NSL-KDD) is modest, 

it lays the groundwork for further refinements and potentially even 

greater accuracy gains in the future.  

 

Categories and Subject Descriptors 

D C.2.0 [Computer-Communication Networks]: General – security 

and protection 

K.6.5 [Management of Computing and Information Systems]: 

Security and Protection – intrusion detection. 

General Terms 

Algorithms, Performance, Experimentation, Security, Verification. 

Keywords 

Remote to Local (R2L), Intrusion Detection Systems (IDS), 

Artificial Intelligence (AI), Machine Learning, Decision Tree 

Dataset Analysis, Cloud Computing Security, KDD Cup 1999, 

NSL-KDD, Intrusion Detection Accuracy. 

 

 

 

 

1. INTRODUCTION 
In the age of advancing technological landscape, characterized by 

the rise of artificial intelligence and big data, the internet is playing 

a vital role in nearly every aspect of our lives, from conducting 

global business deals, to attending virtual classrooms, and stay in 

touch with family and friends. However, this increasing reliance on 

digital networks also exposes us to cybersecurity threats and 

attacks. Cyber-attacks fall into four main categories such as Denial-

of-Service (DoS), Remote-to-Local (R2L), Unauthorized Access to 

Local Superuser (Root) Privileges (U2R) and Probing. To protect 

us from these attacks there are Intrusion Detection Systems. An 

Intrusion Detection System is a security tool designed to monitor 

network or system activities for malicious or suspicious behavior. 

It works by analyzing incoming traffic, identifying patterns that 

may indicate unauthorized access or potential threats, and alerting 

system administrators or security personnel to take appropriate 

action.  

Traditionally, Intrusion Detection Systems (IDS) relied on 

predefined signatures to identify known attack methods, but, with 

the constantly evolving tactics of cybercriminals, this approach 

often proves inadequate. However, through the integration of 

Artificial Intelligence (AI) technologies, IDS can now harness 

advanced algorithms and machine learning techniques. This 

enables them to enhance their detection capabilities significantly, 

empowering them to adapt and respond more effectively to the 

ever-changing landscape of cyber threats. Despite these 

advancements, AI-enhanced IDS face specific challenges. The 

training of these systems need a vast amount of labeled data, which 

can be challenging and time-consuming to gather. Moreover, 

ensuring the transparency and explainability of AI decisions is vital 

for preserving trust and security. Biases in the training data can 

result in inaccurate detections or even discrimination. 

This research focuses on using Decision Tree Classifiers to 

improve how Intrusion Detection Systems detect Remote-to-Local 

(R2L) attacks. In an R2L attack, an attacker sends data packets over 

a network to gain unauthorized access to a machine as a regular 

user. Unlike attacks that target the network itself, R2L attacks try 

to exploit weaknesses in a system's security to gain access. 

Attackers might use brute-force password cracking, exploit 

software vulnerabilities, or trick users into running malicious code. 

Their goal is to steal information, damage data, or prevent 

authorized users from accessing the system. 

2. HYPOTHESIS 
By incorporating multiple datasets into a decision tree classifier, 

intrusion detection systems can achieve greater accuracy, leading 

to a higher rate of R2L attack detection with fewer false alarms. 
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3. METHODOLOGY 

3.1 Datasets 
This research evaluates an Intrusion Detection System (IDS) using 

two publicly available datasets: KDD Cup 1999 and NSL-KDD. 

Both datasets contain labeled network traffic data, including 

normal traffic, various attack types and the features to look out for 

to indicate the possibility of an attack. 

• KDD Cup 1999: The KDD Cup 1999 dataset serves as a 

standard benchmark dataset extensively used for 

evaluating intrusion detection systems. It contains a 

substantial volume of network traffic data, encompassing 

both normal and various types of attacks. The dataset 

contains a total of 494,021 data points, with 97,278 

labeled as anomalies and 396,743 as normal.  

• NSL-KDD: The NSL-KDD dataset is another widely 

adopted dataset in the realm of intrusion detection. It 

represents an enhanced version of the original KDD Cup 

1999 dataset, addressing certain limitations such as 

redundancy and imbalance in class distribution. The 

NSL-KDD dataset contains a total of 2,406,084 data 

points. Of these data points, 2,396,857 are labeled as 

normal and 9,227 are labeled as anomalies.   

3.2 Combined Dataset  
To enhance the diversity and resilience of our training data, we 

combined the KDD Cup 1999 and NSL-KDD datasets into a 

unified dataset. This merged compilation broadens the scope of 

network traffic samples, encompassing a variety of attack types and 

normal behaviors. Sticking to a single dataset for training could 

limit a model's adaptability to unforeseen data. By fusing the KDD 

Cup 1999 and NSL-KDD datasets, our consolidated dataset 

provides a more inclusive depiction of network traffic behaviors. 

This, in turn, facilitates the development of machine learning 

models capable of discerning a wider array of anomalies and 

intrusions. The diversity within our training data fosters the 

creation of models that can adeptly adjust to evolving cyber threats 

and fluctuations in network landscapes. Moreover, the combined 

dataset enables researchers and practitioners to explore the 

similarities and differences between the two datasets, potentially 

uncovering valuable insights into the characteristics of network 

attacks and normal traffic across different contexts and time 

periods. 

3.3 Preprocessing the Data 
The initial phase of this research entails parsing the kddcup.names 

file to extract and categorize its features for analysis. These features 

encompass various indicators relevant to security assessments, such 

as duration, source bytes, destination bytes, number of failed login 

attempts, number of compromised or hacked systems in a network, 

a user has obtained root access or escalated privileges, switch user 

attempted, and logged in as a guest, among others. These attributes 

provide insights into potential R2L (Remote-to-Local) attack 

scenarios, highlighting patterns associated with prolonged 

connection times, data transmission volumes, brute force password 

attacks, compromised states, and unauthorized access attempts, 

including tactics like guest logins. Subsequently, the analysis 

extends to different types of R2L attacks, including 'ftp_write', 

'guess_passwd', 'imap', 'multihop', 'phf', 'spy', 'warezclient', and 

'warezmaster'. Each of these attack types represents distinct forms 

of security breaches or suspicious activities, such as unauthorized 

 

 

file transfers via FTP, repeated password guessing attempts, illicit 

access to email servers, suspicious routing behaviors, exploitation 

of web server vulnerabilities, covert surveillance activities, and 

involvement in the distribution of pirated software, potentially 

involving malware dissemination. These insights aid in identifying 

and understanding the diverse tactics employed by attackers in R2L 

attack scenarios. Following initial steps, such as addressing missing 

values and multicollinearity, categorical features are converted into 

numerical representations via feature mapping. Irrelevant features 

are then removed to streamline the dataset. Subsequently, the 

dataset is split into subsets for normal records and R2L attack 

records from the other types of cyber-attacks, facilitating machine 

learning model training. This includes feature identification and 

target label assignment, followed by division into training and 

testing sets using sklearn's train_test_split function, ensuring 

accurate model evaluation. 

3.4 Decision Tree Classifier 
The Decision Tree Classifier is a tool used in machine learning to 

create models that can classify data into different categories. It 

relies on a decision tree structure, which is like a flowchart with 

nodes representing decisions and branches representing possible 

outcomes. This classifier is particularly useful for tasks like 

intrusion detection in computer networks because it's easy to 

understand how it reaches its conclusions, and it can handle 

different types of data, like numbers and categories, effectively. 

In this process, we use a specific implementation of decision trees 

called DecisionTreeClassifier from a Python library called scikit-

learn, often abbreviated as sklearn. This library provides a 

straightforward yet powerful way to build models using decision 

trees. We start by training the model, which means we show it 

examples of network traffic labeled as normal or malicious, and it 

learns from these examples. Then, we evaluate how well it 

performs on data it hasn't seen before, using a separate testing 

dataset. 

To get started, we import several important libraries we'll need, 

such as DecisionTreeClassifier from sklearn, along with others like 

cross_val_score for cross-validation, train_test_split to split our 

data, accuracy_score to measure accuracy, and pandas for data 

manipulation. We also do some preprocessing on our data, like 

converting categorical features into a format the model can 

understand using one-hot encoding, and splitting our data into 

training and testing sets, with 70% of the data for training and 30% 

for testing. 

Next, we create an instance of the DecisionTreeClassifier class. 

Then, we use a technique called cross-validation on our training 

data. This involves splitting our training data into 10 smaller 

subsets, training the model on 9 of them, and testing it on the 

remaining one. We do this process 10 times, each time with a 

different subset held out for testing. This gives us a more robust 

estimate of how well our model will perform on unseen data. 

After cross-validation, we train the model on the entire training set 

and then use it to make predictions on the test set. Finally, we can 

evaluate the performance of our model by comparing its predictions 

to the actual labels in the test set. This gives us a measure of how 

accurate our model is at classifying network traffic as either normal 

or malicious. 
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4. RESULT AND ANAYSIS 

4.1 Results 
The results indicate that the use of a combined dataset significantly 

enhances intrusion detection accuracy. The IDS achieves high 

accuracy, detection rate, and maintains a low false alarm rate. As 

shown in Table 1: 

Table 1. Comparison of Intrusion Detection Performance 

Across Datasets 

Name Accuracy Detection Rate 
False Alarm 

Rate 

KDD Cup 

1999 
99.90% 83% 8% 

NSL-KDD 99.83% 89% 10% 

Combined 

Datasets 
99.93% 90% 8% 

 

These results demonstrate the superiority of the IDS utilizing the 

combined dataset over those relying on individual datasets alone. 

The combined dataset shows promise for enhanced intrusion 

detection. While the current improvement in accuracy over 

individual datasets (99.93% vs. 99.83-99.90%) is modest, it lays 

the groundwork for further refinements and potentially even greater 

accuracy gains in the future. Moreover, the detection rate for the 

combined dataset reaches 90% representing a notable improvement 

over the individual datasets. Additionally, the combined dataset 

achieved a noteworthy 90% detection rate, surpassing the 

performance of individual datasets. Importantly, the false alarm 

rate remained low at only 8%, demonstrating the IDS's ability to 

differentiate between normal and abnormal network activity. These 

findings strongly support the value of integrating diverse datasets 

to improve the overall performance of intrusion detection systems. 

4.2 Classification Report 
Analyzing the classification reports for KDD-CUP 1999, NSL-

KDD, and the combined dataset reveals generally promising 

performance across all. Notably, most reports show consistently 

high accuracy (often 1.00) for normal traffic classification, 

indicating the model's ability to accurately identify normal network 

activities.  

Precision tells us how accurate our "malicious" detections are, 

indicating the proportion of times the model flagged something and 

it actually turned out to be a true threat.   

Recall, on the other hand, focuses on how well the model identifies 

all malicious activities, ensuring it doesn't miss any threats.   

The F1-score provides a single measure of how well the model 

identifies true threats. It considers both precision (accurately 

identifying malicious traffic) and recall (catching most of the 

malicious activity). The high precision and recall scores we see 

suggest the model excels at both accurately flagging threats and 

minimizing missed threats.  

Support shows the number of instances in each category (malicious, 

normal, etc.). This helps us interpret precision and recall, especially 

for less common activities. 

 

Figure 2.1 Classification Report for KDD-CUP 1999 

 

 

Figure 1.2 Classification Report for NSL-KDD 

 

 

Figure 1.3 Classification Report for the Combined Dataset 

 

4.3 Analysis 
In this research, I initially explored various machine learning 

algorithms but ultimately focused on Decision Trees to delve into 

how Artificial Intelligence reaches decisions, particularly in 

Intrusion Detection Systems (IDS). As I constructed the decision 

tree and merged datasets, I observed that the KDD-Cup 1999 set 

had 76, NSL-KDD had 85 and the Combined Decision Tree had 

66 leaves.  
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Figure 2.1. Decision Tree from KDD Cup 1999

Figure 2.2 Decision Tree from NSL-KDD 

 

 

Figure 2.3 Decision Tree – Combined Dataset 
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Figure 3. Decision Tree- Combined Dataset 

 

Even though these are huge trees, I recognized that the cyan color 

indicated normal traffic, which was abundant in the dataset. 

However, I was uncertain about the significance of the other colors. 

To decipher this, I limited the maximum nodes to 10 (see Figure 3 

below), enabling me to delve into each node's details and 

understand how the IDS made its decisions. 

Through this analysis, I observed that light blue color is normal 

traffic, Pink represents the Warez client R2L attack, where a user 

attempts to access copyrighted software illegally. Red signifies the  

Warez master R2L attack, where copyrighted software illegally is 

orchestrated on a larger scale. Yellow indicates a hacker attempting 

to hack an account. The darker colors corresponded to higher 

confidence levels in the IDS's decisions. At the root node, the root 

of the node detects the temperature of a CPU. 

• High CPU Temperature (>= 26°C): The IDS checks for 

a sudden spike in temperature and if there is then it might 

indicate an attack 

• Low CPU Temperature (< 26°C): The IDS analyzes the 

source port of the traffic. Repeated traffic from the same 

source port is likely legitimate, like you are accessing 

your own account. However, if traffic exhibits constant 

switching of source ports, it could indicate a potential 

attack. 

Gini means how well the decision tree can split data into different 

groups, like normal and attack traffic. A lower Gini score means 

the split is better at separating the data. "Sample" is just how many 

data points end up at a particular decision point in the tree during 

training. "Value" is the actual CPU temperature for each piece of 

data that ends up at a decision point. "Class" is the category the 

decision tree is trying to guess if it is normal traffic or a R2L attack. 

 

 

 

4.4 ROC Curve Analysis 
The Receiver Operating Characteristic (ROC) curve is a valuable 

tool in machine learning, visualizing a classification model's 

performance across different thresholds. It helps assess the trade- 

off between the model's ability to correctly identify malicious 

traffic (True Positives) and avoid flagging normal traffic as 

suspicious (False Positives).  

While both KDD CUP 1999 and NSL-KDD achieve good 

performance, the combined approach achieves the best 

performance with an AUC of 0.91. The Area Under the Curve 

(AUC) summarizes the overall performance of the model across 

all thresholds. This is evident in the ROC curves themselves. The 

combined dataset's curve is closest to the top-left corner, 

indicating a good balance between accurately detecting malicious 

traffic and minimizing false alarms.  

 

 

Figure 4. ROC Curve for all Datasets 
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5. CONCLUSION 
In conclusion, this research has shed light on the potential of 

decision trees as a valuable tool for enhancing Remote to Local 

(R2L) intrusion detection. By leveraging the combined strengths of 

multiple datasets, like the KDD Cup 1999 and NSL-KDD datasets 

used in this research, the research demonstrates a slight 

enhancement in detection rates for R2L attacks.  

This is particularly noteworthy when considering the low false 

positive rate achieved by the model. These findings pave the way 

for the development of more robust intrusion detection systems 

capable of proactively mitigating R2L attacks and bolstering 

overall cybersecurity posture. However, there are still challenges to 

overcome. One major hurdle is the evolving nature of cyber threats. 

Attackers continuously develop new techniques, and decision trees 

trained on historical data may struggle to identify novel attack 

patterns. Additionally, the effectiveness of decision trees can be 

hampered by data quality issues and class imbalance within 

intrusion detection datasets. Another challenge is the limited time 

available for research, which can restrict the scope and depth of 

investigation. 

To address these challenges, future research can explore strategies 

for continuous learning and adaptation of the decision tree model. 

This could involve incorporating real-time threat intelligence feeds 

or employing online learning algorithms that can update the model 

as new data becomes available. Furthermore, investigating 

techniques to handle class imbalance, such as oversampling or cost-

sensitive learning, could improve the model's ability to detect rare 

R2L attacks. By implementing these strategies, we can strive 

towards developing intrusion detection systems that remain vigilant 

in the face of ever-changing cyber threats. 
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Abstract
Keyboard layout optimization has historically relied on ob-
servations and theory instead of statistically robust modeling.
QWERTY, a product of these observations, was popularized
by its usage on typewriters in the 1870s and remains the
de facto keyboard layout today. Furthermore, the search
space for layouts grows factorially, making it impossible to
search exhaustively. To address these two issues, we propose
a layout-creation method that uses metaheuristic optimiza-
tion, corpus data from the web, and real-world typing data.
The typing data and corpus are decomposed into sequences
of two and three, referred to as bistrokes and tristrokes. From
these sequences we construct a regression model for pre-
dicting typing speed by using average typing time, corpus
frequency, and positional features. An objective function
is established for the optimization by multiplying the sum
of each tristroke’s occurrence count by its predicted typing
time, effectively estimating the layout’s typing time across
the corpus. Then, we apply customized simulated annealing
to converge towards a near-optimal keyboard arrangement.
The result is a keyboard layout with an estimated 6% im-
provement over QWERTY’s typing time.

1 Introduction
The most widely adopted keyboard layout, QWERTY, was
first created for typewriters by Christopher Sholes in the
early 1870s. It was further developed and popularized with
the success of the Remington No. 2 typewriter, which fea-
tured the layout [13]. The design of the typewriter informed
the design of computer keyboards, keeping the QWERTY
layout. Today, 150 years since its invention, QWERTY is the
most common keyboard layout and by extension the most
common means of human-computer interaction, extending
even to mobile devices. The continued usage of QWERTY
has led to concerns about its antiquated design posing risks
of injury or discomfort for its users [1]. Having recognized
this issue, many have sought to create keyboard layouts that
mitigate QWERTY’s shortcomings.
In the 1930s, Dvorak proposed more rigorous methods

of evaluation for layout optimization, marking perhaps the
first venture into using statistics for this problem. Numerous
ergonomic factors have since been identified from studies

Proceedings of the 24th Winona Computer Science Undergraduate Research
Seminar, April 23, 2024, Winona, MN, US

like these. However, the effect of these ergonomic factors is
seldom numerically measured to determine an evaluation
model. Instead, researchers tend to rely on these observa-
tions to inform theoretical models. There are several standard
practices derived from these observations: optimizing the
distance between keys, choosing columns according to per-
ceived finger dexterity, limiting the occurrence of so-called
single-finger bigrams, assuming perfect touch typing, and
considering relative character frequencies [12].

Despite advancements since the proliferation of QWERTY,
the field still faces challenges in quantifying the precise im-
pact of each ergonomic factor on typing efficiency and user
comfort. Underscoring these considerations is the challenge
of the search space itself; optimizing for 𝑛 keys creates a
search space of 𝑛! potential layouts, making keyboard opti-
mization a non-trivial problem in combinatorial optimization.
Consequently, researchers have used various metaheuristic
approaches to effectively explore this search space, includ-
ing simulated annealing [10], ant colony optimization [5],
swarm optimization [14], genetic algorithms [9], and more.

2 Methodology
2.1 Data Processing
Two datasets are used to estimate the typing time. The first
dataset, the iWeb corpus [3] is one of the largest available
collections of English text and uses a systematic selection of
websites to ensure data quality. This corpus data is used for
frequency analysis of characters and character sequences.
The second data set, The 136M Keystrokes Dataset from
Aalto University [4], contains typing test performance data
totaling about 8,228 hours from 168,000 participants. Partici-
pant metadata enables a controlled analysis of four layouts:
AZERTY, Dvorak, QWERTY, and QWERTZ.

Several steps are taken to ensure the keystroke data pro-
duces a quality analysis. First, data undergoes normalization,
where it is segmented into distinct sessions and users and
occasional errors in the source are corrected. Then, the data
is updated to reflect the accuracy of each keystroke through
approximate string matching.

When determining string correctness, three types of typ-
ing errors must be accounted for: insertion, deletion, and
swapping [11]. For each typing session, a keystroke validity
record is generated. Validity is updated on a per-window
basis to account for navigation within the typing session
using arrow keys or backspacing. Anytime the user makes a
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Table 1. Types of Error Handled by Approximate String
Matching

Typing Error String typed
None But thank you for the offer
Insertion But thankk you for the offer
Deletion But tha k you for the offer
Substitution But thabk you for the offer

move with the arrow keys or backspaces, the typing record is
updated to reflect the correctness of each keystroke typed in
the window before it; the corrected window is appended to
the keystroke validity record, then a new window is created
starting from the last arrow key or backspace typed. Once
the last keystroke has been processed, the remaining window
is updated to reflect correctness and pushed to the keystroke
validity record. The validity record is then used to determine
the type of errors made so that the analysis can only include
correctly typed keystrokes. Insertion and replacement errors
need no adjustment because if a substring is not found to
be a match during string matching, it is deemed incorrect.
However, the case of deletion is handled differently because
of the fact that a keystroke that results in a deletion error can
be both correct and incorrect – incorrect for the preceding
string and correct for the proceeding string.

Table 2. Top 5 Bigrams and Trigrams Extracted from the
Corpus

Bigram Occurences Trigram Occurences
th 9709171 the 6076523
he 8552661 ing 3227179
in 7913861 and 2998065
an 6389345 ion 1716878
er 6348583 ent 1519196

After preprocessing, a sliding window decomposes the cor-
pus and keystroke data. The character sequences from the
corpus decomposition are referred to as ngrams, with ngrams
of length two and three being referred to as bigrams and
trigrams, respectively. The sequences attained from the key-
stroke data are referred to as nstrokes, with nstrokes of
length two and three referred to as bistrokes and tristrokes,
respectively. Every ngram encountered in the corpus is stored
alongside its frequency of occurrence. Whereas each cor-
rectly typed nstroke is recorded as a tuple of its characters
and a positional vector indicating the keys used to type them,
the tuple is a key for storing each unique nstroke’s typing
times. For instance, the identifier for the nstroke represent-
ing the string ’the’ on AZERTY, QWERTY, and QWERTZ
keyboards would be ((-1, 3), (1, 2), (-3, 3), ’the’) and this would
be used to store the typing duration of each instance of this
pattern regardless of layout.

Table 3. Keyboard Character Mapping for QWERTY

Q W E R T Y U I O P

A S D F G H J K L ;

Z X C V B N M , . /

SPACE

(−5, 3) (−4, 3) (−3, 3) (−2, 3) (−1, 3) (1, 3) (2, 3) (3, 3) (4, 3) (5, 3)
(−5, 2) (−4, 2) (−3, 2) (−2, 2) (−1, 2) (1, 2) (2, 2) (3, 2) (4, 2) (5, 2)
(−5, 1) (−4, 1) (−3, 1) (−2, 1) (−1, 1) (1, 1) (2, 1) (3, 1) (4, 1) (5, 1)

(0, 0)

2.2 Data Analysis
Our analysis limits the data used to typing sessions from
participants who reported using 9 to 10 fingers for typing
because they are most likely to adhere to touch typing prac-
tices. Touch typing is a standardized method where typists
use muscle memory to locate keys without looking at the
keyboard, and it is the most widely used keyboard input
methodology. Although, in practice, users may deviate from
perfect touch typing, this approach is chosen because it en-
ables a systematic examination of typing patterns while still
reflecting the effect of shortcuts the participants take.

2.2.1 Bistroke Analysis
The bistroke analysis reveals that frequency is the most sig-
nificant predictor of typing time, and as seen in figure 1
the typing speed follows a logarithmic curve with frequency,
demonstrating that bistrokes with a high frequency are aided
by muscle memory regardless of placement. After account-
ing for the effect of a bistroke’s frequency, we can determine
the influence of key placement and positional relationships
to other keys. Naturally, the analysis reveals that the rel-
ative dexterity of each finger plays a role in typing keys
assigned to that finger, with pinkies being far slower than
the other fingers and the middle and index being faster. In-
terestingly, the top row is predicted to be faster than the
home row by a marginal amount, which realistically may be
the case for QWERTY users as an adaptive behaviour. This
likely represents a bias in our data. An analysis of positional
relationships reveals three major categories of bistroke:

• ALT (Alternating Bistroke): a bigram typed on both
hands by alternating sides of the keyboard. This is the
fastest category.

• SHB (Same-hand Bistroke): a bigram typed with the
same hand. This category is typically slower due to
the need for sequential finger movements on the same
hand and, therefore, greater coordination.

• SFB (single-finger Bistroke):. A bigram typed using
the same finger twice. This is the slowest category,
because the keys cannot be hit in rapid succession. It
is especially slow for data at high words per minute.
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An important takeaway from this analysis is that how much
a feature contributes to the speed prediction changes depend-
ing on the WPM range of the data. Therefore, our proposed
keyboard optimization methodology considers this and opti-
mizes for specified ranges.
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Figure 1. Relationship Between English Bigram Frequency
and Typing Time on QWERTY

104 105 106 107

Number of Occurrences

100

150

200

250

300

Av
er

ag
e 

Ty
pi

ng
 T

im
e 

(M
illi

se
co

nd
s) SFB

Non-SFB

Figure 2. The Effect of SFBs and Frequency on Typing Time
(> 80WPM)

2.2.2 Tristroke Analysis
Several features unique to trist-rokes are identified but are
not found to be very statistically significant for the cost func-
tions defined, so we choose not to include them to avoid over-
fitting. The exception for this is the single-finger-skipstroke
category. Like the single-finger bistroke, it is two strokes
sharing a finger, but instead, it is separated by one stroke in
between. These are important to analyze as for fast typists,
single-finger skipstrokes behave more like delayed single-
finger bistrokes. Other tristroke features merit future explo-
ration.

2.3 Creating the Objective Function
The goal of the objective function is to, for a specific WPM
range, predict the typing time of a corpus given a layout. To
achieve this, we create a cost function that evaluates each
trigram in the corpus, predicts its typing time multiplied
by its occurrence count, and takes the sum of the results.
Using a manually devised cost function from our findings
instead of using a neural network or similar methods, we
prevent overfitting on the limited dataset. From here, we
use the Levenberg-Marquardt algorithm to fine-tune the free
parameters in the cost function to best fit the data. Each cost
function outlined below was curated to describe the trends
outlined in the data analysis while keeping the number of
parameters minimal to ensure generalizability.

To derive the tristroke cost function, we must first derive
a bistroke cost function. The bistroke function, denoted as
𝐶 (𝑏), takes a bistroke 𝑏 of category 𝑖 = {1, 2, 3}, with base po-
sitional penalties 𝑃𝑥 and 𝑃𝑦 , categorical positional penalties
𝑃
(𝑖 )
𝑥 and 𝑃 (𝑖 )

𝑦 , and a frequency penalty 𝑓 (𝑏) and predicts the
time to type it. Following our analysis, the frequency penalty
is put into a logarithmic function with the free parameters
𝑝1, 𝑝2 and 𝑝3. The columnar penalties 𝑃𝑥 and 𝑃 (𝑖 )

𝑥 are deter-
mined by taking the absolute value of the x-coordinate from
the second key in the bistroke. Each possible column value
is assigned a free parameter to weigh its significance.
Similarly, row penalties are determined based on their y-

coordinate, with each possible y-coordinate being assigned a
free-parameter. We can safely assume that most participants
use a row-staggered layout. On a row-staggered keyboard,
the top row has a −0.25 key offset and the bottom row has
a 0.5 key offset. For single-finger bistrokes, we introduce a
distance parameter Δ to represent the row-stagger adjusted
distance between keys; for other cases, Δ defaults to 1. We
add a free-parameter 𝑝4 to the distance to establish a base-
line penalty weight that determines the amount that distance
contributes on top of this effect and to prevent Δ from be-
coming zero and negating the placement penalties. Finally,
we set the bistroke cost function to the product of the finger
penalties and the frequency logarithm to amplify the impact
of features across different frequency ranges:

𝐶 (𝑏) = (𝑝0 log(𝑓 (𝑏) + 𝑝1) + 𝑝2)

×
(
1 + 𝑃𝑥 (𝑏)𝑃𝑦 (𝑏) + 𝑃

(𝑖 )
𝑥 (𝑏)𝑃 (𝑖 )

𝑦 (𝑏) (Δ + 𝑝4)
)

For the tristroke cost function 𝐶 (𝑡), we take the sum of the
cost of its constituent bistrokes 𝑏1 (𝑡) and 𝑏2 (𝑡), then add a
small penalty for the trigrams associated skipstroke 𝑠 (𝑡), if
it is a single-finger skipstroke. The single-finger skipstroke
penalty, like the single-finger bistroke penalty, considers
positional penalties 𝑃𝑥 and 𝑃𝑦 as well as a distance penalty
(Δ + 𝑝5). It should be noted that the single-finger skipstroke
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penalty defaults to 0 if there is no single-finger skipstroke.
𝐶 (𝑡) = 𝐶 (𝑏1 (𝑡)) +𝐶 (𝑏2 (𝑡)) + 𝑃𝑥 (𝑠 (𝑡))𝑃𝑦 (𝑠 (𝑡)) (Δ + 𝑝5)

Finally, the data is limited to a desired WPM range. The
bistroke cost function is then fit to the bistroke data, and the
tristroke cost function is fit to the tristroke data. The MAE
of the fit changes depending on the WPM, but the 𝑅2 metric
stays the same. For 80WPM, this results in 𝐶 (𝑏) having an
MAE of 12 milliseconds and an 𝑅2 of 0.78. 𝐶 (𝑡) is intention-
ally made less accurate to not overfit with an MAE of 26
milliseconds and an 𝑅2 of 0.42. The cumulative cost 𝐶 (𝑙) for
a layout 𝑙 is the sum of each typable tristroke’s predicted
typing time multiplied by its number of occurrences, effec-
tively estimating the typing time for a given layout across
the corpus:

𝐶 (𝑙) =
∑︁
𝑡 ∈𝑇

(𝐶 (𝑡) × 𝑓 (𝑡))

this is the objective function passed onto the simulated an-
nealing algorithm for optimization.

2.4 Simulated Annealing
Simulated annealing is a metaheuristic optimization tech-
nique inspired by the annealing process in metallurgy, where
metals are cooled gradually to achieve a stable state with
minimized energy [8]. In the context of keyboard optimiza-
tion, it is used as an iterative algorithm that explores dif-
ferent keyboard layouts by gradually accepting key swaps
that reduce the overall energy (i.e. predicted typing time).
Unlike gradient descent and other methods that always aim
for an absolute minimum, simulated annealing allows for
occasional acceptance of higher-cost solutions to explore a
broader search space, preventing the algorithm from getting
stuck in local optima. Eventually, simulated annealing con-
verges towards a stable, low-cost configuration – the global
minimum or an approximation of it.
Selecting the parameters in simulated annealing for con-

vergence can be challenging, usually requiring experimen-
tation or domain knowledge [2]. We outline a dynamic ap-
proach to setting the initial temperature and termination
criterion to address this. This ensures layouts can be ex-
plored across a variety of data modifications. For instance,
we may want to analyze layouts at different ranges of words
per minute (WPM), or we may only want to optimize for
a subset of the total keys. For such cases, the cost function
may evaluate to drastically different values, and the number
of swaps necessary to converge on a layout may change,
necessitating different parameters.
2.4.1 Transitions
The first step in implementing simulated annealing is defin-
ing a comprehensive set of solutions that represent potential
configurations for the optimization. It is essential that the
solution space is consistent and that changes are gradual
enough to allow simulated annealing to converge. For key-
board optimization, we establish a solution to be a mapping

between keys and positions on a matrix as seen in table 3.
The data structure used to map keys and positions consists
of two hashmaps. One hashmap maps coordinates to keys
and the other keys to coordinates. By using hashmaps, the
two operations that need to be performed on the matrix,
look-ups, and swapping, can be done in constant time. Fur-
thermore, the coordinate system devised helps encapsulate
real-world usage of the keyboard by encoding position in
a way that is descriptive of relevant relationships: fingers
are grouped by absolute value, the hand is determined by
sign, and distance is easily calculated. The neighborhood of
a given layout consists of all layouts that can be generated
as the result of a single key pair swap.
The probabilistic criterion governing the acceptance of

candidate solutions in the simulated annealing algorithm
is derived from the Boltzmann distribution function, a fun-
damental concept in statistical mechanics used to describe
the likelihood of particles inhabiting various energy states
within a system [7]. This criterion is mathematically repre-
sented as follows:

𝐴(𝑖) =
{
exp

(
−Δ𝐸

𝑇

)
, if Δ𝐸 > 0

1, otherwise

Here, Δ𝐸 represents the change in energy within the system
or, in this case, in the estimated typing time between the
current layout and the candidate layout, and 𝑇 denotes the
temperature parameter of the system. If the change in typing
time is negative (Δ𝐸 < 0), indicating an improvement in
estimated typing time, the candidate layout is accepted with
certainty. However, if the change in estimated typing time is
positive, indicating a worsening layout, the candidate layout
is accepted with a probability determined by the Boltzmann
factor, which is more likely to accept slight decreases in
performance over large ones.

This choice of probabilistic criterion allows the simulated
annealing algorithm to converge on an optimal or near-
optimal solution through gradual refinement [6]. Initially,
the temperature is high, allowing the algorithm to explore
the solution space and escape local minima by occasionally
accepting suboptimal moves. As the algorithm progresses
and the temperature decreases, the probability of accepting
suboptimal moves diminishes. The reduction in temperature
is controlled by a cooling schedule, which dictates how fast
and effectively the algorithm converges to a solution. We
adopt a monotonically decreasing geometric cooling sched-
ule, defined as follows:

𝑇𝑖 = 𝛼𝑖𝑇0

where 𝑇0 is the initial-temperature and 𝑎 is the cooling-rate,
0 < 𝑎 < 1.
2.4.2 Setting the Initial Temperature
Before any transitions are performed, an initial tempera-
ture must be set for the cooling schedule to iterate on. A
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Figure 3. Convergence of Estimated Typing Time during
Simulated Annealing

common approach to setting the initial temperature is manu-
ally estimating the initial temperature based on the problem
domain and the characteristics. This initial temperature is
frequently chosen so that the acceptance probability at the
beginning of simulated annealing is approximately equal
to some value. Lacking relevant literature for our problem
domain, we resort to the approach outlined in Ben-Ameur
[2]. We set a variable 𝜒0 to be the desired initial acceptance
probability of suboptimal transitions at the beginning of the
algorithm. An iterative method is employed to compute the
initial temperature 𝑇0 such that the acceptance probability
approaches 𝜒0. To compute the acceptance probability 𝜒 (𝑇 )
for a given 𝑇 , first, we randomly generate a set S of positive
transitions (i.e., transitions where 𝐸𝑏𝑒 𝑓 𝑜𝑟𝑒 < 𝐸𝑎𝑓 𝑡𝑒𝑟 ), where
each transition 𝑠 represents a swap of two keys. To derive the
final conditional expectation for accepting a positive transi-
tion, we take the ratio between the probability of accepting
a positive transition 𝑠 and the probability of generating the
transition 𝑠:

𝜒 (𝑇𝑛) =

∑
𝑠∈𝑆 exp

(
−𝐸𝑎𝑓 𝑡𝑒𝑟 (𝑠 )

𝑇𝑛

)
∑

𝑠∈𝑆 exp
(
−𝐸𝑏𝑒𝑓 𝑜𝑟𝑒 (𝑠 )

𝑇𝑛

)
Then, to find 𝑇0, we define an initial guess temperature 𝑇1,
and use a recursive formula until |𝜒 (𝑇𝑛) − 𝜒0 | ≤ 𝜖 for some
error 𝜖 :

𝑇𝑛+1 = 𝑇𝑛

(
ln(𝜒 (𝑇𝑛))
ln (𝜒0)

)
2.4.3 Termination Criterion
Finally, we establish the termination criterion for the simu-
lated annealing process to be the point at which the number
of iterations lacking improvement reaches the probabilistic
threshold that all potential swaps have been evaluated. We

do this to ensure the simulated annealing algorithm has set-
tled on some minima while allowing sub-optimal swaps to
be heuristically accepted, potentially escaping local minima.
To find the termination criterion, let 𝑆 be the number

of iterations to evaluate all potential swaps. Let 𝑘 be the
number of keys, for 𝑘 keys, the number of swappable key
pairs𝑛 =

(
𝑘
2
)
. We consider 𝑆 =

∑𝑛
𝑖=1 𝑠𝑖 , where 𝑠𝑖 is the number

of iterations required to evaluate the 𝑖-th pair after 𝑖 −1 pairs
have been evaluated.
The probability 𝑃𝑖 of selecting a new pair to swap is

𝑃𝑖 =
𝑛−(𝑖−1)

𝑛
= 𝑛−𝑖+1

𝑛
. Consequently, 𝑠𝑖 follows a geomet-

ric distribution with an expectation of E(𝑠𝑖 ) = 𝑛
𝑛−𝑖+1 .

By the linearity of expectations, we derive:

E(𝑆) = 𝑛

𝑛∑︁
𝑖=1

1
𝑖

To increase performance, we use the approximation:

E(𝑆) = 𝑛 log𝑛 + 𝛾𝑛 + 1
2
+𝑂

(
1
𝑛

)
where 𝛾 ≈ 0.5772156649 is the Euler-Mascheroni constant.
Since the number of iterations must be a positive integer, we
set our final stopping point to be:⌈(

𝑘

2

)
log

(
𝑘

2

)
+ 𝛾

(
𝑘

2

)
+ 1
2

⌉
The layout produced in this paper optimizes for the main
block of 30 keys. So the number of possible swaps is

(30
2
)
=

435 resulting in a stopping point of
⌈(30

2
)
log

(30
2
)
+ 𝛾

(30
2
)
+ 1

2
⌉
=

2, 895 iterations lacking improvement.

3 Results
For the final layout, we choose to use the 30 most common
characters in our corpus, which is the alphabet, plus the
addition of four special characters: the comma, period, hy-
phen, and apostrophe. This layout differs by 2 characters
from the QWERTY layout, so to compare the final layout
with QWERTY requires we only predict the time for strings
in the corpus that can be typed on both layouts. Although,
the average typing speed was 47 WPM, we set the target
WPM to ≥ 80 as a litmus test for proficiency. This results in
single-finger bistrokes having a greater impact and frequency
having less of an impact. Optimizing for an above average
WPM like this is desirable if the goal is to raise the upper
threshold of potential typing spped. Using the methodology
in this paper, one could also aim to optimize for the average
user, improving the mean speed. The resulting layout can be
seen in table 4.

The predicted time to type the iWeb corpus on QWERTY
is 54,934,581,797 milliseconds, dvorak is 52,565,248,833 mil-
liseconds, a speed up of 4%, and the layout produced in
this paper is predicted to take 51,429,827,290 milliseconds, a
speed up of 6%. Our analysis revealed positional categories
of bistroke that played a significant role in the prediction of
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Table 4. Generated Layout for Typing Speeds ≥ 80 WPM

M R T C W , K A E ’

L N D S V Y U O I G

H X Z B F . - Q J P

SPACE

typing speed. Namely, ALTs which are shown to be faster,
and SFBs which are shown to be slower. For QWERTY, 18.3%
of all bistrokes are ALTs and 5.7% of them are SFBs, dvo-
rak has 33.6% ALTs and 2.8% SFBs, and the layout produced
in this paper has the best result of 33.6% ALTs and 1.4%
SFBs. The fact that speed optimization yields only marginal
improvements in typing efficiency is not unexpected, but
remains a valuable take away as it suggests prioritizing the-
oretical features over solely focusing on speed optimization
may offer more substantial benefits.

4 Future Work
Future research lies in addressing the biases introduced by
the similiarities of the QWERTY, AZERTY, and QWERTZ
layouts, since they hinder the objective function’s ability to
generalize. To facilitate this future research, an open-source
tool called Kiakl was developed to crowd-source data from
alternative keyboard layouts. Further avenues of future in-
vestigation include exploring the inclusion of more optimiza-
tion criteria, such as finger dexterity and speed as proxies
for comfort, as well as investigating more efficient variations
of the simulated annealing algorithm.
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Abstract—This paper investigates the crossroads between
Large Language Models (LLMs), Information Retrieval (IR),
and the growing issue of misinformation in this current age of
the Internet. Large Language Models, including the GPT and
LLaMA series (both implemented in this paper), have given us
profound insight into how we interact on the Internet and in
real life. They have also innovated the way we interact with
information. However, these innovations also pose significant
shortfalls, particularly in the domain of misinformation from
the text. The main contribution of this paper lies in developing
a proposed strategy to mitigate the risks of misinformation
seen on the Internet and generated from LLMs with a focus
on public individuals by recanting statements they have made
and the retrieval of said statements. We propose a multi-
faceted approach that includes utilizing GPT3.5 and the open
source LLaMA2 LLMs, finetuning data curation, and integrating
accuracy mechanisms to ensure the most relevant and accurate
information is retrieved. The efficacy of this methodology is
measured using a cosine similarity metric. Considering that the
recanting of this model must be at or as close to the original
statement as possible, this metric is deemed most fitting. Findings
later in this paper deemed a similarity recall of 90.42% on
average with the GPT3.5 variant and 88.29% on average with
the LLaMA2 variant, both in zero-shot examples, indicating the
core semantic meanings were retrieved with variations on the
format of illustration.

Index Terms—Information Retrieval, LLMs, Information Re-
cantations, Misinformation, Machine Learning, Artificial Intelli-
gence

I. INTRODUCTION

The rapid evolution of Large Language Models (LLMs)
like GPT and LLaMA series has significantly impacted how
we interact with and retrieve information online. This paper
delves into the intersection of LLMs and Information Retrieval
(IR), focusing on addressing the challenge of misinformation
prevalent in the digital age.

A. Background and Evolution

We begin by exploring the development of traditional text
information retrieval methods and their transformation with
the advent of LLMs. The progression from early hypothet-
ical computerized systems in the mid-20th century, such as
the ”Memex” concept by Vannevar Bush [1], to modern
IR algorithms highlights a significant shift towards more
sophisticated techniques. This shift is further accentuated by
introducing LLMs, which bring an unprecedented ability to
understand context, generate coherent responses, and process
vast datasets.

The evolution of search engines, particularly with the emer-
gence of Google and its PageRank algorithm [2], marks a
pivotal shift in IR. This era saw the application of advanced
NLP techniques and graph-based algorithms, enhancing the
relevance and contextuality of search results.

A brief overview of the neural network architecture that
underpins LLMs sets the stage for understanding their capa-
bilities and limitations. These models, mirroring aspects of the
brain’s neural network, have revolutionized data processing
and retrieval and introduced challenges, especially in misin-
formation.

B. Proposed Approach

This work mainly contributes to developing a strategy
to mitigate misinformation risks by recanting statements
made within multiple broad documents, utilizing GPT3.5 and
LLaMA2 LLMs. This includes fine-tuning data curation and
integrating accuracy mechanisms, assessed using a cosine
similarity metric to ensure precise and reliable information
retrieval.

The paper aims to offer a comprehensive analysis of LLMs
in the context of IR and misinformation, providing insights
and methodologies to leverage these models responsibly in
our increasingly digital society.

In summary, our contributions are listed below:
• A multi-faceted information retrieval approach utilizing

GPT3.5 and LLaMA2 models, including fine-tuning LLM
data curation and topic modeling steps.

• A comprehensive study of accuracy mechanisms using
cosine similarly and topic verification to ensure the most
relevant and accurate information is retrieved.

• A proposed strategy to mitigate the risk of misinformation
generated by public individuals and online statements.

II. RELATED WORKS

This section reviews significant literature on Information
Retrieval (IR) and Natural Language Processing (NLP), partic-
ularly focusing on the integration of modern NLP techniques
with IR systems and the use of Large Language Models
(LLMs).

A. Early Approaches in IR

Gerald Salton (1971) [3] explored the System for the
Mechanical Analysis and Retrieval of Text (SMART), which

979-8-3503-6013-4/24/$31.00 © 2024 IEEE
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allowed for documents to be represented as vectors in a multi-
dimensional space. This key feature changed the landscape
of text retrieval. Karen Spärck Jones (1990) [4] discussed
the role of artificial intelligence in IR, marking a significant
development in the field. Karen Spärck Jones (1997) [5] ad-
dressed the role of linguistically motivated indexing (LMI) in
text retrieval. The paper reviewed historical and contemporary
research in automated LMI via NLP, concluding that while
LMI is not necessary for effective retrieval, it plays vital roles
within broader information-selection systems.

B. Traditional ML Techniques in IR

1) Information Retrieval Research and Digital Libraries:
Karen Spärck Jones (2006) [6] provided insights into the
history of IR research, emphasizing the value of statistical
techniques. The paper argued for the potential of these meth-
ods in the evolving landscape of digital libraries, which deal
with heterogeneous, large-scale, and dynamic content.

2) Natural Language Processing in IR: Matthew Lease
(2007) [7] explored methods for integrating modern NLP with
state-of-the-art IR techniques and emphasized the application
to conversational speech data. This research underlined unique
challenges in speech data retrieval compared to text.

3) Large-Scale IR in Software Engineering: Michael Un-
terkalmsteiner et al. (2023) [8] described applying IR tech-
niques in industrial-scale software engineering. Through an
empirical study, they illustrated the practical application and
evaluation of IR methods in test case selection.

4) Machine Learning in Dynamic IR: Sharon Jiang et
al. (2023) [9] conceptualized machine learning for dynamic
retrieval of Electronic Health Record notes. Their work high-
lighted the potential of EHR audit logs as a data source for
training models in clinical contexts.

C. Deep Learning and LLMs for IR

1) Large Language Models in IR: LLaMA 2 [10] and GPT
3.5 [11] mentioned throughout this paper are large language
models (LLM). These machine learning statistical models
make predictions on the next word to generate based on the
previous scope of words and its own training data. Yutao
Zhu et al. (2023) [12] provided a comprehensive survey on
integrating LLMs in IR systems. The survey covered aspects
like query rewriters, retrievers, rerankers, and readers, offering
insights into the evolving role of LLMs in IR. Roulin Peng
et al. (2023) [13] explored embedding-based retrieval using
domain-agnostic LLMs for extracting structured data from
agricultural documents, highlighting the potential of LLMs in
domain-specific applications. Yan Gong and Georgina Cosma
(2023) [14] presented Boon, a cross-modal search engine that
integrates the GPT-3.5-turbo LLM with the VSE network
VITR for enhanced image-based information retrieval. Chinese
IR Community (2023) [15] summarized the outcomes of a
strategic workshop, discussed the impact of LLMs on IR
research, and proposed new technical paradigms.

2) Toolkits and Synthetic Data Generation in IR: Hugo
Abonizio et al. (2023) [16] introduced the InPars Toolkit
for synthetic data generation in neural IR research and later
released InParse-v2 [17]. The toolkit provided a unified and re-
producible pipeline for synthetic data generation, encompass-
ing generation, filtering, training, and evaluation processes.

III. PROPOSED METHODOLOGY

Fig. 1: An Overview of the Proposed Elephant System

This section will present our proposed methodological
framework, the Elephant System.

A. Data Collection

This paper aims to establish a methodological framework
that allows LLM to accurately recount statements made within
a text document. We have seen a shift in habitual media
consumption from traditional print publications in recent years
towards digital mobile devices, particularly video content
on social media platforms. In alignment with these require-
ments, the dataset chosen for fine-tuning the LLM comprised
YouTube video transcripts. Specifically, a series of podcasts
from All-In with Chamath Palihapitiya, Jason Calacanis, David
Sacks, and David Friedburg [18] were selected as the pri-
mary data source. The rationale behind selecting this data
source stems from the long-form nature of podcasts. This
inherently allows the data source to include a plethora of
statements on various topics over an extended duration. These
data characteristics will present a diverse array of topics
challenging the LLM, requiring the LLM to maintain accuracy
and consistency across wide ranging subjects over lengthy
discourse. The dataset comprises transcripts from multiple
podcast episodes. This is done to ensure a broad representation
of topics, requiring the model to not only recant statements
from a topic within an episode but also related topics across
differing episodes. Given that this research serves as a proof
of concept, the dataset is static rather than dynamic. The
subset provides a sufficient snapshot of the series, enabling an
adequate evaluation of the LLM’s performance in recantation
tasks.
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B. Elephant

Our proposed system, Elephant, is implemented in two
variants, LLaMA2-7B [10] and GPT 3.5 [11] models, both
designed with the capability for precise textual recall, as the
name suggests. This model demonstrates a robust ability to
accurately replicate statements from text documents, despite
the diverse and varied dataset from which it’s required to
recall. In practice, Elephant can sift through large volumes
of text and echo the original content with minimal deviation,
particularly useful in applications where verbatim recall is
necessary.

The illustration above, Fig. 1, illustrates a holistic represen-
tation of the proposed Elephant system. The diagram presents
four primary entities and three processing stages: the prompt
keyword extraction component, the prompt topic extraction
component, the database, and Elephant, the main LLaMA 2
or GPT 3.5 based model. Intermediate steps include the cosine
similarity measure, curation of the top N entities, and the
prompt tuning step. Starting with the incoming prompt, which
can be something such as ‘What was discussed about covid
and quarantines’, the diagram traces the workflow through
two phases, topic extraction, keyword extraction, and database
extraction, culminating at the core of the system—Elephant,
which is based upon either the LLaMA2 or GPT 3.5 archi-
tecture. The intermediary steps, including the application of
cosine similarity measures, the selection of the top N entities,
and the final prompt tuning stage, are also mapped to provide
insight into the system’s processing pipeline. Essentially, the
system will accept a user query prompt, assess the keywords
and topics of the prompt, retrieve and select further relevant
information on how to properly comply with the request, use
that information to generate text from the core model, and
then respond to the user. Applying this to statements provides
an easily accessible way to perform a look-up on public
individuals, allowing a more holistic assessment of whether
supporting the public individual aligns with their own ideas.

C. Prompt Deconstruction

Considering the diagram illustrated in Figure 1, examining
the individual components and their responsibilities within the
overall architecture is pertinent.

We can group the larger system into three smaller subsys-
tems of individual components. This section will focus mainly
on analyzing the first subsystem, Prompt Deconstruction.
Delineated by Fig. 2, prompt deconstruction is initialized by
an incoming prompt. The nature of these kinds of prompts
will be user queries. The overarching system, especially this
portion of the system, is predicated on the assumption that the
user is querying based upon prior knowledge of the general
nature of the subject entity the corpus is composed of. This
means the user will understand that the resultant text will
be a culmination of statements made by a particular entity,
whether an individual or an establishment. In this paper, the
entities in question are the proprietors of the podcast. Although
functionality could be extended to retrieve statements amongst
an array of entities, that is not the focus of this paper.

Fig. 2: A close up of the prompt construction step

1) Topic Extraction: The user prompt, once accepted, is
taken and deconstructed bidirectionally and then fed into a
topic extraction and a keyword extraction system, respectively.
The former, topic extraction, is done using a base LLaMA2-
7B model. Although other topic modeling approaches, such as
Latent Dirichlet Allocation (LDA) using tools like spaCy [19]
or Gensim [20], have been known to provide sufficient topic
words, the backbone of these approaches still tends to rely on
metrics adjacent to term frequency. This can lead to including
topic words with little to no meaning or relevance compared
to the scope of the episode entry from which it is derived. For
this reason, we found that using these packages in a domain
applicable to keyword extraction tends to produce higher
functioning results, which is mentioned later in this paper, and
using transformer models such as LLaMA2 or the GPT series
leads to better topic extraction. Due to the inherent attention
mechanism factor within transformer models, they can derive
semantic meaning with a higher degree of relevance. The
downside to such an approach is the embodiment of the main
contribution of this paper, the inconsistencies in the output
topic words extracted.

Fig. 3: An example of topic extraction prompt

This is mitigated via a three-step approach illustrated in Fig.
3. First, at the time of inference, the model parameters are set
to result in a more deterministic output. Setting the tempera-
ture output to an incredibly low floating-point number, in this
case 0.1, is a main contributor. Second, the prompt passed
through to the topic extraction model. This must be precise
in what and how the topics are extracted from the prompt
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using the model. Attributes such as explicitly requesting the
number of topics, the composition of the topics—words,
phrases, or otherwise—and the format to provide them are all
necessary. To limit deviation, it is useful to explicitly state
what is not permittable to respond with. In this case, we
specifically requested the omission of brackets and parenthesis
when listing topics. Third, the nature of the embeddings being
compared will also mitigate deviation. This will be detailed
during the cosine similarity step.

2) Keyword Extraction: The latter, keyword extraction, uses
a multi-step process where the aforementioned spaCy and
Gensim packages are applied. Initially, the spaCy library is im-
ported and loads a natural language processing model through
which we pass the prompt. This will return a document repre-
sentation comprised of words parsed as text. A loop is initiated
on the document in which for each token in the document
if the token is not among the set of words deemed as ‘stop
words’, these include words such as ‘the’ and ‘is’, it will be
added to a list. We then use Gensim’s TextRank [20] keyword
package to extract the top N potential keywords. Then, for
each token, we generate the GPT2 embeddings, and then the
average embedding of all the tokens is calculated to represent
the overall semantic meaning of the text. We then generate
embeddings for each extracted keyword and calculate the
cosine similarity between the average text embedding and each
keyword. Finally, keywords with a cosine similarity above a
certain threshold are considered significant and appended to
the final list.

Fig. 4: An example of the database schema

3) Database: For this application, a Mongo Database was
used. The composition schema of each episode entry, refer-
enced in Fig. 4, is as follows: a reference id used to reference
which episode the entry came from. An entry date is used as
an indicator as to when the entry was added to the database.
Also, the transcript start property within the data is used to
identify at what point in the episode we are in. A sample
object is a property within the data, including the actual text
transcript. Finally, a topics array is within the data, indicating
the dominant topics associated with the episode entry, and a
keywords array contains the keywords of the episode entry.

4) Cosine Similarity: A critical step-component of the
Elephant system is its capability to ascertain the degree of re-
semblance between the incoming prompt and the vast number

of entries within its database. To accomplish this, the system
leverages a computed cosine similarity metric, a quantitative
measure of the cosine angle between two embedding vectors
in a multi-dimensional space, reflecting how closely aligned
the compared terms are in content and meaning.

Each transcript entry is converted into an embedding, essen-
tially a numerical representation that holds data, such as the
semantic meaning of the text, which is then compared against
the prompt embedding. Using PyTorch’s cosine similarity
function [21], we can leverage its efficiency to calculate cosine
similarity between embeddings. Furthermore, an additional
layer of comparing the topics and keywords of the prompt
with the entries in the database is also applied, producing a
similarity score, referred to as attribute similarity. In essence,
both an embedding-based similarity and an attribute-based
similarity are applied and are considered to indicate a quan-
titative measure of the overall resemblance to the prompt.
Subsequently, a combined similarity is calculated to create
a holistic similarity metric. This is done by averaging the
embedding similarity and the attribute similarity and is meant
to represent how closely an entry matches the incoming
prompt’s semantic content and thematic attributes.

D. Similarity Selection

This section overviews the next subsystem within the larger
Elephant system. It will focus mainly on selecting entries with
the highest similarity score and how they are tuned before
presenting them to the main Elephant model.

Fig. 5: An overview of Similarity Selection process

1) Top N Entries: After the computation and comparison
of cosine similarities, the scores are organized in descending
order, prioritizing entries with the highest levels of similarity.
The similarity values are floating point numbers ranging from
-1 to 1, with a value of 1 denoting perfect similarity. As
illustrated in Figure 3, this process culminates in selecting the
top N entries. This critical step hones the model’s focus on the
content most relevant to the given prompt, effectively serving
as a filter to enhance the precision of the model’s outputs.

Selecting the top N entries is instrumental in preventing the
model from being encumbered by an overabundance of data,
which could potentially dilute its attention capacity. Given
the architectural design of LLMs, there is a propensity for
the model’s attention to decay when processing excessive
amounts of information. The concept of attention refers to
the window of context the model can reflect upon within the
sequence or sequences of text. As the sequence gets longer,
information can slip in and out of this window based on a
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TABLE I: A representation of topics and cosine similarity

Cosine Similarity (%) Topics

71.61% (0.4321)
facebook, google, microsoft, apple
amazon, twitter, peter thiel, mark zukerberg,
trump

65.53% (0.3105)
twitter, death, san francisco, google,
android, chief, product office, mobile coin,
angel investor, figma

65.01% (0.3002) girls, pain, twitter, phone monitoring, launch
startup science sores boys

64.73% (0.2945)
real estate, florida, facebook,
censorship, alternative, competition, platform,
management, excuse

criterion, causing the model to lose track of parts of the text,
known as attention decay. This decay can lead to less coherent
responses and, in some cases, generate responses that deviate
from factual accuracy, a phenomenon commonly referred to as
‘hallucination’ [22] within the field. By strategically limiting
the scope of data to the most relevant entries, we mitigate the
risk of such degradation, thereby preserving the integrity and
legibility of the model responses.

The selection of the top N entries, upon face value, may
seem trivial, but after closer inspection, this step is also crucial.
Table I depicts a selection of a few topics and their associated
cosine similarity after the initial prompt of ‘Did they ever
discuss Apple or the iPhone?’ In this study, we selected the top
N entries based on some arbitrary value, but in post evaluation,
we saw that the threshold of the relevance of the topics when
associated with cosine similarity is about 0.31. We omitted
the intermediary values for the sake of space, but as the table
represents, the topic of apple, still presents at a similarity score
of 0.4321, then around 0.3105, the topic of Apple specifically
is not present, but adjacent topics such as Twitter, Google and
San Francisco still exist. As we go below 0.31, topics tend to
lose representation of the original user query with topics such
as Real Estate. Considering this, it may be wise to select the
top N entries based on the cosine similarity value rather than
some arbitrary value. The consequences of this approach are
two-fold. The entries selected would have more relevance to
the initial query but at the cost of likely feeding the model
with too much incoming data, if the number of entries above
the threshold is substantial, negating the entire motive of this
curation step.

2) Prompt Tuning: The final step, prior to running inference
on the Elephant model, is prompt tuning. During this step,
the model is presented with the user’s initial prompt and the
associated entries it must quote from to respond accurately.
The model is set to have a behavioral pattern of a helpful
chatbot, ensuring its tone is adequate for human interaction.
Like the topic extraction step, it is crucial to have clear and
strict guidelines on how and what the model should be and
in what format. This would be the area where you would set
certain guidelines. In this study, the model was set to ensure it
includes the related links it’s quoting from and to urge the user
to follow those links for a more comprehensive understanding,
as these are just snippets. After these safeguards are in place,

the text is forwarded to the main inference model.

E. Model Output
The final subsystem of our proposed system, as depicted

in Fig. 6, is either a finetuned GPT 3.5 turbo model [23] or
a fine-tuned LLaMA2 model [10], specifically for accurate
information retrieval of statements made within a text corpus.
They were finetuned with data similar to an expected ques-
tion, retrieval, answer conversation format. Designed to select
individual quotes, Elephant outputs accurate quotes with the
help of the initial prompt tuning and prior steps. The max
tokens parameter is set to 1024 tokens. This allows the model
to generate many new tokens, although such a limit may never
be reached. Every other parameter is using the default value.
Alternatively, setting the temperature to a low value, such as
0.2 or 0.3, may also be beneficial.

Fig. 6: An overview of the Elephant output

IV. EXPERIMENTS AND RESULTS
Experiments were carried out on an array of prompts

tailored towards the nature of the data being retrieved on
the Elephant LLM, with both the GPT and LLaMA2 variants
tested. Moreover, the same prompt of ‘Did they ever discuss
Apple or the iPhone?’ was run through each model 10 times on
differing temperature parameters, and the cosine similarity was
calculated by comparison to the reference text embeddings.

A. LLaMA2 variant model
Regarding experiments run on the LLaMA2 variant and the

nature of this paper, experiments that consider the consistency
of the responses and the accuracy of the quotes within them
were the focus of evaluation. On each run, the model correctly
quoted the entries provided when responding to the user.
Unfortunately, the consistency of the model was in question.
Figure 5 depicts model responses, with the user prompt stated
at the top, and the various prompts listed subsequently as
‘Chatbot’. At a temperature value of 0.6, when a quote is
included, the model tends to replace statements with ellipses.
This suggests the model may have a propensity to paraphrase,
as seen in the first chatbot response, regardless of whether
it was explicitly directed not to do so. At a temperature of
0.1, the model tends to include the entire quote, regardless of
whether it was told explicitly to do so. Due to the deterministic
nature of a 0.1 temperature value, only one response was
displayed to avoid redundancy. Both values and the model
at large tend to include irrelevant quotes.
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Fig. 7: The sample responses of LLaMA2 variant model

TABLE II: Performance results of the LLaMA2-based model

Avg (%) SD Var CV IQR Temp.
82.04%

(0.64070) 0.00127 1.61E-06 0.198% 0 0.1

83.22%
(0.66431) 0.04825 0.00233 7.264% 0.04902 0.2

85.32%
(0.70644) 0.06932 0.00481 9.813% 0.13126 0.3

85.08%
(0.70156) 0.0588 0.00346 8.381% 0.11366 0.4

88.29%
(0.76588) 0.03436 0.00118 4.486% 0.04259 0.5

B. LLaMA2 Results

Table II illustrates the relationship between temperature and
cosine similarity, considering the characteristic effect temper-
ature has on the output of the LLM and the overall cosine
similarity. As stated throughout this paper, cosine similarity is
the primary quantitative performance measure metric.

The columns in Table II are Average (Avg), Standard
Deviation (SD), Variance (Var), Coefficient of Variation (CV),
Interquartile Range (IQR), and Temperature (Temp), respec-
tively. The data within Table II suggests a trend where the
variability in the model responses, as indicated by the standard
deviation (SD), increases as the temperature increases, even-
tually peaking at a temperature of 0.3 and then starting to de-
crease. Considering that the average cosine similarity steadily
increases as temperature rises from 0.1 to 0.5, this suggests
that the LLaMA2 variant becomes less deterministic, which
aligns with the reference output improvement on average. We
can conclude that the LLaMA2 variant tends to produce more
varied responses in terms of similarity to the reference as the
temperature increases, but only up to a certain point. Beyond
that threshold, 0.3, the variability starts to decrease, while the
average similarity is independent of this trend and steadily
increases as temperature increases, indicating a potential sweet
spot around 0.4 to 0.5. This average may be increased by
supplying more data during the finetune process.

TABLE III: Performance results of the GPT 3.5-based model

Avg (%) SD Var CV IR Temp.
90.42%
(0.8083) 0.04054 0.00164 5.016% 0.00901 0.1

90.08%
(0.80155) 0.07958 0.00633 9.928% 0.11004 0.2

88.79%
(0.77581) 0.05336 0.00285 6.877% 0.09497 0.3

86.76%
(0.73528) 0.07015 0.00492 9.540% 0.12543 0.4

86.37%
(0.72745) 0.06546 0.00429 8.998% 0.10935 0.5

C. GPT 3.5

Expectedly, the GPT3.5 variant is evaluated in the same
way. Using the same user incoming prompt, the same system
message preamble, and being supplied the same transcript data
to base its response. Figure 6 depicts the general response
of the GPT3.5 variant outputs. The consistency of the model
fared much better in listing all the related quotes from the
provided transcript data, although in some cases, the model
did paraphrase, even when explicitly directed not to, it still
maintained the expectation of extracting each related quote.
For the sake of brevity, only one response is included, seeing
as subsequent responses were more of the same.

Fig. 8: The sample responses of the GPT3.5 variant model

D. GPT 3.5 results

According to the findings in Table III, the GPT3.5 variant
saw higher variance across the board and a higher average
similarity score. This indicates that for each temperature value,
the similarity was reasonably high, implying that it tends to
reference the correct transcripts but may slightly paraphrase
to some degree.

The average cosine similarity trends downwards as the
temperature increases, which opposes the previous trend in
the LLaMA2 variant, indicating that lower temperatures align
better with the reference text. This trend expectedly goes hand-
in-hand with the standard deviation as temperature increases,
signifying a less deterministic output than expected. The
relative spread of data in relation to the mean, as depicted
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by the Coefficient of Variation (CV), is higher at temperatures
0.2, 0.4, and 0.5, suggesting the relative variability is greater
at these values. As the alignment trends upwards as the
temperature decreases and the higher CV values are at a
temperature of 0.2 and 0.4, we can surmise that the optimal
value is around 0.2.

V. CONCLUSION

This paper highlights the transformative potential of large
language models in generating, processing, and retrieving
information while applying a framework to mitigate misin-
formation. Our proposed Elephant model is fine-tuned from
two popular LLMs, GPT3.5 and LLaMA2. In addition, using
topic and keyword extraction alongside a cosine similarity
metric, our proposed model can mitigate the challenge of
misinformation in our digital society via accurate recantations
of information.

We collected podcast datasets, processed the data, and
fine-tuned two models following our approach. Then, two
experiments were conducted to verify the effectiveness of our
method. In the first experiment done using the LLaMA 2
variant, after extracting semantic meaning from the prompt
and comparing it with the database, the model’s output saw an
average similarity of 88.29% (0.76588) in comparison to the
reference text at a temperature of 0.5. In the second experiment
done using the GPT 3.5 variant, after the prompt deconstruc-
tion and similarity selection phases, the model’s output saw
an average similarity of 90.42% (0.8083) in comparison to
the reference text at a temperature of 0.1. There are, however,
limitations within this paper. Including comparative analysis,
particularly against existing IR methods, would be beneficial.
Although that would be optimal, this implementation does
apply human verification analysis.

It is no secret that information is power. While the function
of compiling information in aggregate to reach a conclusion
is innate in all individuals, the ability or availability to do the
necessary research may not be a resource readily available.
Before making a decision, it is paramount to understand the
nature of the decision and the stances of all major parties
involved. The proposition of this paper is an attempt to solve
this problem.

For future works, it is important to recognize that further
research and iterations upon this implementation would result
in better performance, highlighted below.

Data Decisions It may be beneficial to convert the data into
SQL schemas. This would likely improve the relevancy of the
data entries initially pulled, allowing for similarity calculations
on fewer entries. It is also important to recognize that using
more varied data. In the future, other forms of media may be
incorporated, as well as other metrics such as perplexity or
BLEU score.

Prompt Deconstruction Analysis Before extracting the
prompt, running an analysis to determine the nature of the
query would be useful. If the user requests a previous query
after extracting the topics and keywords from the prompt,
it may be worth keeping a record of past entries pulled if

that is what the prompt requests. If the user requests more
information on a topic, finding it and getting more context
may be a separate system to defer to.
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