

The 25th Winona Computer Science

Undergraduate Research Symposium

May 1, 2025

11:30am to 13:30pm

https://minnstate.zoom.us/j/94382378997
Zoom Meeting ID: 943 8237 8997

Winona State University
Winona, MN

Sponsored by the Department of Computer Science

at Winona State University

https://minnstate.zoom.us/j/94382378997

ii

Table of Contents

 Title Author Page

Using Keystroke Dynamics Behavioral Biometrics

to Identify Users Bradley Budach 1

An implementation and comparison of NAT64

eBPF NAT64 technologies with the Jool Kernel

Module Arvinder Dhanoa 6

Using Multilayer Perceptron (MLP) to Predict

Crop Yields Thomas Donnelly 10

Impact of Containerization on the Performance

of Web Applications Amin Elkalifa 14

Comparing Performance of Parallel

Implementation of Sorting Algorithms Versus

Standard Implementations Allen Martin 17

Comparing Image Scaling Quality Between

Photoshop and Clip Studio Paint Vera Kilpatrick 21

Using Keystroke Dynamics Behavioral Biometrics to Identify
Users

Bradley Budach
Winona State University
Winona, Minnesota
bbudach7@gmail.com

ABSTRACT
This study explores the use of keystroke dynamics as a behavioral
biometric for user identification. Unlike physiological biometrics,
such as fingerprints or facial recognition, keystroke dynamics lever-
ages the unique typing patterns of individuals to create a distinc-
tive signature. This goal of this research was to develop a machine
learning-based system that utilizes keystroke dynamics for con-
tinuous and unobtrusive user authentication. By collecting and
analyzing keystroke data from multiple users, relevant features
were extracted and used to train a machine learning model to iden-
tify users with high accuracy. This study shows that using keystroke
dynamics for behavioral biometrics is possible for creating a scal-
able authentication system that can provide an additional layer of
security on top of traditional security measures.

CCS CONCEPTS
• Computing methodologies→ Supervised learning by classi-
fication; Neural networks; • Security and privacy → Biomet-
rics; • Human-centered computing → Keyboards.

KEYWORDS
Behavioral Biometrics, Machine Learning, Security, Authentication,
Keyboard Behavior, Siamese Network, Feature Extraction
ACM Reference Format:
Bradley Budach. 2025. Using Keystroke Dynamics Behavioral Biometrics to
Identify Users. In Proceedings of Proceedings of the 25th Winona Computer
Science Undergraduate Research Seminar. ACM, New York, NY, USA, 5 pages.

1 INTRODUCTION
Biometrics is a type of authentication that is commonplace in the
current technological landscape. There are two primary types of
biometrics, physiological and behavioral. Physiological biometrics
are things like fingerprints, facial recognition, and other static
information about a person. These types of biometrics are extremely
common in practical applications. The less common category is
behavioral biometrics, which identifies people by their dynamic
actions such as how they interact with devices, how they speak or
how they move [7].

One of these Behavioral Biometrics is Keystroke Dynamics. Ev-
ery person has a unique way they interact with the keyboard, which
in turn creates a unique signature that can be used to identify them
[7]. Many different behavioral biometrics can be used for identifica-
tion, such as screen touches on mobile devices, mouse movement,
keystroke dynamics, voice, gait, and various other behaviors, as

Proceedings of the 25th Winona Computer Science Undergraduate Research Seminar, April
29 and May 1, 2025, Winona, MN, US
2025.

well as combinations of these measures. The objective of this study
is to create a biometrics system that uses only keystroke dynamics
to authenticate users.

Many similar studies focus on keystroke dynamics in combina-
tion with other data sources. Like on mobile devices where the
keystroke dynamics are used alongside things like motion sensor
readings and finger movements [10, 12]. Another study used a cam-
era pointed at the keyboard to study handmovement patterns rather
than keystroke dynamics [1]. This information is not available on
all devices like computers, however.

Using purely keystroke dynamics is advantageous due to its ac-
cessibility. Almost anyone interacting with a computer will have to
use the keyboard for some tasks. It is also unobtrusive, as keystroke
dynamics information can be collected while doing ordinary tasks
on a device, and the user does not need to go out of their way to
perform specific actions like using their voice, using the mouse,
or doing something within view of a camera. Keystroke dynamics
can also be continuous, allowing for authentication throughout
sensitive processes, rather than only at the beginning.

With these considerations in mind, this study aims to implement
a behavioral biometrics system with machine learning using only
keystroke dynamics. This method should be unobtrusive for the
user while adding an extra layer of security. Another primary goal
of the study is to have this authentication system be continuous.
That means having authentication that can run in the background
over the course of a process that is constantly checking the users’
biometrics. Lastly, this model should ideally be scalable. If the model
can easily adjust to new user biometrics, it will be more flexible to
implement in real-world applications.

To ensure that these goals are met, the final model should achieve
a Equal Error Rate (EER) of 5% or below, with greater than 90%
accuracy. Meeting these metrics will ensure ease of use for the
authentication system and indicate a successful result. This is not
as strict as it would be for a primary authentication system, but
keyboard authentication would likely be a tertiary security measure
in practice.

2 BACKGROUND RESEARCH
Behavioral biometrics has an interesting history, with the identifi-
cation of unique typing patterns going back all the way to WWII.
“The first mention of the use of the typing method to identify an
individual can be dated to the period of the Second World War.
Back then, a common way of communication was to send messages
using the Morse code, and operators quickly learned how to write
correspondence” [3]. Since the invention of machine learning, var-
ious behavioral biometrics have been studied for authentication
purposes.

1

One study [2] was done that simulated an office environment
for 80 workers where information like keystroke dynamics, mouse
dynamics, browsing history, and applications used were collected.
Users also had to take numerous psychometric tests where further
data was collected. Features were extracted from this data and used
to train models to identify individual users with reasonable levels
of accuracy.

Later a study [1] took a different approach, using computer
vision with a camera pointed at the keyboard to identify users.
This method extracts features from the video stream and uses a
regression model to compare to a saved “probe”. This method shows
promise with a very high accuracy result, however implementing
such a system practically has the obvious drawback of requiring a
camera set up above a keyboard implementing this system.

More recently a method was proposed using a similar feature
subset to this study and gives an outline for how such a keystroke
authentication system could be implemented [7]. With mobile de-
vice security becoming more important, behavioral biometrics was
studied for use on mobile devices using both keystroke dynamics
as well as other device sensors like tilt and swipe patterns [8]. This
is similar to studies [9, 10, 12] which used similar features on a
mobile device to classify users.

Some common models used are RNNs as used in [11], LSTMs,
SVMs as used in [4], Decision Trees, and Random Forests. The pro-
posed model for this study, however, is a Siamese Network. Siamese
networks were first proposed in 1993 but have found significant
use in recent years when combined with more powerful networks
and deep learning [5]. The most similar research to this study is
[6], where a Siamese Network was used to identify users based
on keystroke dynamics when entering a password with an 88%
accuracy. The aims of this study are to create a model that is more
broadly applicable to any typing situation. With additional features
as well as novel model architecture, a more generally applicable
and accurate model can be created, furthering the research on this
approach.

3 METHODOLOGY
3.1 Method Outline
For this study, a machine learning model was created that can
identify users using their unique keyboard dynamics. This model
was built using Python TensorFlow and Keras. The model was
designed with scalability in mind, which means it needs to be highly
adaptable to different typing patterns and not specifically tuned to
typing a specific phrase or password. The features extracted from
the data were selected with this in mind and should be applicable in
most typing situations across a wide range of durations. To facilitate
this model, a Siamese Network (SSN) was used to compare stored
profiles to target probes.

3.2 Data Collection
The first step of the process is to collect data from multiple different
users. For this, a web based front-end interface was created to collect
keyboard data and store results in a database. The application was
then given to multiple individuals who were asked to complete a
typing task for 60 seconds while keyboard data is collected. In total,
data was collected on 15 different users. This data collected includes

Figure 1: Methodology phases outline.

the key that was pressed, the timestamp when it was pressed, and
the timestamp when it was released. This keyboard data is used for
the next step, feature extraction.

3.3 Feature Extraction

Figure 2: The features extracted based on the timing results
of various keyboard actions.

A total of 13 features were extracted from the data to get a
unique profile of each typist. Themean, median, range, and standard
deviation were collected on the following:

• Time between each key press (BK)
• The ratio of the time taken to write a word to its length (WS)
• The time each key was down (KD)

Additionally, the ratio of backspace keys to total keys pressed
was measured. These features are common across several studies
like [6, 7]. WS and backspace ratio were additions made for this
study. These features were selected because they provide useful
information to differentiate between users while also not restricting
the possible typing scenarios too much by broadening the required
data collection window.

Another step performed after feature extraction is normalization.
Normalization was done using Z-Score Normalization.

𝑍 =
𝑥 − 𝜇

𝜎
• Z - the standardized feature
• x - the original feature
• 𝜇 - the average for that feature
• 𝜎 - standard deviation

Normalizing the features ensures that training can be more con-
sistent when used as an input to a machine learning model, espe-
cially ones like an SSN that rely on distance calculations.

2

Feature vectors were extracted on the full 60 second dataset
for each user to represent their profile or signature. To gain data
representing dynamic user typing, data was extracted on individual
20 second splits from their overall dataset. To combine this data
into usable examples for the machine learning model. Pairs were
created with every user’s signature paired with data from every
user’s 20 second splits (probe).

𝑃𝑎𝑖𝑟 = [𝐹𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 , 𝐹𝑝𝑟𝑜𝑏𝑒]
The label is set to 1 if 𝐹𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 and 𝐹𝑝𝑟𝑜𝑏𝑒 come from matching

users, and 0 if they are from different users.

3.4 Model Creation

Figure 3: Siamese network architecture.

Many of the past solutions implemented for keystroke dynamics
behavioral biometrics were trained to either identify a single user
in a binary classification task, or a trained set of users. This requires
additional training with each person added. Also, training these
models requires a subset of data from multiple other people which
makes it difficult if you are starting with a small set of individuals.
For scalability reasons, having to re-train the model or set of models
with every new user is not ideal for a production environment. That
is why, for this study, a Siamese Network is used to learn a loss
function on the data which can be generalized to new predictions.
The structure of this network, shown in fig. 2, uses two identical
Deep Neural Networks (DNNs). Input A is the saved profile (sig-
nature) of a user which is a normalized feature vector. Input B is
the target feature vector that the saved profile will be compared
against. Each DNN will output a feature vector:

𝐼𝑛𝑝𝑢𝑡𝐴 → [𝐹1], 𝐼𝑛𝑝𝑢𝑡𝐵 → [𝐹2]
Euclidean distance is then calculated on these features with D

dimensions:

𝐿2(𝐹1, 𝐹2) =

√√√
𝐷∑︁
𝑖=0

(𝐹2𝑖 − 𝐹1𝑖)2

Contrastive loss is used on the L2 distance to optimize the output
distance to be larger when profiles come from different users and

smaller when profiles come from the same user. Contrastive loss is
measured on N outputs from the current batch:

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 𝐿𝑜𝑠𝑠 (𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑 ,𝑚) =

1
𝑁

𝑁∑︁
𝑖=0

[𝑦𝑡𝑟𝑢𝑒𝑖 · (𝑦𝑝𝑟𝑒𝑑𝑖)2 + (1 − 𝑦𝑡𝑟𝑢𝑒
𝑖)

·𝑚𝑎𝑥 ((𝑚 − 𝑦𝑝𝑟𝑒𝑑
𝑖), 0)2]

The value of 𝑦𝑡𝑟𝑢𝑒𝑖 is either 1 or 0 based on whether there is a
match or not. 𝑦𝑝𝑟𝑒𝑑𝑖) is the L2 distance calculated on the input
feature vectors. m is a margin value that was set to 1 for this study.
If there is a between the signature and the probe, the first term is
in play. (𝑦𝑝𝑟𝑒𝑑𝑖)2 This will punish the network for having a large
distance between feature vectors from the same user. If the label is
0, the second term is in play.𝑚𝑎𝑥 ((𝑚−𝑦𝑝𝑟𝑒𝑑𝑖), 0)2 This will punish
the network for having a small distance between non-matching
users. As a result, each DNN sub-network will learn weights that
make distances for matching inputs very small, and distances for
non-matching inputs very large.

To ensure the model is scalable. Measures were taken to prevent
overfitting on the data. Dropout and Batch Normalization layers are
used in conjunction with early stopping on a 20% validation split
when training to reduce overfitting. Due to the small dataset, there
are a lot more examples of the negative case (users not matching)
than the positive (users matching), to prevent bias while training,
random oversampling was used to duplicate cases of the positive
class to match the negative. After oversampling, the training set
was an even split across 1476 examples.

The model was trained with a batch size of 64 over a maximum
of 200 epochs, halted by early stopping.

4 EXPERIMENTS
Various experiments with different models and hyperparameters
were done during the development process that helped narrow
down the methodology.

4.1 Experiment 1
A non-machine learning method was tried using normalized sig-
natures that were compared with cosine similarity. This method
showed some level of correlation between matching signatures, but
the false positive and negative rate was very high, and it became
clear that a machine learning method would be needed to learn
more complex relationships within the data.

4.2 Experiment 2
Larger and more layers of dense networks were tested for the
individual DNNs, however this seemed to make no difference in
quality while slowing down processing significantly. Therefore, a
smaller network was chosen.

4.3 Experiment 3
Cosine similarity was tested as a distance function in place of Eu-
clidean distance, however Euclidean distance was by far the best
performing.

3

4.4 Experiment 4
Various hyperparameters were tuned for better results. Initially
higher dropout rates (0.3-0.5) were used, but that seemed to hurt
performance too much with the smaller size of the dense layers, so a
smaller dropout rate of 0.1 was chosen. Various activation functions
were also tested like ReLU, Leaky-ReLU, and ELU. ELU had the best
performance and was chosen as the activation function.

5 RESULTS AND ANALYSIS
For testing the final model, the standard accuracy metric was used
in addition to the false acceptance rate (FAR) and false rejection
rate (FRR). The equal error rate (EER) is calculated from the FAR
and FRR. All these metrics vary based on the threshold (𝜃) chosen.

𝐹𝐴𝑅 = 100 · 𝐹𝑎𝑙𝑠𝑒 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒𝑠 | 𝜃
𝑇𝑜𝑡𝑎𝑙 𝐹𝑟𝑎𝑢𝑑𝑢𝑙𝑎𝑛𝑡 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠

𝐹𝑅𝑅 = 100 · 𝐹𝑎𝑙𝑠𝑒 𝑟𝑒 𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠 | 𝜃
𝑇𝑜𝑡𝑎𝑙 𝐿𝑒𝑔𝑖𝑡𝑖𝑚𝑖𝑎𝑡𝑒 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠

𝐸𝐸𝑅 = 𝐹𝐴𝑅 ∩ 𝐹𝑅𝑅

To find the optimal threshold (𝜃), FAR and FRR are calculated on
the range 𝜃 : 0 → 1 and 𝜃 is set at the point of the EER. A lower
equal error rate means both better security and less intrusiveness
on the user side with a lower rate of both false acceptances and
rejections. For this study, a target EER of 5% was chosen. While this
is on the higher side for important security operations, keystroke
behavioral biometrics is meant to be an additional layer of security,
not the primary source, so a higher target EER is an acceptable
goal.

Figure 4: Accuracy FAR, FRR, and EER at best threshold on
trained data.

Figure 4 indicates the EER, and accuracy of the final model on the
training set. The threshold selected (0.39), is the optimal position
to minimize the FAR and FRR with a resulting EER of 2.42%. This

means, of the negative examples, only 2.4% were able to gain false
access to the system, and only 2.4% of positive examples were
rejected. This is below the EER target of 5% and indicates a robust
system. The overall accuracy of this model on the testing data was
97.5%.

Figure 5: Accuracy FAR, and FRR, at best threshold on new
data.

Figure 5 shows the same threshold but used on data that the
model hasn’t seen before. This means new user profiles and new
positive and negative examples. At the optimal threshold, a false
acceptance rate of 6.9% was measured with a 0% false rejection rate.
Overall, the model performed with 93.33% accuracy on new data.
These results outperform the primary comparison for this study [6]
which achieved an accuracy of 89% and EER of 27% on new data,
however the window for data collected in this study is much higher
than a small password window which may account for some of the
differences.

These results show some falloff for new data, but it is not signif-
icant. The model still performs with a greater than 90% accuracy
even on new data which is within the goals for the study. Though
the FAR is slightly above the target goal of 5%, which indicates
some falloff in quality.

6 CONCLUSION
6.1 Findings
The results from this study show that keystroke behavioral bio-
metrics by themselves are enough to accurately identify users. Fur-
thermore, using a Siamese Network to differentiate user signatures
on a generalized feature set shows high effectiveness and scalabil-
ity, with similar quality results on new data without the need for
retraining.

4

6.2 Future Study
Further study could be done to optimize the model for a production
environment. More testing would need to be done on scalability
with a much larger set of users as the data set collected for this
study was small. Extracting additional features or combining with
other biometric types, such as mouse dynamics, could improve
model performance at scale while remaining unobtrusive.

There are some practical issues that still need to be solved before
a system like this can be implemented in a production environment.
One potential issue is people’s typing behavior changing over time.
They could be using a new keyboard, have an injury, be getting
more skilled at typing, or just be tired that day. For more gradual
changes, the saved profile could be updated over time with more
recent data, keeping the signature close to a user’s current typing
style. More drastic changes like an injury may require generating a
new signature. Different signatures could also be stored and used
based on which device, and therefore keyboard, a user is currently
using.

Privacy concerns are also a relevant issue when implementing a
system like this. Users would need to be made aware of the data
being collected on them, and any implementation would have to
conform to relevant privacy laws.

The implementation of this system would also need to remain
out of the way for normal users. False rejections have a high cost if it
means locking the user out of whatever they were doing or causing
annoyance. One possible way to reduce this issue is explored in
the study by Sağbaş where a circular queue was used, and a user
was only rejected if all checks within the queue indicated the user
was invalid [9]. The length of the queue used could be optimized
for either faster intrusion detection or lower risk of false rejection
based on the use case.

REFERENCES
[1] Joseph Roth et al. 2014. On Continuous User Authentication via Typing Behavior.

IEEE Transactions on Image Processing 23, 10 (2014). https://doi.org/10.1109/TIP.
2014.2348802

[2] Patrick Juola, John I. Noecker, Ariel Stolerman, Michael V. Ryan, Patrick Bren-
nan, and Rachel Greenstadt. 2013. Keyboard-Behavior-Based Authentication for
Security. IT Professional 15, 4 (2013), 8–11. https://doi.org/10.1109/MITP.2013.49

[3] Pawel Kasprowski, Zaneta Borowska, and Katarzyna Harezlak. 2022. Biometric
Identification Based on Keystroke Dynamics. Sensors (Basel, Switzerland) 22, 9
(Apr 2022), 3158. https://doi.org/10.3390/s22093158

[4] Sowndarya Krishnamoorthy, Luis Rueda, Sherif Saad, and Haytham Elmiligi.
2018. Identification of User Behavioral Biometrics for Authentication Using
Keystroke Dynamics and Machine Learning. In 2nd International Conference on
Biometric Engineering and Applications (ICBEA ’18). 50–57. https://doi.org/10.
1145/3230820.3230829

[5] Yikai Li, C. L. Philip Chen, and Tong Zhang. 2022. A Survey on Siamese Network:
Methodologies, Applications, and Opportunities. IEEE Transactions on Artificial
Intelligence 3, 6 (Dec 2022), 994–1014. https://doi.org/10.1109/TAI.2022.3207112

[6] Kamila Lis, Ewa Niewiadomska-Szynkiewicz, and Katarzyna Dziewulska. 2023.
Siamese Neural Network for Keystroke Dynamics-Based Authentication on Par-
tial Passwords. Sensors 23 (2023), 6685. https://doi.org/10.3390/s23156685

[7] Rohit Patil and Amar Renke. 2016. Keystroke Dynamics for User Authentication
and Identification by using Typing Rhythm. International Journal of Computer
Applications 144, 9 (Jun 2016), 27–33. https://doi.org/10.5120/ijca2016910432

[8] Dmytro Progonov, Valentyna Cherniakova, and Pavlo Kolesnichenko et al. 2022.
Behavior-based user authentication on mobile devices in various usage contexts.
EURASIP Journal on Information Security (2022), Article 6. https://doi.org/10.
1186/s13635-022-00132-x

[9] Ensar Arif Sağbaş and Serkan Ballı. 2024. Machine learning-based novel con-
tinuous authentication system using soft keyboard typing behavior and motion
sensor data. Journal of Neural Computing & Applications 36 (Jan 2024), 5433–5445.
https://doi.org/10.1007/s00521-023-09360-9

[10] Ioannis Stylios, Andreas Skalkos, Spyros Kokolakis, and Maria Karyda. 2022.
BioPrivacy: A Behavioral Biometrics Continuous Authentication System based
on Keystroke Dynamics and Touch Gestures. Information and Computer Security
30, 5 (2022), 687–704. https://doi.org/10.1108/ICS-12-2021-0212

[11] Lichao Sun, Yuqi Wang, Bokai Cao, Philip S. Yu, Witawas Srisa-an, and Alex D.
Leow. 2017. Sequential Keystroke Behavioral Biometrics for Mobile User Identifi-
cation via Multi-view Deep Learning. In ECML PKDD 2017, Vol. 10536. 228–240.
https://doi.org/10.1007/978-3-319-71273-4_19

[12] Ka-Wing Tse and Kevin Hung. 2019. Behavioral Biometrics Scheme with Key-
stroke and Swipe Dynamics for User Authentication on Mobile Platform. In
IEEE 9th Symposium on Computer Applications & Industrial Electronics (ISCAIE).
125–130. https://doi.org/10.1109/ISCAIE.2019.8743995

5

https://doi.org/10.1109/TIP.2014.2348802
https://doi.org/10.1109/TIP.2014.2348802
https://doi.org/10.1109/MITP.2013.49
https://doi.org/10.3390/s22093158
https://doi.org/10.1145/3230820.3230829
https://doi.org/10.1145/3230820.3230829
https://doi.org/10.1109/TAI.2022.3207112
https://doi.org/10.3390/s23156685
https://doi.org/10.5120/ijca2016910432
https://doi.org/10.1186/s13635-022-00132-x
https://doi.org/10.1186/s13635-022-00132-x
https://doi.org/10.1007/s00521-023-09360-9
https://doi.org/10.1108/ICS-12-2021-0212
https://doi.org/10.1007/978-3-319-71273-4_19
https://doi.org/10.1109/ISCAIE.2019.8743995

An implementation and comparison of NAT64 eBPF NAT64
technologies with the Jool Kernel Module

Arvinder Dhanoa
ArvinderDhan@gmail.com
Winona State University
Winona, Minnesota, USA

ABSTRACT
Internet Protocol v4 (IPv4) exhaustion has been a prevalent problem
for years, as organizations and service providers fought against the
scarcity of IPv4 address space available on the Internet. NAT64 is in-
creasingly being deployed as a solution to this problem. As a result,
it becomes increasingly important that the deployment of NAT64
technologies is easy and performant. Numerous implementations
of NAT64 technologies already exist, and some new implementa-
tions use extended Berkeley’s Packet Filter (eBPF) as well. In this
research, we implemented a customer side translator (CLAT) with
an eBPF Traffic Control (TC) classifier and compared its perfor-
mance to Jool, a widely used kernel module. We did this using a
series of virtual machines on two networks and a VyOS router. Us-
ing iperf3, we compared throughput when using the Transmission
Control Protocol (TCP) and analyzed throughput and performance
loss. Deployment is trivial, essentially loading the program to the
appropriate interfaces, and the overhead is minimized because both
approaches stay entirely within kernel space.

CCS CONCEPTS
• Computer systems organization → Maintainability and
maintenance.

KEYWORDS
NAT64, Networking, eBPF, TC

ACM Reference Format:
Arvinder Dhanoa. 2025. An implementation and comparison of NAT64
eBPF NAT64 technologies with the Jool Kernel Module. In Proceedings of
Proceedings of the 25th Winona Computer Science Undergraduate Research
Seminar. ACM, New York, NY, USA, 4 pages.

1 INTRODUCTION
1.1 The history of the internet, and NAT
The Internet is made up of devices routed through a protocol known
as the Internet Protocol (IP). IP is a protocol focused on hierarchical
routing between networks, and using that hierarchical routing and
protocols such as the Border Gateway Protocol to locate hosts on
the scale of the Internet. Internet Protocol version 4 (IPv4), officially
created in 1981 under RFC 791[8], was a protocol created that gave
a total of 32 bits of address space for any device on the Internet.
At the time, the internet was considered a research network, and
as ARPANET was not meant to scale to the extent it largely has
today[3]. Government, DoD and academic networks were the first

Proceedings of the 25th Winona Computer Science Undergraduate Research Seminar, April
29 and May 1, 2025, Winona, MN, US
2025.

Figure 1: Depiction of NAT, with a translation table, and
packet flow.

to connect to ARPANET, and gradually more commercial entities
followed. Because of the expenses of computing, and network hard-
ware at the time, it was thought that it would be unlikely that most
countries would have more than 1 or 2 networks on them, with a
potential of 16 million or so computers at most[3]. As a result, 32
bit addresses were chosen at the time, figuring that would be more
than enough addresses to serve the entire Internet. What followed
was a large-scale proliferation of networks and computational hard-
ware. Ethernet became prolific and cheap, and computers slowly
started becoming commodities. Realizing this, two standards were
created in order to stifle the rapidly depleting address space in
IPv4. Internet Protocol version 6 (IPv6), a new protocol increasing
the size of addresses from 32bit to 128 - and a trick to keep the
IPv4 internet working for a while longer called Network Address
Translation (NAT)[4]. NAT (pictured in Figure 1) was a hack in
which a router would designate a special IP range to the devices
in it’s network (specified by RFC1918), commonly referred too as
private address space. This address space was not allowed to be
advertised on the internet, and was used only for internal routing
purposes for an organization or network. When a device wished to
communicate with another device on the internet, the device would
traverse through the router. This router would swap the host’s
source address (which was private) with its own, public address.
This address was advertised on the internet. When a packet came
back, it would swap in the original device’s private address before
forwarding. In order to correctly do this mapping, a router would
inspect data lying on top of the IP protocol (typically the Trans-
mission Control Protocol (TCP) or User Datagram Protocol (UDP)),
and send traffic to a device on the internet from a corresponding
outgoing port. When traffic came back, it would use that port to
figure out which device was the originator.

6

https://orcid.org/1234-5678-9012

Although this scheme works, there are several issues with doing
NAT. Because it relies on the metadata of what was sent on top of
IP, in practice, the only protocols that can traverse the internet for
home users is TCP and UDP. Further, end-to-end communications
are severely hampered by this model. Devices can’t know their own
IP, and even when they do, forming an end-to-end connection is
non-trivial as the NAT gateway won’t know who to forward to
when receiving a packet from a host on the internet. STUN/TURN
are protocols to work around this, but end up plagued with their
own issues. Finally, this was a relatively temporary band aid. It
allowed you to put several devices behind one router, but eventually
we ran out of IPv4 addresses once again.

IPv6 was a longer term solution for this problem, but adoption
was slow. Much of the problems facing IPv6 boil down to all net-
works already supporting IPv4. There may be problems, with many
countries having low enough address space where connections suf-
fer, but for wealthier nations, address space concerns are far more
theoretical still. Because every endpoint has IPv4 in some form -
degraded or not - you must support IPv4 in order to participate with
everyone on the internet. Having IPv6 does not preclude you from
the pain of supporting IPv4, so in practice IPv6 is less important
to support as a result. Further, supporting both IPv6 and IPv4 in a
dual-stack environment means running two sets of networks. Two
sets of routing rules, two sets of firewall rules, and two sets of prob-
lems to deal with. Although IPv6 adoption is slowly increasing[1],
being at 48.30% as of April 12th, 2025 - IPv4 compatibility is still
paramount.

1.2 Introducing NAT64
In order to reduce IPv4 address usage, some network operators,
and hyperscale networks have started to employ something known
as NAT64. NAT64 is in many ways like NAT described above. The
primary distinction is that the “inside” network no longer uses
RFC1918, and instead uses each device’s IPv6 global address. When-
ever the gateway receives a packet starting with some prefix (com-
monly 64:ff9b::), a NAT64 gateway strips the prefix, and understands
the suffix as an IPv4 address. Normal NAT is performed, and when
a response comes back, the prefix is inserted back before routing to
the original host. Under this scheme, an IPv6 host can communicate
with IPv4 hosts, without any internal IPv4 network. Crucially, this
also means that your entire network infrastructure can operate
over IPv6 - simplifying deployment and reducing your network’s
deployment.

The problem with this approach is how to keep compatibility
with IPv4 applications under this approach. As far as hosts are
concerned, they have no IPv4 networking capability, and so IPv4
applications can’t access the IPv4 internet. There’s two solutions
to this problem commonly deployed. Something called DNS64, and
464XLAT. DNS64 is a simple scheme where a DNS server stuffs an
IPv6 prefix in front of domain lookups whenever it would normally
respond backwith anA record containing an IPv4 address. 464XLAT
is more complex. Using awareness of the prefix (communicated
either by DHCP, or through some other mechanism), a host creates
a fake IPv4 interface. This interface synthesizes the IPv6 packet,
and routes it over the network. The network then routes it to the
NAT64 gateway as normal, which translates it back to IPv4 before

routing to the IPv4 internet. The false IPv4 interface is known as a
Customer Side Translator (CLAT). Currently, CLAT’s can be found
on Apple devices[2], with Microsoft committing to adding one in
the future as well[11]. There is also interest in implementations in
the common Linux endpoint networking stacks[7, 10]. On Linux,
Jool is a common implementation for NAT64 technologies, and uses
a kernel module, which is an extension for the Linux kernel. As
such, Jool has no security guarantees or boundaries, due to having
direct and full access to hardware. Recently, eBPF technologies have
also been gaining popularity, which offer stronger isolation and
guarantees about programs written using eBPF. They’re guaranteed
to terminate, more isolated from the kernel, and also run in kernel
space. As of April 15th, 2025 - Network Manager has a Merge
Request open to implement a CLAT using eBPF[9].

Our goal was to implement a NAT64 CLAT, using eBPF, and
compare throughput and CPU overhead with Jool, a popular kernel
module. We believed that throughput would be comparable (within
10%), while having not much more CPU overhead (5-10%).

2 BACKGROUND RESEARCH
Although prior research exists, as well as prior methodologies to
benchmark NAT64 technologies, these are largely focused on bench-
marking the Provider side translator (PLAT)[5, 6]. This research
also does not include eBPF implementations. These benchmarks
are cohesive however, testing with millions of connections, with
far more technologies than just Jool, and a variety of schemes for
doings things such as allocating source ports. Other research fo-
cusing on the performance of eBPF (and especially Express Data
Path (XDP) programs) exist as well, however none implement nor
compare results to NAT64, which is the specific goal of this paper.

3 METHODOLOGY

Figure 2: Network Diagram of the test network

Our tests consisted of using a virtual network. Using 3 Virtual
Machines, one running VyOS, and two running conventional Linux
(fedora 41), we set up a NAT64 translator on the VyOS router. The
two Linuxmachines on each side were assigned an IPv6 and IPv4 ad-
dress respectively. Using iperf3, we ran two minute tests of through-
put using varying amounts of TCP streams, as well as tracked CPU
usage when limiting by throughput using iperf3’s throughput flag.

Although eBPF programs are commonly written in C, we chose
Rust due to familiarity. We used Aya, and wrote a program which
did the following steps for initialization:

(1) Assign an IPv4 address in the 192.0.0.0/29 range to the in-
terface.

(2) Lower the IPv4 MTU by 20 bytes relative to the real MTU.

7

(3) Insert a fake neighbor in theARP tablewithin the 192.0.0.0/29
range.

(4) Create a default route to that neighbor.
The MTU was lowered in order to account for the fact that the

IPv6 packet would be 20 bytes bigger than IPv4, and would have
to be able to traverse the interface. The neighbor was added to the
ARP table in order to get the host to be able to successfully resolve
layer2, so the packet may actually be sent out. As we were working
directly on the ethernet stack of the virtual machine, the packet
would not be sent if this was not done, as the host would send ARP
messages in order to resolve the IP in the route. An eBPF tc program
is loaded in for ingress and egress, which does the following:

(1) Check if it’s IPv4 or IPv6.
(2) If it’s IPv6, and it’s egress traffic, we let it pass.
(3) If it’s IPv6, and it’s ingress traffic *not* starting with the

NAT64 prefix, we let it pass.
(4) If it’s IPv4, we translate it to IPv6, calculate the new PSEUDO

HEADER, checksum, and forward it.
(5) If it’s IPv6, and it’s ingress traffic starting with the NAT64

prefix for the destination address, translate it to IPv4, and
stuff in the interface source address

4 RESULTS AND ANALYSIS
In our testing, we noted throughput to be nearly identical between
Jool and our custom made eBPF module, although it’s worth noting
that we also have far higher CPU utilization. Our explanation for
this is that the limiting factor is likely in a different part of the stack.
It could be our benchmarking tool (iperf3), VirtIO, or some other
limiting factor. Despite this, although it’s clear that our implemen-
tation isn’t bad performing in absolute terms - still able to keep up
with 14Gb/s speeds without a problem on relatively old hardware
(a Ryzen 5 3600) - it is far worse in relative terms. We didn’t record
Jool’s overhead largely because we couldn’t. The CPU overhead of
Jool was minimal enough to be masked by the rest of the kernel. On
the other hand, at 10Gb/s we had more than 40% cpu usage on one
core. Although the hardware we tested on had 12 threads, using
40% of one thread is far slower than what Jool accomplished. Our
explanation for this is likely due to the implementation details of
our eBPF program. Although we needed to use something called a
Traffic Control (TC) program for egress traffic (traffic leaving our
network interface), a better implementation would have been able
to use something called XDP instead for ingress traffic (traffic arriv-
ing on our interface). XDP offloads computation onto the Network
Interface Card (NIC) and as such removes overhead on the CPU.
Further, a better implementation would have also implemented our
program using some form of a virtual interface, in order to elim-
inate Ethernet driver overhead. The current program does more
work, and has layer2 overhead that is largely tossed out once the
IPv4 information is translated into IPv6 or vice versa. Ideally, the
layer2 overhead would only be computed once, when first arriving
or leaving the ethernet interface.

5 CONCLUSION
As NAT64 becomes more predominantly used as a solution to the
IPv4 compatibility problem, having high performing endpoints be-
comes more andmore important. Although Apple platforms already

Figure 3: Throughput of the TC program and Jool

Figure 4: Core utilization of eBPF

ship a CLAT, and Microsoft promises to in the future, the Linux
landscape is still in flux. eBPF seems to be a solid candidate for
ease of deployment, and security boundaries. Although our imple-
mentation was not as optimal as it could be, the performance was
still largely acceptable, and likely could get even higher performing
as a result. In the future, it may also be worth implementing the
NAT64 PLAT (or gateway) using eBPF as well. Having more state,
observing the performance of such an implementation would put
more computation on the eBPF side rather than on the rest of the
networking stack - letting more of the differences shine through in
the context of NAT64.

REFERENCES
[1] [n. d.]. IPv6 Statistics. https://www.google.com/intl/en/ipv6/statistics.html
[2] Ondřej Caletka. 2022. Deploying IPv6-mostly access networks. https://blog.

apnic.net/2022/11/21/deploying-ipv6-mostly-access-networks/
[3] TWiT Hangouts. [n. d.]. Hangout with Vint Cerf. https://www.youtube.com/

watch?v=17GtmwyvmWE&feature=share&t=26m18s
[4] Matt Holdrege and Pyda Srisuresh. [n. d.]. RFC 2663: IP Network Address Trans-

lator (NAT) terminology and considerations. https://datatracker.ietf.org/doc/
html/rfc2663

[5] Gábor Lencse, Keiichi Shima, and Kenjiro Cho. 2023. Benchmarking methodology
for stateful NAT64 gateways. Computer Communications 210 (2023), 256–272.
https://doi.org/10.1016/j.comcom.2023.08.009

[6] Gábor Lencse and Gábor Takács. 2012. Performance analysis of DNS64 andNAT64
solutions. Infocommunications Journal (ISSN 2061-2079) 4 (06 2012), 29–36.

[7] Petr Menšík. [n. d.]. Capability to (auto)configure 464XLAT CLAT part [RFC
6877]. https://gitlab.freedesktop.org/NetworkManager/NetworkManager/-
/issues/1435

8

https://www.google.com/intl/en/ipv6/statistics.html
https://blog.apnic.net/2022/11/21/deploying-ipv6-mostly-access-networks/
https://blog.apnic.net/2022/11/21/deploying-ipv6-mostly-access-networks/
https://www.youtube.com/watch?v=17GtmwyvmWE&feature=share&t=26m18s
https://www.youtube.com/watch?v=17GtmwyvmWE&feature=share&t=26m18s
https://datatracker.ietf.org/doc/html/rfc2663
https://datatracker.ietf.org/doc/html/rfc2663
https://doi.org/10.1016/j.comcom.2023.08.009
https://gitlab.freedesktop.org/NetworkManager/NetworkManager/-/issues/1435
https://gitlab.freedesktop.org/NetworkManager/NetworkManager/-/issues/1435

[8] J. Postel. 1981. https://datatracker.ietf.org/doc/html/rfc791
[9] Mary Strodl. [n. d.]. Add support for CLAT using a BPF program. https://gitlab.

freedesktop.org/NetworkManager/NetworkManager/-/merge_requests/2107

[10] Systemd. [n. d.]. Built-in 464XLAT implementation · ISSUE 23674 · SYS-
TEMD/Systemd. https://github.com/systemd/systemd/issues/23674

[11] tojens. 2024. https://techcommunity.microsoft.com/blog/networkingblog/
windows-11-plans-to-expand-clat-support/4078173

9

https://datatracker.ietf.org/doc/html/rfc791
https://gitlab.freedesktop.org/NetworkManager/NetworkManager/-/merge_requests/2107
https://gitlab.freedesktop.org/NetworkManager/NetworkManager/-/merge_requests/2107
https://github.com/systemd/systemd/issues/23674
https://techcommunity.microsoft.com/blog/networkingblog/windows-11-plans-to-expand-clat-support/4078173
https://techcommunity.microsoft.com/blog/networkingblog/windows-11-plans-to-expand-clat-support/4078173

Using Multilayer Perceptron (MLP) to predict crop yields
Thomas Donnelly

Winona State University

tommymdonnelly@gmail.com

ABSTRACT
This study aims to develop a Multilayer Perceptron (MLP) that
accurately predicts crop yields within 10% of ground truth in 80%
of cases using weather data, region, soil type, temperature,
fertilizer, irrigation, days taken to harvest, and rail fall. The
dataset has 1 million unique data points and 10 columns. The
model will be trained using a random selection of 80% of the data
for training and 10% for testing. The effectiveness of the model
will be derived from the accuracy and the Mean Square Error
(MSE) of the model.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Contructs and
Features – abstract data types, polymorphism, control structures.
This is just an example, please use the correct category and
subject descriptors for your submission.

General Terms
Your general terms must be any of the following 16 designated
terms: Algorithms, Management, Measurement, Documentation,
Performance, Design, Economics, Reliability, Experimentation,
Security, Human Factors, Standardization, Languages, Theory,
Legal Aspects, Verification.

Keywords
Keywords are your own designated keywords.

1.​ INTRODUCTION
As technology advances, it is important to explore as many ways
it can be used to improve the world and the lives of people around
us. One area where this could have a great impact is farming.
Farming is notoriously difficult to predict. On average, crop yields
in the US have increased since 1995, with 2023 yielding 179.3
bushels of corn per acre, compared to 113.5 in 1995 (USDA Crop,
1). This, however, can vary year to year depending on how much
fertilizer is used, yearly rainfall, and the general region and
climate. To help with this prediction, this study plans to create a
neural network to assist in the prediction. This study plans to
create a multilayer perceptron (MLP) to achieve this goal.

2.​ Hypothesis
Multilayer Perceptron (MLP) accurately predicts crop yields
within 10% of ground truth in 80% of cases using weather data,
region, soil type, temperature, fertilizer, irrigation, days taken to
harvest, and rail fall.

3.​ Methods
3.1​ Model Basics
This project will focus on developing software. This study plans to use
Python, a coding language with a large library of neural network creation
tools, to create the model using the Pandas library. The model I will be
creating is a Multilayer Perceptron (MLP). An MLP is made up of three
layers. The first layer receives all input data, including weather data,
region, etc. The second layer is all the fillings or the hidden layers. These

processes take the input data and try to make predictions based on it.
While additional hidden layers can improve performance, having more
does not necessarily result in a better model. Lastly, the output layer takes
all the info the hidden layers give it and makes a final prediction or guess
on the correct answer. See Figure 1 for reference.

The basic structure of the model using TensorFlow is as follows:

1.​ Input(shape=(X_train.shape[1],)). Input Layer that just ensures
the model fits the data.

2.​ Dense(x). X is the number of neurons that one layer can have
to process data. This can be thought of as the thinking layer.

3.​ BatchNormalization(). This makes it so multiple Dense layers
can read each other's output better.

4.​ ReLU() helps the model learn complex patterns in the data.
5.​ Repeat 2-4 with X either increasing or decreasing between

layers.
6.​ Dense(1). This layer is the final output and prediction.

3.2​ Geometric Pyrimind Formula
A formula was used to help narrow down the size of the model for
training. This is called the Geometric Pyramid Formula. In short,
the formula helps prevent creating a model that is too large for the
data set given. The version of the formula used goes as follows: #
of parameters / 10 > (layer size * previous layer size) + ……
(layer(i) * layer(i - 1)).

3.3​ Dataset
The dataset that will be used is taken from Kaggle, a site where
you can get free datasets to work with. The dataset is titled
“Agriculture Crop Yield Dataset” and is a 1 million non-null
unique data point set (Agriculture Crop Yield Dataset). From my
analysis of the data, it appears to be a generated set, which means
it is not taken from the real world but instead created using similar
data or trends in the field of interest. This is important to keep in
mind as it may affect how the model can predict real-world data.
The dataset has ten columns, which are as follows, with date
types: Region object, Soil_Type object, Crop object, Railfall_mm
float64, Temperature_Celsius float64, Fertilizer_Used boolean,
Irrigation_used boolean, Weather_Condition object,

10

Days_to_Harvest int64, Yield_tons_per_hectare float64
(Agriculture Crop Yield Dataset). The first nine columns will be
used to predict the ground truth or actual value of the yield per
hectare. Figures 2.1-2.5 are visualizations of the data.

3.4​ Training
The method I will use for the training of the MLP is to divide the
dataset into two parts. For the first part, 90% of the data will be
available to the model to train on and evaluate its answers.
Meanwhile, a random 10% will be set aside for after the model is
done training. This data will be used to test how good the model is
on previously unseen data. If the model was tested on data it had
already seen, the chances would be high that it would recognize
the data and learn the answer, and not how to get the answer. This
is also assisted by having so many points of data, with 1 million
being a large set, making it hard for the model to learn the answer
and not the how.

3.5​ Evaluation
Two methods will be used to show how effective the model is
during and after it is created. The first is accuracy, the goal is for
the model to at least 80% of the time be either 10% over or under
the testing data. This can be implemented using the following
logic:: accuracy = average((predicted >= actual * 0.9) OR
(predicted <= actual * 1.1)) >= 0.8. The other method is Mean
Square Error (MSE), this formula helps determine how accurate a
model is over data, with a lower value meaning the more accurate
it is (Mean Squared Error). See Figure 3 below for a similar
research using MSE to display the accuracy of models. Their
study is a good reference point for the project, as they tested
models using only select columns to see which helped get to the
ground truth the best. Meanwhile, this study will be using all the
columns.

4.​ EXPERIMENT
4.1​ Data Normalization
The first problem encountered in creating a model was that a third
of the data could not be run due to being in an unsupported

11

format. Figure 4 below shows the columns divided by their data
formats.

Sklearn was used to create a pipeline to separate and manage the
data in the format it's in. Since Region, Soil_Type, Crop, and
Weather_Condition were strings, they could be run as is. The
boolean or yes-no columns Fertilizser_Used and Irrigation_Used
had to be transformed to be processed. The method used to
achieve this was to convert the data to numbers, with True
becoming 1 while False became 0. All the numerical values were
able to be run, but a normalizer was applied to help the model
read the data, and if missing values were found, the average score
of the set was put in their place. After all the data was modified, it
was all put back together, and the model was ready to start
running.

4.2​ Hardware
The expectation was to run the model on a dedicated NVIDIA
GPU for its training. This would allow for quicker training, a
larger possible model size, and a larger batch size. A larger model
size would allow for more neurons; this does not always mean
more performance out of a model but would allow the ability to
see if a bigger model would be better. The batch size is how much
data in a run-over data is stored in memory at a time. A larger
batch size generally means higher performance of a model. It was
found, however, that the versions of Nvidia GPU driver
(Nvidia-smi) and Compute Unified Device Architecture (NVCC)
that were installed on the machine were too new for Tensorflow, a
library used to create the model, and a different machine was
chosen. In the end, a MacBook M2 was used to train the model.
This meant that the model had to be trained on a CPU, but given
the time constraints, it was good enough.

4.3​ Learning Rate
The learning rate, or the rate at which the model can learn the was
chosen to be 0.001. A rate of 0.01 was tested but was not used due
to the model learning the training data and learning how to predict
using the data too quickly. Figure 5 is a quick example of running
the model on a 0.01 learning rate. As the epochs increase or the
number of times the model goes over the training data, the rate of
loss on the testing data starts to reverse. Loss is a measure of how
confident the model is in its answer. The reverse in loss in the
testing data, but not a similar reverse in training data, shows that
the model started to learn the data and not from the data.

5.​ RESULTS
See Figure 6 for the best run as it was trained over its 10 Epochs
with a 0.001 learning rate and a best of 0.3979 Mean Squared
Error. Figure 7 shows how the best result is structured. It has 10
Epochs, 4 hidden layers with their size in order being 256, 128,
64, and 32 neurons.

6.​ ANALYSIS
Using the best model, the study was able to achieve a total of
62.46% of the predictions being within 10% of the ground truth
yield and 87.98 % of the predictions being within 20% of the
ground truth yield. This has not met the goal of 80% within 10%
of the ground. Training the model with the best parameters over
longer epochs would not yield better results, as the model would
start to learn the set and could lose accuracy. If you see Figure 8,
you can see how little the MAE decreases as the epochs increase.
The parameters do, however, have room to increase due to the
model being well under the budget of 100,000. The model is
45,825 using the Geometric Pyramid Formula. Though when
tested, it was found to slightly decrease the accuracy.

12

7.​ CONCLUSION
In conclusion, the study did not achieve the goal it set out to
achieve. If the goal post was moved to just 20% within the ground
truth, then it would have achieved such. Meanwhile, 62.26% is
not nothing. I believe this study has achieved its goal using a
network to predict crop yield given the data.​

8.​ REFERENCES
[1]​ Kaggle. "Agriculture Crop Yield Dataset." Kaggle, 2021,

https://www.kaggle.com/datasets/samuelotiattakorah/agricult
ure-crop-yield/data.

[2]​ Jha, Dinesh, et al. "Application of Artificial Neural Networks
for Predicting Crop Yield: A Review." Frontiers in Plant
Science, vol. 10, 2019,
https://www.frontiersin.org/journals/plant-science/articles/10.
3389/fpls.2019.00621/full.

[3]​ "Corn Yield." USDA National Agricultural Statistics Service,
https://www.nass.usda.gov/Charts_and_Maps/graphics/corny
ld.pdf.

[4]​ "Crop Progress & Condition." USDA National Agricultural
Statistics Service, 2024,
https://www.nass.usda.gov/Charts_and_Maps/Crop_Progress
_&_Condition/2024/index.php.

[5]​ Subramanian, S., et al. "Early Crop Yield Prediction for
Agricultural Decision Making Using Remote Sensing Data."
Journal of Water and Climate Change, vol. 14, no. 12, 2023,
pp. 4729-4741,
https://iwaponline.com/jwcc/article/14/12/4729/99202/Early-
crop-yield-prediction-for-agricultural.

[6]​ Vargas, Mateo. "Interpreting Treatment × Environment
Interaction in Agronomy Trials." Agronomy Journal, vol. 93,
no. 4, 2001, pp. 949–960.

[7]​ "Multi-Layer Perceptron Learning in TensorFlow."
GeeksforGeeks,
https://www.geeksforgeeks.org/multi-layer-perceptron-learni
ng-in-tensorflow/.

[8]​ "Mean Squared Error." GeeksforGeeks,
https://www.geeksforgeeks.org/mean-squared-error/.

[9]​

13

Impact of Containerization on the Performance of Web
Applications

Amin Elkhalifa
Winona State University

amin.elkhalifa8@gmail.com

ABSTRACT

This study aims to evaluate the impact of running web applications
in a Docker container on performance benchmarks when compared
to running it natively. As technology becomes more complex and
consumer demands increase usage, lightweight and efficient
solutions become more valuable. One example is the server strain
caused by both the popularity and computational demand of Large-
Language Models. Docker attempts to offer a solution with
containerization. Due to containers being offered as a deployment
solution, understanding their impact on performance benchmarks is
important for a diverse set of services and products. The experiment
conducted consists of a web application developed for sending ping
and a test script for automating the pings and gathering data. The
two benchmarks included in data gathering are CPU utilization as
a percentage and total roundtrip time as milliseconds. The results
can be considered to make informed decisions about whether
container-based deployments are viable for performance-sensitive
applications.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – Performance measures.

General Terms
Measurement, Documentation, Performance, Experimentation.

Keywords
Web applications, Docker, Containers, Images, Performance.

INTRODUCTION
Docker is an open-source platform that allows developers to build,
deploy, and manage applications in “containers”. Containers
package an application along with its dependencies which enable it
to run consistently in different environments – Linux, MacOS.

Web applications are widely deployed using containerization
technologies like Docker due to their portability and convenience.
Docker self-reported a 45% year-over-year increase in number of
registered users, totaling at 7.3 million [3]. While Docker is already
widely adopted, its continued growth makes it an industry standard.

However, there is merit in configuring an environment to test the
performance trade-offs associated with running applications as
containers rather than directly on a host system. Gathering and
analyzing CPU usage and network response time will provide
insight for any organizations leveraging Docker to understand or
predict overhead buildup and performance degradation. This study
investigates whether Docker containers increase measurable
performance benchmarks, particularly CPU memory usage and
network response time. By comparing the performance of a Node
JavaScript web application running natively versus in a Docker
container, this research aims to provide empirical evidence of
Docker’s impact on web application performance.

1.1 BACKGROUND RESEARCH
Existing literature has explored the impact of containers on
machine learning workloads and network-intensive applications,
but less emphasis has been placed on front-end-heavy web
applications. Nane Kratzke’s Docker study focusing on network
performance shows a 10 to 20% impact on data transfer rates [4].
These findings inspired this study in order to understand the impact
specifically on web applications. Other considerations include
studies analyzing docker that measured CPU performance by using
computation benchmarks such as High Performance Linpack
(HPL). This study does not take this approach in an effort to
understand the impact of Docker containers has on the overall
system strain. Gathering CPU utilization rather than analyzing HPL
performance results provided a clearer answer to the question of
performance impact. HPL is a great metric to evaluate Deep
Learning tools.

2. METHODOLOGY

2.1 Development of the Ping Tool
The ping tool will be included in the testing portion of the
experiment, but not the data gathering portion. The ping tool
consists of a front end built with React JS (React) and back end
with Node.js (Node) and Node Package Manager (NPM). The front
end will have three components minimally: a designated text field
to input an IP or URL address, a button to submit request, and a
table to display output which will be average ping time of all the
requests within a session. The back end of the ping tool will
function as an API endpoint. It will resolve URLs (or IP addresses)
as a parameter and send ping requests as specified and also perform
basic math operations such as averaging the benchmark stats. This
endpoint will be used for data gathering but not for testing during
this experiment. Once pings are completed, calculations are
displayed for total average ping time by tracking total clicks and
returned.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

Proceedings of the 25th Winona Computer Science Undergraduate
Research Seminar, May 1, 2025, Winona, MN, US.

14

2.2 Testing Environment
This experiment will be conducted on MacOS with no instruction
for Windows. Node gives the ability to create a runtime
environment that will serve as the “Native” implementation (as
opposed to the Docker implementation) for this experiment. To run
a program, open command line, navigate to its directory and type
the command: npm start. When executed successfully, it will
populate a response informing which port the program is currently
hosted on. This port will also serve the API endpoint. The API is
designed to handle simple ping requests by resolving URL or IP
addresses. Navigating to localhost:[portnumber] will display the
frontend. Alternatively, command line ‘curl’ command can be used
as such:

curl ‘localhost:[portnumber]/api/ping?address=[url or ip]’

2.3 Running Containers & Docker
To test Docker’s performance, it is necessary to configure the code
to run as a container. To do this, the Docker engine will look for a
dockerfile. The main specification will be the first line in the
dockerfile “FROM node:lts-alpine” which is a lightweight linux
image to be run in the container as its operating system. The
remaining lines are for specifying file locations and package
managers such as NPM or Yarn. Together, these instructions make
up the dockerfile that is used to create an image. Within the
command line cd to the application’s directory and run “docker
build -t [image name]”. This creates the image that can be run with
the “docker run” command. Using the run command on an image
creates a running instance that is called a container. Other
considerations may include installing Docker.desktop to manage,
start, and stop containers using a UI.

Docker itself has risen in popularity due to this streamlined process.
The benefit of containerizing a program is largely based on the
inclusion of all the dependencies required to run. Dependencies
include the specifications from the paragraph above. Refocusing on
the Dockerfile, after the initial line “FROM node:lts-alpine” there
is another line with the instruction “RUN npm install”. These two
lines in conjunction let the Docker Engine know that it needs Node
to run the program and to update any Node packages that are used.
This saves programmers from chasing bugs caused by deprecated
packages or out-of-date client machines.

2.4 Gathering Data
Gathering data with the use of the CLI is straight forward. For the
Docker portion, the first step is to “turn on” the API endpoint using
the “docker run” command. This will prompt Docker to run the
Ping Tool based on the specifications in the Docker File. Next,
navigate to the testing script and run it using the python command:

Python [test script name].py

The testing script for this experiment includes a few basic
components. Firstly, there are a set of three websites stored in an
array as strings. Next, there is a defined helper function to retrieve
current CPU utilization using Python’s “OS” library. Lastly, the
program loops through each website in the array and repeatedly
sends the corresponding ping then calls the CPU utilization helper
function 100 times. Each ping returns total roundtrip time in
milliseconds which is summed and finally averaged. Each call of
the CPU utilization helper function returns CPU utilization as a
percentage which also summed and averaged. The testing script
also includes a time buffer between pings, so it takes approximately
one minute for all data to return. This concludes the testing of the
Docker container. Run the command “docker stop” to prevent the
container from impacting other tests. Run the command “pnpm
start”. Navigate to the testing script, run it again and wait for results.

3. RESULTS
Below are two tables showing summarized data of the conducted
tests. Time data is continuously averaged while looping, but
because CPU utilization is constantly changing, so the testing script
was ran twice and averaged the CPU utilization value precisely
“after” pings. This experiment attempted to achieve the most
accurate CPU utilization reading by continuously averaging the
value immediately after sending the ping (similar to the time data).

Table 1. Results from Docker trials.

 Facebook Google Winona
Time (avg.

ms) 29.82 23.84 14.21

CPU
Utilization

(%)
4.93 5.64 4.10

Docker data is shown above. After running the docker tests, it is
important to keep a computer’s state as similar as possible. While
testing, ideally there will be a minimal number of applications
running. This study focused on keeping the “computer state” as
unchanged as possible (i.e., do not close or open any new
applications when completing one test and moving to the other).
This was done in an effort to gather accurate data and maintain
fairness.

Table 2. Results from “Docker-Free” or Native trials.

 Facebook Google Winona
Time (avg.

ms) 28.32 20.46 13.79

CPU
Utilization

(%)
2.90 2.53 7.75

Figure 1. Diagram showing relationship between
Docker Engine, Images and Containers.

15

Native or “Docker-Free” data is shown above. Considerations
include ensuring Docker is shut down and not running programs in
the background. While CPU utilization will rarely produce the
same results twice, this can be mitigated if the CPU utilization
percentage value is averaged over a longer duration of time. The
test script checks CPU utilization once with each ping and averages
by dividing the total value by the number of successful (successful
response) ping requests. The values are results produced from
sending ping requests from Rochester, Minnesota, United States.

4. ANALYSIS

4.1 Analysis of Time Results
Using Figure 2 below, it is clear that pings consistently require
more time to complete from within a Docker container. Despite the
small difference (a single digit number of milliseconds), the pattern
clearly establishes that a Docker container requires more time thus
introducing overhead. Findings are supported Gamess’ study where
network response time degraded [2]. This data shows that
containerizing a web application can slow down network calls by
an average of 7.4%. This data supports the hypothesis of the
experiment.

4.2 Analysis of CPU Utilization Results
The differences between CPU Utilization in table 1 and table 2 are
also small yet consistent. Figure 3 shows the visual comparison.
This study finds containerized implementations consistently have
an increased CPU Utilization percentage. These small changes can
be used to understand patterns in containerized applications
consuming CPU space, similarly to Anderson, et. al performance
analysis of deep learning tools in docker containers where their
research also led them to track the performance of the CPU [1].
Applications of this data analysis could include environmental
reports that focus on the added power usage of containerizing
increasingly large applications. Another interesting pattern is the
spike of CPU utilization when pinging Winona University’s home
page from table 2. Two possible causes could be Winona State
University’s firewall due to pings from outside the school intranet

as well as Facebook and Google having cutting-edge server
systems.

CPU utilization is gathered using Python’s OS library to call Unix’s
“top” command. This returns overall CPU utilization as well as
running processes with their respective CPU utilization. The data
in this study is from the returned overall CPU utilization to observe
overall impact on the system.

5. CONCLUSION

This study evaluates Docker’s impact on vital benchmarks to
analyze the performance of containerization. The experiment
confirmed the hypothesis which predicted the added overhead of
the Docker container would increase round trip time as well as CPU
utilization. While the increases are negligible for some use cases,
they may have an impact when developing performance-sensitive
applications (e.g., healthcare or military). The data found from this
experiment will hopefully provide insight to developers when
making implementation decisions. Hopefully the results from this
study can assist developers assess the performance impacts of
containerization with Docker. Further considerations might include
analysis of environmental impact of the widespread use of Docker.

6. REFERENCES
[1] Anderson, Xu, Wei, and Shimin shi. “Performance

Evaluation of Deep Learning Tools in Docker Containers.”
arXiv, Nov. 2017, arxiv.org/abs/1711.03386

[2] Eric Gamess. "Performance Evaluation of the Docker
Technology on Different Raspberry Pi Models."
ResearchGate, Dec. 2024,
www.researchgate.net/publication/374706092_Performance_
Evaluation_of_the_Docker_Technology_on_Different_Rasp
berry_Pi_Models.

[3] Docker, Inc. "Docker Documentation." Docker,
docs.docker.com. Accessed 20 Feb. 2025.

[4] Kratzke, Nane. "About Microservices, Containers and Their
Underestimated Impact on Network Performance." arXiv, Oct.
2017, arxiv.org/abs/1710.04049.

Figure 2. Chart comparing average time results.

Figure 3. Chart comparing CPU utilization.

.

16

http://www.researchgate.net/publication/374706092_Performance_Evaluation_of_the_Docker_Technology_on_Different_Raspberry_Pi_Models
http://www.researchgate.net/publication/374706092_Performance_Evaluation_of_the_Docker_Technology_on_Different_Raspberry_Pi_Models
http://www.researchgate.net/publication/374706092_Performance_Evaluation_of_the_Docker_Technology_on_Different_Raspberry_Pi_Models

Comparing Performance of Parallel Implementation of Sorting
Algorithms Versus Standard Implementations

Allen Martin∗
realallenmartin@gmail.com
uv9380gh@go.minnstate.edu
Winona State University
Winona, Minnesota, USA

ABSTRACT
In this research the implementation and efficiency of sorting algo-
rithms that utilize parallel programmingwas looked at to determine,
if parallel programming can be utilized to create a more efficient
algorithm. An implementation of quick sort was developed that
utilizes parallel programming and it will then be compared to the
standard quick sort algorithm. The comparison was made by uti-
lizing many arrays of different sizes with unsorted integers. They
were run through both algorithms. The parallel programmed algo-
rithmwas run multiple time with varying threads for each run. This
way the speedup could be calculated to determine the best use of
parallel programming when sorting with quick sort. The efficiency
of the algorithm was then judged based on the calculated speed
up. This analysis showed that both the multithread and normal
implementation are not always the fastest and depending on array
size it is better to use on over the other. The quick sort algorithm in
a parallel implementation will have a speedup of 3 when compared
to the standard implementation of quick sort.

KEYWORDS
Quick sort, Multi-threading, Java, Thread, Implementation, Speedup,
Amdahl, Executor, Parallel program
ACM Reference Format:
Allen Martin. 2025. Comparing Performance of Parallel Implementation of
Sorting Algorithms Versus Standard Implementations . In Proceedings of
Proceedings of the 25th Winona Computer Science Undergraduate Research
Seminar. ACM, New York, NY, USA, 4 pages.

1 INTRODUCTION
As technology advances, the optimization of some applications
becomes less important as we have better computing capabilities.
Having better computing capabilities is a great thing, but it allows
our code to slack and no longer be programmed to run fast as
instead our hardware can make up for it. This loss of optimization
has led to a reliance on hardware to make code run efficiently rather
than programmers writing efficient code. One solution to achieving
more efficient code is to utilize parallel programming. This is where
one task is broken up into multiple parts, and the workload is split
up among multiple threads who complete their task at the same
time rather than having one thread complete everything.

This was implemented on a sorting algorithm to determine
whether the same algorithm without parallel programming is of
comparable efficiency or if the utilization of parallel programming

Proceedings of the 25th Winona Computer Science Undergraduate Research Seminar, April
29 and May 1, 2025, Winona, MN, US
2025.

gives a large boost in efficiency to the algorithm. There are mul-
tiple ways to achieve multi-threading, for this research the Java
Executors class was used. The executor class was added in JDK
5 and allows for threads to be reused rather than creating a new
thread every time. This is done by using threads pool which allow
tasks to be assigned to it. If there are more tasks than threads avail-
able, the tasks are added to a queue and are completed as threads
become available. Other methods include the Thread class and
ForkJoinPools. This will determine by running both algorithms on
the same machine with the same input parameters and calculating
the speedup of the algorithms. This same test will be done on the
algorithms many times over many arrays that vary in size, sorted
data, unsorted data, and data types. The collected time of execution
will then be gathered and used to calculate the speedup.

From Another View on Parallel Speedup [2] when increasing the
number of processors used, the workload across the other proces-
sors is decreased. Eventually though the addition ofmore processors
does not yield a benefit as the sequential part of the program stays
the same. This is what is known as Amdahl’s Law.

From Wang Xiang [3] and Implementing Quicksort Programs [1]
quick sort at a basic level is selecting a pivot value. The array is
then traversed and the values smaller than the pivot are on the left
and values greater on the right. Then recursively continue these
operations sorting the left and right partitions until the entire array
is sorted.

From An Implementation of Sorting Algorithm Based on Java
Multi-thread Technology [4] the quick sort algorithm was imple-
mented with multi-threading by segmenting the data in parts equal
to the number of threads. Then each partition of the main array
was sorted by its own thread using quick sort. The two adjacent
segments are then merged and the process begins again with the
same number of threads as the remaining segments. This continues
until there is one remaining segment and that last segment is sorted.

2 METHODOLOGY
To begin the research the implementations of quick sort must first
be chosen. For both implementations the median of three was used
to select our pivot point in our arrays. This is where the first, middle,
and last value are taken, and whichever value is the middle value
from sorting them will be our pivot point. This is also how the
algorithm starts each time it is called, after the pivot point is selected
that value will be moved to the end of the array so it is not altered.
Once that is complete, the program iterates through the array with
two variables and a temp variable. The temp variable will be used
when we need to swap our values. The other two variables can be
called left and right. Left will be used to keep track of what values

17

https://orcid.org/507-923-7425

are less than our pivot and right will be used to iterate over all
values and compare if they are less than our pivot. If the value at
right is less than our pivot the program will increment left and
swap the value at left and right using temp to complete this. This
continues until right reaches our pivot at the end of the array. Once
this is done, we will use temp one more time to swap our pivot
value with the value one to the right of out left variable.

With the array now partitioned with values greater than the
pivot on the right and values less than the pivot on the left. The
program will now call the quick sort function on the half of the
array to the left and the right of the pivot and do the above steps
again, once for each side. This process can be seen in Figure 1.

Figure 1: Quick sort algorithm broken out to show the iter-
ations of how the algorithm accomplishes sorting an array
of integers, The colored values are the values selected as a
potential pivot point. The green number is the selected pivot
point

The red numbers are the values not selected as the pivot and the
green values are the selected pivot value. It is at this point that
the there will be a difference between the parallel and non-parallel
implementation. In the non-parallel implementation, the program
will have to do each additionally created array one by one until the
recursive function reaches the bottom and there is not more to do.

2.1 Multi-thread Implementation
The parallel implementation was done using the Java Executors
class. The way this class was utilized is by first allocating a max
thread count for the initial call of the program. The max thread
count is a variable created in the program that lets the program
know how large the inner most for loop should. This is so the for
loop only tests the number of threads up to the designated max
threads. When quick sort is then called the array passed through
checks the current thread count, if there is one thread the default
quick sort algorithm is used. Otherwise, the array is portioned and
sorted. Once this is done a FixedThreadPool is created with two
threads. One for the right sub array and one for the left sub array.
The executor then executes on the left and right side with each

call getting half the allocated threads. For example, if there are 8
threads in the initial call. The subsequent calls will each only get
4 threads. From there the calls will get 2. And then 1 at the very
end, at which point the base quick sort algorithm is used for the
remaining unsorted parts of the array.

2.2 Speedup
To assess how the parallel program does in comparison to the
non-parallel program, the speedup between the two programs is
calculated by taking the time taken of the non-parallel program to
complete and divide that by the time taken of the parallel imple-
mentation. This division will output a value that will be the amount
the parallel program is faster by. The equation to calculate speedup
is the old time divided by the new time as seen in (1).

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇𝑖𝑚𝑒𝑂𝑙𝑑

𝑇𝑖𝑚𝑒𝑁𝑒𝑤
(1)

. The reason for using this as our unit is that by Amdahl’s law a
parallel program can only so much faster based on howmuch of the
program can be run in parallel. In the quick sort algorithm the only

Figure 2: Amdahl’s law graph displaying the max speedup
based on threads and parallel percentage of the parallel part

part of the algorithm that cannot be run in parallel is the initial
pivot and sorting when the algorithm is first called. From here
based on how many steps down the recursion will go, determines
the percentage of the program that can run in parallel. This means
the larger the dataset the higher the speedup and the smaller the
dataset the smaller the speedup will be.

Amdahl’s law can be seen displayed in Figure 2, where is depicts
the max possible speedup.

2.3 Pseudo Code
The exact implementation of the study will be as follows. The
programs will be run on a computer running Windows 10 for the
operating system and it will utilize a Ryzen 5800x3d for the CPU.
The CPU has 16 threads, 8 was the max threads used however as the

18

if low is less than high then
if available threads is 1 then

call standard quick sort (Algorithm 2) for current
partition

else
Data: get pivot index and sort current partition
Data: create executor with two threads
assign partition (Algorithm 3) to the left of pivot to
one thread and give half of available threads

assign partition (Algorithm 3) to the right of pivot to
the other thread and give half of available threads

shutdown executor
end

end
Algorithm 1: ParallelQuickSort function

if low is less than high then
Data: get pivot index and sort current partition

(Algorithm 3)
call standard quick sort (Algorithm 2) for partition to
the left of pivot

call standard quick sort (Algorithm 2) for partition to
the right of pivot

shutdown executor
end

Algorithm 2: QuickSort function

Data: get pivot value and swap it with value at end of array
Data: left pointer equal to low - 1
Data: right pointer equal to low
while right pointer is less than high do

if value at index right pointer less than or equal to pivot
then

increment left pointer swap values at left pointer
and right pointer

end
increment right pointer

end
increment left pointer swap value left pointer and value at
high return left pointer

Algorithm 3: Partition function

CPU only has 8 cores. The program was then run as follows, there
was a max tests variable set to 1000 and a max threads variable set
to 8. From here the program enters a for loop where the array size
is determined, and the array size increases by powers of 10 from
101 to 107. For each array size a .csv file is created this is where the
data is stored to be analyzed later. The program then goes to the
tests for loop where each array size has the max tests amount run
on them. In this case there were 1000 tests run per array size. In
this step a array of size array size is created and will be used for this
round of testing. From here the final for loop is reached, this one
is used to go through all thread counts from 1 to the max thread’s
variable. Based on the thread count then either Algorithm 2 is called
when there is 1 thread and Algorithm 1 when there is greater than
1 thread. Prior to sorting there is a copy of the master array created
so each run will sort the same array. There is a then a time taken in

nano seconds before the sorting and a time taken after. Finally, for
each run the data must be recorded for analysis later. This is done
by adding a row into the csv file. The data needed is the thread
count and the speedup. The exact way speedup was calculated is
by storing a base time when then the base quick sort algorithm
is run and then by dividing the multithread time by that time to
get our speedup. The speedup then for the base implementation is
always 1. With the code complete the csv files are opened in excel
and some calculations are done within excel to get average speed
up by thread count. With the resulting data in a new excel sheet.
A graph can be created with the x-axis being threads, y-axis being
speedup, and a distinct line for each array size. This graph will then
show where the data in an easier to understand format.

3 RESULTS AND ANALYSIS

Figure 3: Graph with the average calculated speedup based
on array size and tread count

Table 1: Table displaying calculated speedup from tests

Table 1 shows the data gathered from the code on the testing
machine. The data in Table 1 is gathered from the initial output of

19

the program. The excel script “=SUMIF(A4:A10000, n, E4:E10000)/
COUNTIF(A4:A10000,n)” is used to get the average speedup of a
specific thread count for the array size of that specific sheet. The
value n is replaced by the specific thread count, example would be
“1”. The data then was calculated on a different csv file for each
array amount. The resulting data was then copied onto a new file
and the Table 1 was the result. The columns represent the array
size, and the rows represent the thread count. The main data on
the table then is the average speed up from those tests. Figure 3
is constructed using the data from Table 1. It has the thread count
on the x-axis, speedup on the y-axis, and each line represents a
different array size. Each value for speedup within Table 1 is the
average from the 1000 tests for that specific array size and thread
count.

Looking at this data multiple things can be seen. The first one is
that there are two different main sections for the array size. Those
two sections are the half where the speedup is worse indicating
it is better to use the standard implementation, for this the point
where this start is for any array size of 10,000 and lower. Although
the thread counts of 2 and 3 do have a speedup greater than 1, the
speedup is minimal considering it is 1.0201 compared to 1. The
half then is where the multi-threaded implementation is better.
From this research we cannot get the exact turning point for this
as the array size went in powers of 10 but we do know it happens
somewhere between 104 and 105. Within those two halves there
are more details we can see as well. Looking at the data where the
standard algorithm is better, one can see that as the thread count is
increased the speedup decreases. This is because of the additional
overhead needed to use more threads. This is represented on the
table as it can be seen having a lower number of threads can lead
to a better speed up over the higher thread count although not
being better than the standard implementation. Although based
on the data there does a exist a range of array size where multi-
threaded is superior to the standard implementation and for a time
less threads are also better than more threads. On the opposite end
of the spectrum, once the array size gets to be extremely large, the
overhead is negligible with additional threads, and we start to see
a speedup increase with additional threads.

The recorded speedup for the array size of 10,000,000 does not
support the hypothesis however one can assume based on the graph
and data that by either increasing the threads to 16 or by increasing
the array size another factor of 10, a speedup of 3 is most definitely
possible and likely. The reason I say going to 16 is because of the
fact that with the way the parallel algorithm is written, there needs
to be a factor of 2 otherwise 7 for example gets split to 4 and 3,
then to 2 and 2 and 2 and 1 and so no matter what the one layer
will always take as long as if there were 4 threads. This is why the
largest speedup gain is seen on thread counts with factors of 2.

4 CONCLUSION
From the research conducted it can be concluded thatmulti-threading
does have merit when used for sorting large arrays of integers in
Java. Though it does require a large array to make it worthwhile.
With all this in mind in some systems where a large array of inte-
gers needs to be sorted often in worthwhile to have a multi-thread
implementation for when the array size in the millions. Going for-
ward with this line of research, there are multiple things that could
be changed or continued. A few that I would like to explore is a
global threads variable, this would help with the factor of 2 problem
where additional threads can be allocated when available. Another
on would be to expand the sorting algorithms used such as Merge
sort. The final one that is most interesting is looking at changing
from two partitions, left and right, to three partitions, left, middle,
and right. This one would most likely suffer from the same problem
with factors of threads but would be factors of 3 instead of 2. The
final thing I would like to play with is possible using a global thread
pool instead of creating a thread pool of size 2 for each branch
in the tree. This would solve the problem of the thread count not
being of size 2 and could result in some additional speedup gains
when there are threads greater than a power of 2. For example, 3
threads could have a slight speedup over 2 threads.

REFERENCES
[1] Robert Sedgewick. 1978. Implementing Quicksort programs. Commun. ACM 21,

10 (Oct. 1978), 847–857. https://doi.org/10.1145/359619.359631
[2] Xian-He Sun and Lionel M. Ni. 1990. Another view on parallel speedup. In

Proceedings of the 1990 ACM/IEEE Conference on Supercomputing (New York, New
York, USA) (Supercomputing ’90). IEEE Computer Society Press, Washington, DC,
USA, 324–333.

[3] Wang Xiang. 2011. Analysis of the Time Complexity of Quick Sort Algorithm. In
2011 International Conference on Information Management, Innovation Management
and Industrial Engineering, Vol. 1. 408–410. https://doi.org/10.1109/ICIII.2011.104

[4] Xiuqiong Zhang, Hongying Qin, Tao Men, Deming Wang, and Minrong Wang.
2012. An Implementation of Sorting Algorithm Based on Java Multi-thread
Technology . In Computer Science and Electronics Engineering, International Con-
ference on, Vol. 2. IEEE Computer Society, Los Alamitos, CA, USA, 629–632.
https://doi.org/10.1109/ICCSEE.2012.152

20

https://doi.org/10.1145/359619.359631
https://doi.org/10.1109/ICIII.2011.104
https://doi.org/10.1109/ICCSEE.2012.152

Comparing Image Scaling Quality Between Photoshop and
Clip Studio Paint

Vera Kilpatrick
Winona State University

vera.kilpatrick@go.winona.edu

ABSTRACT
Digital art is used in every aspect of the Internet for eye catching
visuals or helpful menu layouts. Photoshop and Clip Studio Paint
are two of the most widely used programs for artists to create
digital drawings on. In this paper, a set of images will be created
and tested in both programs, starting at a base resolution and
upscaled to several higher resolutions, as well as downscaled to a
few lower resolutions. From the upscaled images, metrics will be
qualified based on several aspects of image quality- specifically:
sharpness, color preservation, detail preservation, and artifact
reduction, all of which will be tested using the Python OpenCV
library. The algorithms that will test the images are Histogram: to
measure similarities in pixel color, Peak Signal to Noise Ratio
(PSNR): to measure if any artifacts were created in the scaling,
and Structural Similarity Index Measure (SSIM): to measure
sharpness of the scaled image. While the program is running, the
impact on the system will be recorded to compare at the end of the
testing phase. Photoshop proved to have a slightly better quality
that held up over higher resolutions, while Clip Studio Paint had
better performance.

Keywords
Upscaling, downscaling, image quality, Image processing,
Hardware performance

1. INTRODUCTION
Digital art programs have captured the majority of the market
when it comes to creating art. Many styles can be created through
various softwares, such as 3D, animation, graphic design, and
illustration [4]. Of these softwares available, two have been
greatly influential and popular

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

Proceedings of the 25th Winona Computer Science Undergraduate
Research Seminar, May 1, 2025, Winona, MN, US.

among artists, and are well known for a variety of features and
consistent results: Clip Studio Paint and Adobe Photoshop. Digital
art is necessary for all websites in some form or another, and with
the world having much of its information contained online, having
good tools to produce these visuals is key to having a great
website. Compressing these images to a smaller scale will help
send them across slower networks, and it saves resources to do so,
as well as providing a safeguard to protect the integrity of the
artists’ original works.

To limit the scope of this project to a reasonable scale, the specific
features provided by these digital art programs will be image
upscaling and downscaling. The programs used will be Adobe
Photoshop and Clip Studio Paint. These programs were selected
as they are well-known as the most common for digital artists, and
are the leaders in their fields.

Photoshop is the most well-known digital art tool and image
editing software, and older than Clip Studio, following the release
of Illustrator in the 1980s. The specific purpose was to edit digital
images. Adobe’s Creative Cloud has allowed for a wide range of
users to fill their needs with Adobe’s product. The product page
advertises that Photoshop “can boost colour accuracy, improve
contrast and enhance shadows or lighting for better visual appeal”
[5]. While the AI upscaling features are still limited in their
customization options, the scope of the project was limited to the
regular scaling tools.

Clip Studio Paint was created a decade later than Adobe’s initial
products, catering to a more specific audience of artists to create
2D digital drawings. Clip Studio has been a more accessible
program to artists, as the base version does not rely on a
subscription service, and provides a comparable amount of
features to Photoshop.

Multiple resolutions may be necessary when exporting works
from these digital programs. Scaling the image, or “resampling,”
changes the amount of pixels from a single image and adds or
subtracts information to fill in the gaps [3]. The focus of the
project had two main questions to answer: which program will
provide a better quality output, and how will the performance of
the system be affected by the scaling?

1.2​ Hypothesis
Photoshop will provide better overall scores for the image
upscaling and downscaling compared to Clip Studio Paint, due to
its intention of using image processing rather than illustration.
This will be coupled with a higher strain on the system.

21

1.3​ Hypothesis Explanation
This expected outcome will be in favor of Photoshop, as it is the
most well known program that has a wide range of uses and
features. The backing of Adobe allows for more frequent updates
to the software, and a larger library of software that is provided
for additional creation. It may be that Clip Studio Paint will have
a stronger specific application when it comes to certain categories
like line sharpness. Clip Studio Paint is a more accessible and less
hardware intensive program, making it ideal for those who are
only looking to illustrate, while Photoshop will have more
strength in creating larger images for those interested in
illustration or photography. Clip Studio is expected to have a
much lighter load on the CPU compared to Photoshop, as
Photoshop has many intense processing features that will require
more resources. The proposed hypothesis will be tested in a
research study and paper, outlined in the following section.

2.​ METHODOLOGY
To answer if the hypothesis is correct, images must be created and
compared between their initial resolution and the new resolution.
Custom images will be created for 2 of the categories, with around
50 of each type. The first is simple, black and white images that
contain

Figure 1. Examples of “Text” and “Gradient” test images.

text, as seen on the left side of Figure 1. The goal in this category
should be to preserve the sharp, defined edges, as well as prevent
blurring between the letters, leaving a clean amount of white
space. Another category to consider is images with several colors.
This can best be tested with a gradient, as seen in Figure 1 on the
right. Ideally, the gradient should be preserved between the
original and the scaled image, seamlessly transitioning between
the colors without mismatched pixels.

Finally, the last category will be images with small details. Since
this will be the most desirable category in terms of output, this
category will have a higher complexity of images. Instead of
being created for this project, the selected images will be photos
from datasets collected from Kaggle. Unlike illustrations, photos
contain tiny details that are still important to the overall image
being observed. One set has roughly 104 types of flowers [6].
These flowers will provide a good variation of colors and natural
shapes to the tests. An example is in Figure 2, on the left. To
contrast the flower images, a set of traffic camera data was
selected [7]. These images feature man made shapes and objects,
including roads and cars, and they have straighter lines and more
muted color palettes, as seen in Figure 2 on the right.

Figure 2. Examples of “Flowers” and “Cars” test images.

If the details can be preserved between the original resolution and
the newly scaled image, the goal will be met. These goals are only
the quality of the scaling itself. Additional metrics will quantify
the performance of the software itself. This will mainly include
the speed of processing, processor load, and memory used.

All upscaling tests will be completed on a Windows system. To
ensure good testing, starting resolutions will all be 512 x 512 px.
All images will be created at this base resolution, so as not to
impede the original data from having the base images be altered
prior to testing. The base resolution will be changed to multiple
sizes up and down, being 0.25x, 0.5x, 2x, 4x, and 8x. The grading
for each category will be done on each newly created upscale.

3.​ EXPERIMENTS
The image categories of quality will be graded for each category
with scores from 0 - 100. A higher score is desirable in each
metric.

For edge sharpness and preservation, simple black and white
images of text will be tested. The text will be at several angles and
sizes. For color preservation, the images will be of gradients of
analogous colors as well as complimentary colors within various
ranges. In addition to the characteristics of the images, artifact
testing should be done to ensure the images are scaled without
defects. Defects include “ringing, staircasing (also known as
“jaggies”), and blurring effects” [1]. These qualities are generally
known as artifacts, signaling faults of the upscaling algorithms.

3.1​ Image Quality Algorithms
For more accurate measuring of quality, three algorithms will be
used to compare the input images to their outputs. These will be
created in Python using the OpenCV library (cv2).

3.1.1 Histogram
The first of the programs will be the histogram program. The
input image and the output image will both be loaded into the
program and their RGB values will be recorded, as demonstrated
in Figure 3. This will be repeated for the entire category of
images, and at every resolution. The upscaled image will be
loaded and read as an image object, then scaled back to 512x512
using the cv2 resizing method. One limitation of the image
comparison method is that it must be the same size to run the
tools, so some differences may be missed by the algorithm.
Differences between the inputs and outputs will be recorded and
averaged. If a significant difference is found in a certain category,
the RGB values will be averaged and output into two histograms

22

to show where the peaks of different values lay on the color
spectrum.

Figure 3. Example “gradient” histogram. The values are directly
compared from the original to the scaled version.

By having many types of colors nearby in an image, they may
upscale to appear slightly off. Once the algorithm analyzes the
color consistency, a percentage of accuracy will be output to show
how well the programs preserved color.

Figure 4. Gradient with adjusted contrast

In Figure 4, when adjusting the altered image’s brightness and
contrast, it can be seen that an incorrect region of color appears, as
well as what should be a solid color that has discoloration
throughout due to the upscaling algorithm.

3.1.2 Peak Signal to Noise Ratio
Peak Signal to Noise Ratio (PSNR) is the algorithm that will be
used to automatically find any faults in the scaled output image
compared to its original input. PSNR has been designed to find
how much of the original image has been preserved in the final
image by detecting any “noise,” or faults in the compared output,
fulfilling the artifact reduction requirement. To determine which
program succeeds, a higher PSNR will be desirable. When no
noise is detected, a perfect score of 100 will output. If some noise
was already present in the image, there could be an incorrect value
returned, or if the processing within the program results in some
lost noise, which is why a variety of images was ideal. This
algorithm relies on Mean Squared Error (MSE) and finds the
luminance, contrast, and structure from a greyscale of both images
to determine how similar the result is to the original. Figure 5
shows how a scaled image with a low PSNR result looks when
zooming in. The colors appear to be blurry, and the details are not
as easily distinguished.

Figure 5. A low PSNR scoring image shows muddied details
when zooming in.

3.1.3 Structural Similarity Index Measure
The final algorithm to analyze the scaling quality will be the
Structural Similarity Index Measure (SSIM). This finds any
potential issues that PSNR may have missed, specifically relating
to the “sharpness” of an image. An ideal score would be 1,
meaning the input and output images are the same. This algorithm
is ideal for the text category, as the concern for color preservation
or noise reduction is low, but it still can have many faults when
altered to a new resolution, which can be seen in Figure 6.

Figure 6. Some blurriness occurs to the sharp edges at larger
resolutions.

3.2​ Performance Metrics
The processing power of each program will be recorded between
the sizes of the image measured through CPU and memory usage.
In order to record the impact of the software on the CPU, the

23

Windows tool Performance Monitor will be used. All processor
related features will be observed as both Clip Studio Paint and
Photoshop run at different times. Any significant spikes will be
recorded and measured from the average usage these programs
have. Finally, their overall usage should be recorded.

3.3​ Data Collection
Each image was saved with its score compared to the original in
the 3 metrics evaluations. These results were averaged across each
resolution and category of image, and then compiled into a single
file. While any potential outside variables were prevented from
running and affecting Performance Monitor, processing issues
related to the system that the programs were being recorded on are
a small possibility. This consideration was taken into account for
both softwares, and only process information relating to the
program was selected to prevent unwanted variables.

4.​ RESULTS
4.1​ Overall Quality Results
The quality between programs was averaged across all categories
to compile the average scores, then sorted by scaled size.

The results in Figure 7 showed that as Photoshop’s output image
increased in size, it did not heavily affect the scores. PSNR
showed consistently higher results as image size increased once
averaged. This could be caused by the “gradient” category of
images having a PSNR that after processing was very effective in
retaining quality and decreasing noise. The effectiveness of the
SSIM and Histogram test in Photoshop’s higher scaling sizes also
supplements Photoshop’s quality at the higher scores.

Figure 7. Photoshop’s average metric scores across the scaled
sizes.

Unlike Photoshop, Clip Studio Paint showed a larger decline in
image quality as the output approached very high resolutions. Clip
Studio Paint’s results are visualized in Figure 8. At lower
resolutions, the quality stayed more consistent than Photoshop’s
decline at those small image sizes. PSNR scores can be seen
staying nearly unchanging across the resolutions.

The highest SSIM and Histogram quality remained at 2x for both
programs. At lower scores, both programs are shown to have very
similar resulting averages.

Figure 8. Clip Studio Paint’s average metric scores across the
scaled sizes.

4.2​ Category Specific Results
To further understand the reasoning behind the scores produced
by the programs, each individual category was analyzed.
In the following graphs, the categories of images are grouped and
the scores are shown as ranges between the programs. From the
overall scores seen in Figures 7 and 8 previously, the average
PSNR is higher for Photoshop, which is reflected in Figure 9. The
text category does not follow this trend, however, and the scores
are near-identical between Photoshop and Clip Studio Paint.
Photoshop shows a unique output of gradient PSNR scores, as
many of the scores were high, while others were close to Clip
Studio’s. Difference in the noise score for the gradient category in
Photoshop could be caused by some kind of smoothing
implemented into the scaling process, and being a simple image
instead of a photo, provides the alternative effect for some scaled
gradients. This range is not reflected across Clip Studio Paint’s
scores. For the photo categories, Photoshop retains its slight edge.

Figure 9. Ranges of PSNR scores across each category and
grouped by program.

When analyzing the structure of the images using SSIM, the cars
category had the widest range of scores for both programs. These
scores can be seen in Figure 10. A large number of outliers were

24

found in the flowers category and text category. These are the
categories that are going to have very small details that need to be
preserved, such as the ends of petals or gaps between letters
respectively. Depending on the image, this could have led to some
lower for both programs, especially after downscaling, as the
small details become obscured.

Since a gradient does not have a “structure,” the processing
algorithm found no structure to assess, therefore leading to the
near-perfect scores across both programs.

Figure 10. Ranges of SSIM scores across each category and
grouped by program.

Color accuracy scores from the Histogram test were very good for
the majority of the image tests. A few outliers occurred in the text
category at the 0.25x size. Because the image became blurred at
the small size, and the image was only monochrome, the
histogram found that the image had pixels becoming closer to a
gray when only white and black solid colors were in the original.

Figure 11. Ranges of Histogram scores across each category and
grouped by program.

4.3​ Performance Results

Performance for each category was saved as a log file to the
system from Windows Performance Monitor. The scores were
averaged from the grouped CPU and memory usage, having only
Performance Monitor and the tested program active at once.

The average memory utilization varied greatly for Photoshop, but
shows a general trend of increasing as the size deviated from 1x
resolution. Clip Studio Paint had very little impact on memory,
and didn’t show a significant difference between resolutions. This
data is shown in Figure 12. The time spent for a single image to
be upscaled to 8x took longer in Clip Studio than in Photoshop,
but at lower resolutions Clip Studio was slightly faster.

Figure 12. Average Memory usage as the tests were done across
each scaled size group.

The performance of the programs resulted in Photoshop having a
higher average CPU usage across all scaled resolutions. The effect
on the CPU did not rise as rapidly for Photoshop at high
resolutions as it did for Clip Studio. One may assume that for
downscaling to very small images, the CPU would not be greatly
affected compared to upscaling at sizes such as 2x, but this is not
shown to be the case in Figure 13. In Photoshop’s case, 0.25x
ended up in a higher average CPU% than 2x.

Figure 13. Average CPU usage as the tests were done across each
scaled size group.

5.​ ANALYSIS
The results show that Photoshop’s upscaling output performed
better than Clip Studio Paint. Around the 4x resolution mark,
performance between the programs had similar results, but Clip
Studio Paint faltered afterwards, while Photoshop remained
consistently decent with quality. Each program had lower scores
for images that required lots of details to be preserved. Photoshop
provided a better output for the simpler image categories,
gradients and text.

25

The lowest scores for both programs were found at the
downscaling size of 0.25x. This is because much of the original
images’ data had to be consolidated into a small amount of pixels,
so when returned to the original size for processing, much of the
image had to be filled in and resulted in incorrect values.

A potential issue that could lead to some lost data involves the
metric algorithms’ requirements: when using PSNR, SSIM, and
Histogram, the images must have the same number of pixels to be
analyzed. The rescaling was done using cv2 to prevent any bias
between the programs. Some values, such as small details, could
be visible to a person analyzing the images at the original and
scaled sizes, but could be missed by the algorithms.

6. CONCLUSION
Both programs ended up being fairly comparable in their
performance. Photoshop had a greater impact on the processor and
memory, but had better performance time at high resolutions.
While Clip Studio had a few benefits over Photoshop, the overall
quality, specifically when considering artifact reduction, will
show that Photoshop has a better image scaling tool.

To expand on this project further, a comparison could be made
using different algorithms for scaling provided by each of the
programs, as each program allows multiple methods of exporting
a scaled image. Adding more sizes to scale would be interesting,
as Photoshop’s quality preservation at even higher resolutions
could be monitored. Additionally, more programs could be
introduced to compare against the selected ones.

Both programs are competitive products. For artists looking to
save money and hardware resources, Clip Studio is a great option,
while Photoshop provides the added benefits that a subscription
should, making it a more in-depth program.

7. REFERENCES
[1] Freedman, G., and Fattal, R. Image and Video Upscaling from

Local Self-Examples. ACM Transactions on Graphics, Vol.
30, No. 2, Article 12, April 2011.

[2] Ganguly, A., et. al. ShadowMagic: Designing Human-AI
Collaborative Support for Comic Professionals’ Shadowing.
UIST '24: Proceedings of the 37th Annual ACM Symposium
on User Interface Software and Technology 105, pp. 1 - 15,
Oct. 11, 2024.

[3] Adobe. How to increase resolution of an image. Retrieved
from
https://www.adobe.com/creativecloud/photography/discover/i
ncrease-resolution.html.

[4] Jordan, J. AI as a Tool in the Arts. Retrieved from
https://amt-lab.org/blog/2020/1/ai-as-a-tool-in-the-arts, Jan.
21, 2020.

[5] Adobe. “How to upscale an image and use image enhancers
with Adobe.” Retrieved from
https://www.adobe.com/uk/creativecloud/photography/discov
er/image-upscale.html.

[6] Otto, M, Fong, A. Flower Classification 104 PNG. Retrieved
from
https://www.kaggle.com/datasets/alenic/flower-classification-
512-png. 2017.

[7] Kaggle. Cars Object Tracking. UniData. Retrieved from
https://www.kaggle.com/datasets/unidatapro/cars-object-tracki
ng. 2025.

26

	2f080b7c-5b27-4af8-b8be-5567bf172555.pdf
	Abstract
	1 Introduction
	2 Background Research
	3 Methodology
	3.1 Method Outline
	3.2 Data Collection
	3.3 Feature Extraction
	3.4 Model Creation

	4 Experiments
	4.1 Experiment 1
	4.2 Experiment 2
	4.3 Experiment 3
	4.4 Experiment 4

	5 Results and Analysis
	6 Conclusion
	6.1 Findings
	6.2 Future Study

	References
	6e85fe1a-8015-4814-81fa-8db82cab7a1c.pdf
	Abstract
	1 Introduction
	1.1 The history of the internet, and NAT
	1.2 Introducing NAT64

	2 Background Research
	3 Methodology
	4 Results and Analysis
	5 Conclusion
	References

	5ef9a98c-5a8e-4236-a692-be69d725ba9e.pdf
	1.​INTRODUCTION
	2.​Hypothesis
	3.​Methods
	3.1​Model Basics
	3.2​Geometric Pyrimind Formula
	3.3​Dataset
	3.4​Training
	3.5​Evaluation

	4.​EXPERIMENT
	4.1​Data Normalization
	4.2​Hardware
	4.3​Learning Rate

	5.​RESULTS
	6.​ANALYSIS
	7.​CONCLUSION
	8.​REFERENCES

	fbb264c5-e7ef-4b41-aeb2-b167167ad914.pdf
	INTRODUCTION
	1.1 BACKGROUND RESEARCH

	2. METHODOLOGY
	2.1 Development of the Ping Tool
	2.2 Testing Environment
	2.3 Running Containers & Docker
	2.4 Gathering Data

	3. RESULTS
	4. ANALYSIS
	4.1 Analysis of Time Results
	4.2 Analysis of CPU Utilization Results

	CPU utilization is gathered using Python’s OS library to call Unix’s “top” command. This returns overall CPU utilization as well as running processes with their respective CPU utilization. The data in this study is from the returned overall CPU utiliz...
	5. CONCLUSION
	6. REFERENCES

	121a19ca-189e-4dd6-bb23-1889a0691ded.pdf
	Abstract
	1 Introduction
	2 Methodology
	2.1 Multi-thread Implementation
	2.2 Speedup
	2.3 Pseudo Code

	3 Results and Analysis
	4 Conclusion
	References

