
CS 440 Theory of Algorithms /
CS 468 Al ith i Bi i f tiCS 468 Algorithms in Bioinformatics

Transform-and-Conquer

Heaps and Heapsort

Copyright © 2007 Pearson Addison-Wesley. All rights reserved
Copyright © 2007 Pearson Addison-Wesley. All rights reserved.

Heaps and Heapsort

Definition A heap is a binary tree with keys at its nodes (onep y y (
key per node) such that:

� It is essentially complete, i.e., all its levels are full except
possibly the last level, where only some rightmost keys may
be missing

� The key at each node is � keys at its children

Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Illustration of the heap’s definition

a heap not a heap not a heap

Note: Heap’s elements are ordered top down (along any pathNote: Heap s elements are ordered top down (along any path
down from its root), but they are not ordered left to right

Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Some Important Properties of a Heap

� Given n, there exists a unique binary tree with n nodes that
is essentially complete, with h = �log2 n�

� The root contains the largest key

� The subtree rooted at any node of a heap is also a heap

� A heap can be represented as an array

Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Heap’s Array Representation

Store heap’s elements in an array (whose elements indexed,
f i 1 t) i t d l ft t i ht dfor convenience, 1 to n) in top-down left-to-right order

Example:

9

5 3

1 2 3 4 5 6

9 5 3 1 4 2

1

5 3

4 2

9 5 3 1 4 2

� Left child of node j is at 2j

1 4 2

� Right child of node j is at 2j+1
� Parent of node j is at �j/2�

Copyright © 2007 Pearson Addison-Wesley. All rights reserved

� Parental nodes are represented in the first �n/2� locations

Heap Construction (bottom-up)

Step 0: Initialize the structure with keys in the order given

Step 1: Starting with the last (rightmost) parental node, fix the
heap rooted at it, if it doesn’t satisfy the heap
condition: keep exchanging it with its largest child

i i iuntil the heap condition holds

St 2 R t St 1 f th di t l dStep 2: Repeat Step 1 for the preceding parental node

Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Example of Heap Construction

Construct a heap for the list 2, 9, 7, 6, 5, 8Construct a heap for the list 2, 9, 7, 6, 5, 8

Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Pseudopodia of bottom-up heap construction

Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Heapsort

Stage 1: Construct a heap for a given list of n keys

Stage 2: Repeat operation of root removal n-1 times:
– Exchange keys in the root and in the last

(rightmost) leaf
– Decrease heap size by 1
– If necessary, swap new root with larger child until

the heap condition holds

Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Example of Sorting by Heapsort

Sort the list 2, 9, 7, 6, 5, 8 by heapsort

Stage 1 (heap construction) Stage 2 (root/max removal)
2 9 7 6 5 8 9 6 8 2 5 7
2 9 8 6 5 7 7 6 8 2 5 | 9
2 9 8 6 5 7 8 6 7 2 5 | 9
9 2 8 6 5 7 5 6 7 2 | 8 9
9 6 8 2 5 7 7 6 5 2 | 8 9

2 6 5 | 7 8 92 6 5 | 7 8 9
6 2 5 | 7 8 9
5 2 | 6 7 8 9|
5 2 | 6 7 8 9
2 | 5 6 7 8 9

Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Analysis of Heapsort

Stage 1: Build heap for a given list of n keys
worst-case

C(n) = �� 2(2(hh--ii) 2) 2ii == 2 (2 (nn –– loglog22((nn + 1))+ 1)) �� ��((nn))
ii 00

hh--11

ii=0=0
nodes at

level i
Stage 2: Repeat operation of root removal n-1 times (fix heap)
worst-case nn--11

C(n) =

Both worst case and average case efficiency: �(nlogn)

��
ii==11

2log2log22 ii �� ��((nnloglognn))

Both worst-case and average-case efficiency: �(nlogn)
In-place: yes

Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Priority Queue

A priority queue is the ADT of a set of elements with
numerical priorities with the following operations:

• find element with highest priority
• delete element with highest priority
• insert element with assigned priority (see below)

� Heap is a very efficient way for implementing priority queues

� Two ways to handle priority queue in which
hi h i i ll bhighest priority = smallest number

Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Insertion of a New Element into a Heap

� Insert the new element at last position in heap.
Compare it with its parent and if it violates heap condition� Compare it with its parent and, if it violates heap condition,
exchange them

� Continue comparing the new element with nodes up the tree� Continue comparing the new element with nodes up the tree
until the heap condition is satisfied

Example: Insert key 10

Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Efficiency: O(log n)

Other Important Notes on Heaps

� Min Heap
• The key at each node is � keys at its children

i f f i i f� Heap is useful for obtaining the m smallest or largest from
n items when m is much smaller than n
• E g building MSTs• E.g., building MSTs

we only need |V| – 1 edges, but |E| could be an big as |V| (|V| - 1) / 2
• What is the efficiency? y

Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of Algorithms - Chapter 6 6-13

Priority Queue and Java

� java.util.PriorityQueue

� Not supported before Java 1.5

� Insertion: offer()

� Deletion: poll()p ()

� Sample code next pagep p g

Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of Algorithms - Chapter 6 6-14

/* License for Java 1.5 'Tiger': A Developer's Notebook (O'Reilly) example package, Java 1.5 'Tiger': A Developer's
Notebook (O'Reilly) by Brett McLaughlin and David Flanagan. ISBN: 0-596-00738-8. You can use the examples and
the source code any way you want, but please include a reference to where it comes from if you use it in your own
products or services. Also note that this software is provided by the author "as is", with no expressed or impliedproducts or services. Also note that this software is provided by the author as is , with no expressed or implied
warranties. In no event shall the author be liable for any direct or indirect damages arising in any way out of the use
of this software.*/ /* The program is modified from the source stated above. */

import java.util.Comparator;
import java.util.PriorityQueue;

public class PriorityQueueTester {
public static void main(String[] args) {
P i i Q I // Fill up with data, in an odd orderPriorityQueue<Integer> pq =

new PriorityQueue<Integer>(20,
new Comparator<Integer>() {

// Fill up with data, in an odd order
for (int i=0; i<20; i++) {

pq.offer(20-i*2);
}public int compare(Integer i, Integer j) {

int result = i - j;
return result;

}

// Print out and check orderingreturn result;
}

}

for (int i=0; i<20; i++) {
System.out.println(pq.poll());

}

Copyright © 2007 Pearson Addison-Wesley. All rights reserved 6-15
); }

}
}

