Divide and Conquer

The most well known algorithm design strategy:
1. Divide instance of problem into two or more smaller instances
2. Solve smaller instances recursively
3. Obtain solution to original (larger) instance by combining these solutions
Divide-and-conquer technique example

- A problem of size \(n \)
 - Subproblem 1 of size \(n/2 \)
 - A solution to subproblem 1
 - Subproblem 2 of size \(n/2 \)
 - A solution to subproblem 2
 - A solution to the original problem

Divide and Conquer Examples

- Sorting: mergesort and quicksort
- Tree traversals
- Binary search
- Multiplication of large integers
- Matrix multiplication: Strassen’s algorithm
- Closest-pair and convex-hull algorithms
General Divide and Conquer recurrence:

\[T(n) = aT(n/b) + f(n) \quad \text{where } f(n) \in \Theta(n^d) \]

Master Theorem

- \(a < b^d \) \(\quad T(n) \in \Theta(n^d) \)
- \(a = b^d \) \(\quad T(n) \in \Theta(n^d \log n) \)
- \(a > b^d \) \(\quad T(n) \in \Theta(n^\log_b a) \)

Note: the same results hold with \(O \) instead of \(\Theta \).

Examples: \(T(n) = 4T(n/3) + n \Rightarrow T(n) \in ? \)

\[T(n) = 2T(n/2) + n^2 \Rightarrow T(n) \in ? \]

\[T(n) = 8T(n/2) + n^3 \Rightarrow T(n) \in ? \]

Mergesort

- Split array \(A[0..n-1] \) in two about equal halves and make copies of each half in arrays \(B \) and \(C \)
- Sort arrays \(B \) and \(C \) recursively
- Merge sorted arrays \(B \) and \(C \) into array \(A \) as follows:
 - Repeat the following until no elements remain in one of the arrays:
 - compare the first elements in the remaining unprocessed portions of the arrays
 - copy the smaller of the two into \(A \), while incrementing the index indicating the unprocessed portion of that array
 - Once all elements in one of the arrays are processed, copy the remaining unprocessed elements from the other array into \(A \).
Pseudocode of Mergesort

ALGORITHM \(\text{Mergesort}(A[0..n-1]) \)

//Sorts array \(A[0..n-1] \) by recursive mergesort
//Input: An array \(A[0..n-1] \) of orderable elements
//Output: Array \(A[0..n-1] \) sorted in nondecreasing order

if \(n > 1 \)
 copy \(A[0..\lfloor n/2 \rfloor - 1] \) to \(B[0..\lfloor n/2 \rfloor - 1] \)
 copy \(A[\lfloor n/2 \rfloor..n-1] \) to \(C[0..\lfloor n/2 \rfloor - 1] \)
 \(\text{Mergesort}(B[0..\lfloor n/2 \rfloor - 1]) \)
 \(\text{Mergesort}(C[0..\lfloor n/2 \rfloor - 1]) \)
 \(\text{Merge}(B, C, A) \)

Pseudocode of Merge

ALGORITHM \(\text{Merge}(B[0..p-1], C[0..q-1], A[0..p+q-1]) \)

//Merges two sorted arrays into one sorted array
//Input: Arrays \(B[0..p-1] \) and \(C[0..q-1] \) both sorted
//Output: Sorted array \(A[0..p+q-1] \) of the elements of \(B \) and \(C \)

\(i \leftarrow 0; j \leftarrow 0; k \leftarrow 0 \)

while \(i < p \) and \(j < q \) do
 if \(B[i] \leq C[j] \)
 \(A[k] \leftarrow B[i]; i \leftarrow i + 1 \)
 else \(A[k] \leftarrow C[j]; j \leftarrow j + 1 \)
 \(k \leftarrow k + 1 \)
if \(i = p \)
 copy \(C[j..q-1] \) to \(A[k..p+q-1] \)
else copy \(B[i..p-1] \) to \(A[k..p+q-1] \)
Analysis of Mergesort

- All cases have same efficiency: $\Theta(n \log n)$
 - According to Master Theorem (why?)

- Number of comparisons in the worst case is close to theoretical minimum for comparison-based sorting:
 $$C_{\text{worst}}(n) = 2 \cdot C_{\text{worst}}(n/2) + n - 1, \quad C_{\text{worst}}(1) = 0$$
 $$\Rightarrow C_{\text{worst}}(n) = n \log_2 n - n + 1$$

 Theoretical lower bound: $\lceil \log_2 n! \rceil \approx \lceil n \log_2 n - 1.44n \rceil$

- Space requirement: $\Theta(n)$ (not in-place)

- Can be implemented without recursion (bottom-up)
Quicksort

- Select a pivot (partitioning element) – here, the first element
- Rearrange the list so that all the elements in the first \(s \) positions are smaller than or equal to the pivot and all the elements in the remaining \(n-s \) positions are larger than or equal to the pivot (see next slide for an algorithm)

\[p \]

- Exchange the pivot with the last element in the first (i.e., \(\leq \)) subarray — the pivot is now in its final position
- Sort the two subarrays recursively

Partitioning Algorithm

Algorithm Partition(\(A[l..r] \))

// Partitions a subarray by using its first element as a pivot
// Input: A subarray \(A[l..r] \) of \(A[0..n-1] \), defined by its left and right // indices \(l \) and \(r \) (\(l < r \))
// Output: A partition of \(A[l..r] \), with the split position returned as // this function’s value

\[p \leftarrow A[i] \]
\[i \leftarrow l; \quad j \leftarrow r+1 \]
repeat
 repeat \(i \leftarrow i + 1 \) until \(A[i] \geq p \)
 repeat \(j \leftarrow j - 1 \) until \(A[j] \leq p \)
 swap(\(A[i], A[j] \))
until \(i \geq j \)
swap(\(A[i], A[j] \)) // undo last swap when \(i \geq j \)
swap(\(A[l], A[r] \))
return \(j \)

The index \(i \) can go out of the subarray bound and it needs to be taken care of.
Quicksort Example

5 3 1 9 8 2 4 7

Analysis of Quicksort

- Best case: split in the middle — $\Theta(n \log n)$
- Worst case: sorted array! — $\Theta(n^2)$
- Average case: random arrays — $\Theta(n \log n)$

- Improvements:
 - better pivot selection: median of three partitioning
 - switch to insertion sort on small subfiles
 - elimination of recursion
 These combine to 20-25% improvement

- Considered the method of choice for internal sorting of large files ($n \geq 10000$)
Binary Search

Very efficient algorithm for searching in sorted array:

\[K \]

vs

\[A[0] \ldots A[m] \ldots A[n-1] \]

If \(K = A[m] \), stop (successful search); otherwise, continue searching by the same method in \(A[0..m-1] \) if \(K < A[m] \) and in \(A[m+1..n-1] \) if \(K > A[m] \)

\[l \leftarrow 0; \quad r \leftarrow n-1 \]

while \(l \leq r \) do

\[m \leftarrow \lfloor (l+r)/2 \rfloor \]

if \(K = A[m] \) return \(m \)

else if \(K < A[m] \) \(r \leftarrow m-1 \)

else \(l \leftarrow m+1 \)

return -1

Analysis of Binary Search

- Time efficiency
 - worst-case recurrence: \(C_w(n) = 1 + C_w(\lfloor n/2 \rfloor) \), \(C_w(1) = 1 \)
 - solution: \(C_w(n) = \lceil \log_2(n+1) \rceil \)

 This is VERY fast: e.g., \(C_w(10^6) = 20 \)

- Optimal for searching a sorted array

- Limitations: must be a sorted array (not linked list)

- Degenerate example of divide-and-conquer
Binary Tree Algorithms

Binary tree is a divide-and-conquer ready structure!

Ex. 1: Classic traversals (preorder, inorder, postorder)
Algorithm Inorder(T)

if $T \neq \emptyset$

Inorder(T_{left})
print(root of T)
Inorder(T_{right})

Efficiency: $\Theta(n)$

Ex. 2: Computing the height of a binary tree

$h(T) = \max\{h(T_{left}), h(T_{right})\} + 1$ if $T \neq \emptyset$ and $h(\emptyset) = -1$

Efficiency: $\Theta(n)$
Multiplication of Large Integers

Consider the problem of multiplying two (large) n-digit integers represented by arrays of their digits such as:

$$A = 12345678901357986429 \quad B = 87654321284820912836$$

The grade-school algorithm:

\[
\begin{align*}
& a_1 \ b_2 \ldots \ a_n \ \ b_1 \ b_2 \ldots \ b_n \\
& (d_{10}) \ d_{11} d_{12} \ldots \ d_{1n} \\
& (d_{20}) \ d_{21} d_{22} \ldots \ d_{2n} \\
& \ldots \ldots \ldots \ldots \\
& (d_{n0}) \ d_{n1} d_{n2} \ldots \ d_{nn}
\end{align*}
\]

Efficiency: n^2 one-digit multiplications

First Divide-and-Conquer Algorithm

A small example: $A \times B$ where $A = 2135$ and $B = 4014$

$A = (21 \cdot 10^2 + 35), \quad B = (40 \cdot 10^2 + 14)$

So, $A \times B = (21 \cdot 10^2 + 35) \times (40 \cdot 10^2 + 14)$

\[
= 21 \times 40 \cdot 10^4 + (21 \times 14 + 35 \times 40) \cdot 10^2 + 35 \times 14
\]

\[
= 8569890
\]

In general, if $A = A_1A_2$ and $B = B_1B_2$ (where A and B are n-digit, A_1, A_2, B_1, B_2 are $n/2$-digit numbers),

$A \times B = A_1 \times B_1 \cdot 10^n + (A_1 \times B_2 + A_2 \times B_1) \cdot 10^{n/2} + A_2 \times B_2$

Recurrence for the number of one-digit multiplications $M(n)$:

\[
M(n) = 4M(n/2), \quad M(1) = 1
\]

Solution: $M(n) = n^2$
Second Divide-and-Conquer Algorithm

\[A \times B = A_1 \times B_1 \cdot 10^n + (A_1 \times B_2 + A_2 \times B_1) \cdot 10^{n/2} + A_2 \times B_2 \]

The idea is to decrease the number of multiplications from 4 to 3:

\[(A_1 + A_2) \times (B_1 + B_2) = A_1 \times B_1 + (A_1 \times B_2 + A_2 \times B_1) + A_2 \times B_2, \]

I.e., \((A_1 \times B_2 + A_2 \times B_1) = (A_1 + A_2) \times (B_1 + B_2) - A_1 \times B_1 - A_2 \times B_2, \) which requires only 3 multiplications at the expense of \((4-1)\) extra add/sub.

Recurrence for the number of multiplications \(M(n)\):

\[M(n) = 3M(n/2), \quad M(1) = 1 \]

Solution: \(M(n) = 3^{\log_2 n} = n^{\log_2 3} \approx n^{1.585} \)

Example of Large-Integer Multiplication

\[2135 \times 4014 \]
Strassen’s matrix multiplication

- Strassen observed [1969] that the product of two matrices can be computed as follows:

\[
\begin{bmatrix}
C_{00} & C_{01} \\
C_{10} & C_{11}
\end{bmatrix} = \begin{bmatrix}
A_{00} & A_{01} \\
A_{10} & A_{11}
\end{bmatrix} \times \begin{bmatrix}
B_{00} & B_{01} \\
B_{10} & B_{11}
\end{bmatrix}
\]

\[
\begin{align*}
M_1 & = (A_{00} + A_{11}) \times (B_{00} + B_{11}) \\
M_2 & = (A_{10} + A_{11}) \times B_{00} \\
M_3 & = A_{00} \times (B_{01} - B_{11}) \\
M_4 & = A_{11} \times (B_{10} - B_{00}) \\
M_5 & = (A_{00} + A_{01}) \times B_{11} \\
M_6 & = (A_{10} - A_{00}) \times (B_{00} + B_{01}) \\
M_7 & = (A_{01} - A_{11}) \times (B_{10} + B_{11})
\end{align*}
\]
Efficiency of Strassen’s algorithm

- If \(n \) is not a power of 2, matrices can be padded with zeros

- Number of multiplications:
 \[
 M(n) = \quad , \quad n > 1 \quad \Rightarrow \quad M(n) = ?
 \]
 \[
 M(1) = 1
 \]

- Number of additions:
 \[
 A(n) = \quad , \quad n > 1 \quad \Rightarrow \quad A(n) = ?
 \]
 \[
 A(1) = 1
 \]

- Algorithms with better asymptotic efficiency are known but they are even more complex.

Closest-Pair Problem by Divide-and-Conquer

Step 1 Divide the points given into two subsets \(S_1 \) and \(S_2 \) by a vertical line \(x = c \) so that half the points lie to the left or on the line and half the points lie to the right or on the line.
Closest Pair by Divide-and-Conquer (cont.)

Step 2 Find recursively the closest pairs for the left and right subsets.

Step 3 Set $d = \min\{d_1, d_2\}$

We can limit our attention to the points in the symmetric vertical strip of width $2d$ as possible closest pair. Let C_1 and C_2 be the subsets of points in the left subset S_1 and of the right subset S_2, respectively, that lie in this vertical strip. The points in C_1 and C_2 are stored in increasing order of their y coordinates, which is maintained by merging during the execution of the next step.

Step 4 For every point $P(x, y)$ in C_1, we inspect points in C_2 that may be closer to P than d. There can be no more than 6 such points (because $d \leq d_2$)!

Closest Pair by Divide-and-Conquer: Worst Case

The worst case scenario is depicted below:

![Diagram of worst case scenario](image-url)
Efficiency of the Closest-Pair Algorithm

Running time of the algorithm is described by

\[T(n) = 2T(n/2) + M(n), \text{ where } M(n) \in O(n) \]

By the Master Theorem (with \(a = 2, b = 2, d = 1 \))
\[T(n) \in O(n \log n) \]

QuickHull Algorithm

Inspired by Quicksort compute Convex Hull:
- Assume points are sorted by x-coordinate values
- Identify extreme points \(P_1 \) and \(P_2 \) (part of hull)
- Compute upper hull:
 - find point \(P_{\text{max}} \) that is farthest away from line \(P_1P_2 \)
 - compute the hull of the points to the left of line \(P_1P_{\text{max}} \)
 - compute the hull of the points to the left of line \(P_{\text{max}}P_2 \)
- Compute lower hull in a similar manner
Efficiency of QuickHull algorithm

- Finding point farthest away from line P_1P_2 can be done in linear time
- Time efficiency:
 - worst case: $\Theta(n^2)$ (as quicksort)
 - average case: $\Theta(n \log n)$ (under reasonable assumptions about distribution of points given)
- If points are not initially sorted by x-coordinate value, this can be accomplished in $\Theta(n \log n)$ — no increase in asymptotic efficiency class
- Several $O(n \log n)$ algorithms for convex hull are known
 - Graham’s scan
 - DCHull