CS 440 Theory of Algorithms /
CS 468 Algorithms in Bioinformatics

Dynamic Programming

Part I1

Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Warshall’s Algorithm: Transitive Closure

* Computes the transitive closure of a relation
* (Alternatively: all paths in a directed graph)

« Example of transitive closure:

— O ek

0010 00
1001 G 11
0000 00
0100 11

Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of Algorithms - Chapter 8

_—O = O




Warshall’s Algorithm

* Main idea: a path exists between two vertices i, j, iff
* there is an edge from i to j; or
* there is a path from i to j going through vertex 1; or
* there is a path from i to j going through vertex 1 and/or 2; or
* there is a path from i to j going through vertex 1, 2, and/or 3; or

* there is a path from i to j going through any of the other vertices

ST

RO Rl R2
0010 0010 0010
1001 1011 1011
0000 0000 0000
0100 0100 1111
Copyright © 2007 Pearson Addison-Wesley. Al rights reserved Design and Analysis of Algorithms - Chapter 8 8-2

Warshall’s Algorithm

* On the k™ iteration, the algorithm determine if a path exists
between two vertices i, j using just vertices among 1,...,k allowed
as intermediate

R&DIij] (path using just 1 ,...,k-1)

R®[ij] = or

(R®D[,k] and R®D[k,j]) (path fromito k
............................ ,@ and from k to i
@ """ using just 1 ,...,k-1)
. k™ iteration
N - :"-
~ R \

Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of A|gorithm5 - Chapter 8 8-3




Warshall’s Algorithm: Transitive Closure

QO oo

—0oOO0 oo
ocoo-o
- OO0 OO0
oo —oaq
Q O T o

-0 - =0
-0 - =T
- O = = o

(a) (b) (c)

FIGURE 8.2 (a) Digraph. (b) Its adjacency matrix. (c) Its transitive closure.

Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of Algorithms - Chapter 8

8-4

Warshall’s Algorithm (matrix generation)

Recurrence relating elements R%® to elements of R*D is:

R®Iij] = R&D[i,j] or (REDJi,k] and RE-D[kj])

It implies the following rules for generating R® from R*-D:

Rule 1 If an element in row i and column j is 1 in R%*-D),
it remains 1 in R®

Rule 2 If an element in row i and column j is 0 in R*-D),
it has to be changed to 1 in R® if and only if
the element in its row i and column k and the element
in its column j and row k are both 1’s in R*-D

Copyright © 2007 Pearson Addison-Wesley. All rights reserved




Warshall’s Algorithm: Transitive Closure

Rk-1 = [

mp RW= k| 1

o |-

FIGURE 8.3 Rule for changing zeros in Warshall’s algorithm

Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Design and Analysis of Algorithms - Chapter 8

8-6

R0} —

= O O|O|L

QO T L

- O O|O|n

R =

Qo To
= 0|00 D

R2) =

- O|Ooc O

Q0T
=l ==

R(3) =

=00 = U |= O|0|=T OO0 QO -—UT

=|C|O OO

Q00
(=R ==

=00 =T

|00 OO

=0 = =|Q alolm=aQ oo|=m|lOoQ OO0 =0

R4) =

QO T o
= - ]

= O - =T

— O =m =0

-0 = = Q

Ones reflect the existence of paths

with no intermediate vertices

(R is just the adjacency matrix);

boxed row and column are used for getting R(1},

Ones reflect the existence of paths

with intermediate vertices numbered

not higher than 1, i.e., just vertex a

{(note a new path from dto b);

boxed row and column are used for getting R(2}.

Ones reflect the existence of paths

with intermediate vertices numbered

not higher than 2, i.e., aand b

(note two new paths);

boxed row and column are used for getting R,

Ones reflect the existence of paths

with intermediate vertices numbered

not higher than 3, i.e., a, b, and ¢

{no new paths);

boxed row and column are used for getting R4,

Ones reflect the existence of paths
with intermediate vertices numbered
not higherthan 4,i.e., a, b, ¢, and d
{note five new paths).

FIGURE 8.4 Application of Warshall's algorithm to the digraph shown. New cnes are in

bold.

8-7




Warshall’s Algorithm (pseudocode and analysis)

ALGORITHM Warshall(A[l.n, 1..n])

/Mmplements Warshall’s algorithm for computing the transitive closure
//Input: The adjacency matrix A of a digraph with n vertices
//Output: The transitive closure of the digraph
RO «— 4
fork < 1tondo
fori <~ 1tondo
for j <~ 1tondo
RO[i, j1 < R*=D[i, jlor (R*=V[i, k] and R* D[k, j])
return R

Time efficiency: O(n?)

Space efficiency: Matrices can be written over their predecessors

Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Floyd’s Algorithm: All paits shortest paths

Problem: In a weighted (di)graph, find shortest paths between
every pair of vertices

Same idea: construct solution through series of matrices DO, ...,
D™ using increasing subsets of the vertices allowed
as intermediate

Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of Algorithms - Chapter 8 8-9




Floyd’s Algorithm (matrix generation)

On the k-th iteration, the algorithm determines shortest paths
between every pair of vertices i, j that use only vertices among
1,...,k as intermediate

D®[ij] = min {D%DV[iyj], DED[i,k] +D®Dlk,j]}

D(kl)[l’k] ....... ~k
\
. N - ::‘-o'D(k-l) [k’j]
D[ "\
A
J

Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Floyd’s Algorithm: All paits shortest paths

a b ¢ d a b ¢ d

a|l0 oo 3 o al0 10 3 4

bl|2 0 oo oo b|2 0 5 6

W=clw 7 0 1 b=0cl7 7 o 1

d|6 o o 0 d|6 16 9 0
(b) (c)

FIGURE 8.5 (a) Digraph. (b) Its weight matrix. (c) Its distance matrix.

Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of Algorithms - Chapter 8 8-11




DO =

D =

D@ =

DB =

D4 =

Qoo Qo T

QLO T D

QoOT o

QO T

a b ¢ d
0 [ 3 o]
210 oo oo
w | 7 0 1
B [ o= O
a b ¢ d
0[] 3 o
|2 0|5 -=o|
| 710 1
6|9 O
a b c¢ d
0 o 3| e
2 0| 5|ee
[9 7] 0] 1]
6 |90
a b ¢ d
0O 10 3| 4
2 0 b6
9 7 0] 1
[6 16 9]0
a b ¢ d
0 10 3 4
2 0 5 6
7 7 0 1
6 16 9 0O

Lengths of the shortest paths
with no intermediate vertices
(DO is simply the weight matrix).

Lengths of the shortest paths

with intermediate vertices numbered
not higher than 1, i.e. just a

{note two new shortest paths from

b to cand from d to c).

Lengths of the shortest paths

with intermediate vertices numbered
not higher than 2, i.e. aand b

{note a new shortest path from c to a).

Lengths of the shortest paths

with intermediate vertices numbered

not higher than 3, i.e. a, b, and ¢

{note four new shortest paths from ato b,
from a to d, from b to d, and from d to b).

Lengths of the shortest paths

with intermediate vertices numbered
not higher than 4, i.e. a, b, ¢, and d
{note a new shortest path from c to a).

8-12

FIGURE 8.7 Application of Floyd's algorithm to the graph shown. Updated elements are
shown in bold

Floyd’s Algorithm (pseudocode and analysis)

return D

ALGORITHM  Floyd(W[1..n, 1..n])

//Implements Floyd’s algorithm for the all-pairs shortest-paths problem
//Input: The weight matrix W of a graph with no negative-length cycle
//Output: The distance matrix of the shortest paths’ lengths
D < W //is not necessary if W can be overwritten
fork < 1ton do

fori < 1tondo

for j < 1ton do
D[i, j] < min{D[i, j], D[i, k] + D[k, j]}

Time efficiency: O(n3)

Space efficiency: Matrices can be written over their predecessors

Copyright © 2007 Pearson Addison-Wesley. All rights reserved




Knapsack Problem by DP

Given n items of
integer weights: w;, w, ... w,
values: V] Vy e V,
a knapsack of integer capacity W
find most valuable subset of the items that fit into the knapsack

Consider instance defined by first i items and capacity j (j < W).
Let V]i,j] be optimal value of such instance. Then
max {V[i-1,4], v; + V[i-1j- w;]} ifj-w;20
Viijl =
Vi-1,] if j-w; <0
Initial condltlons V[O,]] 0 and V]i,0] =

Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Knapsack Problem by DP (example)

Example: Knapsack of capacity W =15
item __ weight _ value

1 2 $12
2 1 $10
3 3 $20
4 2 $15 capacity j

0 1 2 3 4 5

0
w=2,v=12 1
wy=1,1,=10 2

=3,1,=20 3
w,=2,v,=15 4 ?

Copyright © 2007 Pearson Addison-Wesley. All rights reserved




Knapsack Problem

° V[la .]] = max (V[l - 19 J]9 V[l - I’J - Wi] + Vi)

object, not used object, used
0 J-w; j W
0 [0 0 0
i-11]0 VIi-1, j-w] VIi-1,
w,Vv, | |0 VI jl
n |0 goal

FIGURE 8.12 Table for solving the knapsack problem by dynamic programming

Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of Algorithms - Chapter 8 8-16

Knapsack Problem

*VIi, jl =max (V[i-1,j], V[i-1, j - wi| + Vi)

object. not used object, used
capacity |
iI10 1 2 3 4 5
0(j0c 0 0 0 0 O
W1=2, V1=12 110 0 12 12 12 12
wo=1,v=10 20 10 12 22 22 22
W3=3, V3=20 310 10 12 22 30 32
Wy=2,v=15 4|0 10 15 25 30 37

FIGURE 8.13 Example of solving an instance of the knapsack problem by the dynamig
programming algorithm

Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of Algorithms - Chapter 8 8-17




Knapsack Problem — Memory Function

* Implement the recurrence recursively

* Do not calculate a value if it is not needed

* Do not recalculate a value

* Row 0 and column 0 of V are initialized to 0, other entries are -1

* MFKnapsack(i, j)
if V[i, j] <0
if j < wli]
value € MFKnapsack(i — 1, j)
else
value < max (MFKnapsack(i - 1, j),
MFKnapsack(i — 1, j — w]i]) + v[i])
VIi, j] € value
return Vi, j]

Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of Algorithms - Chapter 8 8-18

Knapsack Problem — Memory Function

capacity |
10 1 2 3 4 5§
0(f0 0 0 0 0 O
wy=2,v=12 110 0 12 12 12 12
Wo=1,%=10 2|0 - 12 22 - 22
Wa = 3, Vo= 20 310 - - 22 - 32
W= 2, V4=15 410 - - - = 37

FIGURE 8.14 Example of solving an instance of the knapsack problem by the memory
function algorithm

Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of AIgorithms - Chapter 8 8-19




