CS 440 Theory of Algorithms / CS 468 Algorithms in Bioinformatics

Dynamic Programming

Part II

Warshall's Algorithm: Transitive Closure

- Computes the transitive closure of a relation
- (Alternatively: all paths in a directed graph)
- Example of transitive closure:

$\begin{array}{llll}0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}$

0010
1111
0000
1111

Warshall's Algorithm

- Main idea: a path exists between two vertices i, j, iff
- there is an edge from ito j; or
- there is a path from itojgoing through vertex 1 ; or
- there is a path from i to j going through vertex 1 and/or 2 ; or
- there is a path from ito j going through vertex 1,2 , and/or 3 ; or -...
- there is a path from ito j going through any of the other vertices

$\begin{array}{lll} & \mathrm{R}_{0} \\ 0 & 01 & \\ 0 & 1\end{array}$
1001

R_{1}
0010

R_{2}
0010
R_{3}
$\begin{array}{lllllllll}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array} \quad \begin{array}{llllll}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}$
1011
0010
1011
0000
0000
1111
1111

0010
1111
0000
1111

Warshall's Algorithm

- On the $\boldsymbol{k}^{\text {th }}$ iteration, the algorithm determine if a path exists between two vertices i, j using just vertices among $1, \ldots, k$ allowed as intermediate

 and from k to i using just $1, \ldots, k-1$)
$k^{\text {th }}$ iteration

Warshall's Algorithm: Transitive Closure

(a)

(b)

(c)

FIGURE 8.2 (a) Digraph. (b) Its adjacency matrix. (c) Its transitive closure.

Warshall's Algorithm (matrix generation)

Recurrence relating elements $\boldsymbol{R}^{(k)}$ to elements of $\boldsymbol{R}^{(k-1)}$ is:

$$
R^{(k)}[i, j]=R^{(k-1)}[i, j] \text { or }\left(R^{(k-1)}[i, k] \text { and } R^{(k-1)}[k, j]\right)
$$

It implies the following rules for generating $\boldsymbol{R}^{(k)}$ from $\boldsymbol{R}^{(k-1)}$:
Rule 1 If an element in row i and column j is 1 in $R^{(k-1)}$, it remains 1 in $\boldsymbol{R}^{(k)}$

Rule 2 If an element in row i and column j is 0 in $R^{(k-1)}$, it has to be changed to 1 in $R^{(k)}$ if and only if the element in its row i and column k and the element in its column \boldsymbol{j} and row \boldsymbol{k} are both 1 's in $\boldsymbol{R}^{(k-1)}$

Warshall's Algorithm: 'Transitive Closure

FIGURE 8.3 Rule for changing zeros in Warshall's algorithm

$R^{(2)}=\begin{aligned} & a \\ & b \\ & c \\ & d\end{aligned}\left[\begin{array}{llll}a & b & c & d \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 \\ \hline 1 & 1 & 1 & 1\end{array}\right]$
$R^{(3)}=\begin{aligned} & a \\ & b \\ & c \\ & d\end{aligned}\left[\begin{array}{cccc}a & b & c & d \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ \hline 1 & 1 & 1 & 1\end{array}\right]$
$R^{(4)}=\begin{aligned} & a \\ & b \\ & c \\ & d\end{aligned}\left[\begin{array}{llll}a & b & c & d \\ \mathbf{1} & 1 & \mathbf{1} & 1 \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1\end{array}\right]$

Ones reflect the existence of paths with no intermediate vertices ($R^{(0)}$ is just the adjacency matrix); boxed row and column are used for getting $R^{(1)}$.

Ones reflect the existence of paths with intermediate vertices numbered not higher than 1, i.e., just vertex a (note a new path from d to b); boxed row and column are used for getting $R^{(2)}$.
Ones reflect the existence of paths with intermediate vertices numbered not higher than 2, i.e., a and b (note two new paths); boxed row and column are used for getting $R^{(3)}$.

Ones reflect the existence of paths with intermediate vertices numbered not higher than 3, i.e., a, b, and c (no new paths);
boxed row and column are used for getting $R^{(4)}$.
Ones reflect the existence of paths with intermediate vertices numbered not higher than 4, i.e., a, b, c, and d (note five new paths).

FIGURE 8.4 Application of Warshall's algorithm to the digraph shown. New ones are in bold.

Warshall's Algorithm (pseudocode and analysis)

ALGORITHM Warshall(A[1..n, 1..n])
//Implements Warshall's algorithm for computing the transitive closure //Input: The adjacency matrix A of a digraph with n vertices
//Output: The transitive closure of the digraph
$R^{(0)} \leftarrow A$
for $k \leftarrow 1$ to n do
for $i \leftarrow 1$ to n do
for $j \leftarrow 1$ to n do
$R^{(k)}[i, j] \leftarrow R^{(k-1)}[i, j]$ or $\left(R^{(k-1)}[i, k]\right.$ and $\left.R^{(k-1)}[k, j]\right)$
return $R^{(n)}$

Time efficiency: $\boldsymbol{O}\left(n^{3}\right)$

Space efficiency: Matrices can be written over their predecessors

Floyd's Algorithm: All pairs shortest paths

Problem: In a weighted (di)graph, find shortest paths between every pair of vertices

Same idea: construct solution through series of matrices $\boldsymbol{D}^{(0)}, \ldots$, $D^{(n)}$ using increasing subsets of the vertices allowed as intermediate

- Example:

Floyd's Algorithm (matrix generation)

On the \boldsymbol{k}-th iteration, the algorithm determines shortest paths between every pair of vertices i, j that use only vertices among $1, \ldots, k$ as intermediate

$$
D^{(k)}[i, j]=\min \left\{D^{(k-1)}[i, j], D^{(k-1)}[i, k]+D^{(k-1)}[k, j]\right\}
$$

Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Floyd's Algorithm: All pairs shortest paths

(a)

(b)

(c)

FIGURE 8.5 (a) Digraph. (b) Its weight matrix. (c) Its distance matrix.

Lengths of the shortest paths with no intermediate vertices ($D^{(0)}$ is simply the weight matrix).

$D^{(1)}=$| a |
| :--- |
| b |
| c |
| d |\(\left[\begin{array}{ccccc}a \& b \& c \& d

\& \infty \& 3 \& \infty

\hline 2 \& 0 \& \mathbf{5} \& \infty

\hline 2 \& 7 \& 0 \& 1

\hline \& \& \infty \& \mathbf{9} \& 0\end{array}\right]\) $D^{(2)}=\begin{aligned} & a \\ & b \\ & c \\ & d\end{aligned}\left[\begin{array}{cccc}a & b & c & d \\ 0 & \infty & 3 & \infty \\ 2 & 0 & 5 & \infty \\ \hline 9 & 7 & 0 & 1 \\ \hline 6 & \infty & 9 & 0\end{array}\right]$ $D^{(3)}=\begin{aligned} & a \\ & b \\ & c \\ & d\end{aligned}\left[\begin{array}{cccc}a & b & c & d \\ 0 & \mathbf{1 0} & 3 & \mathbf{4} \\ 2 & 0 & 5 & \mathbf{6} \\ 9 & 7 & 0 & 1 \\ \hline 6 & \mathbf{1 6} & 9 & 0\end{array}\right]$ $D^{(4)}=\begin{aligned} & a \\ & b \\ & c \\ & d\end{aligned}\left[\begin{array}{cccc}a & b & c & d \\ 0 & 10 & 3 & 4 \\ 2 & 0 & 5 & 6 \\ 7 & 7 & 0 & 1 \\ 6 & 16 & 9 & 0\end{array}\right]$

Lengths of the shortest paths with intermediate vertices numbered not higher than 1, i.e. just a (note two new shortest paths from b to c and from d to c).

Lengths of the shortest paths with intermediate vertices numbered not higher than 2, i.e. a and b (note a new shortest path from c to a).

Lengths of the shortest paths with intermediate vertices numbered not higher than 3 , i.e. a, b, and c (note four new shortest paths from a to b, from a to d, from b to d, and from d to b).

Lengths of the shortest paths with intermediate vertices numbered not higher than 4, i.e. a, b, c, and d (note a new shortest path from c to a).

FIGURE 8.7 Application of Floyd's algorithm to the graph shown. Updated elements are ${ }^{8-12}$ shown in

Floyd's Algorithm (pseudocode and analysis)

```
ALGORITHM Floyd(W[1..n, 1..n])
    //Implements Floyd's algorithm for the all-pairs shortest-paths problem
    //Input: The weight matrix \(W\) of a graph with no negative-length cycle
    //Output: The distance matrix of the shortest paths' lengths
    \(D \leftarrow W / /\) is not necessary if \(W\) can be overwritten
    for \(k \leftarrow 1\) to \(n\) do
        for \(i \leftarrow 1\) to \(n\) do
        for \(j \leftarrow 1\) to \(n\) do
        \(D[i, j] \leftarrow \min \{D[i, j], D[i, k]+D[k, j]\}\)
    return \(D\)
```


Time efficiency: $\boldsymbol{O}\left(n^{3}\right)$

Space efficiency: Matrices can be written over their predecessors

Knapsack Problem by DP

Given \boldsymbol{n} items of integer weights: $\quad w_{1} \quad w_{2} \ldots w_{n}$
values: $\quad v_{1} \quad v_{2} \ldots v_{n}$
a knapsack of integer capacity W
find most valuable subset of the items that fit into the knapsack

Consider instance defined by first \boldsymbol{i} items and capacity $\boldsymbol{j}(\boldsymbol{j} \leq \boldsymbol{W})$. Let $V[i, j]$ be optimal value of such instance. Then

$$
V[i, j]=\begin{array}{ll}
\max \left\{V[i-1, j], v_{i}+V\left[i-1, j-w_{i}\right]\right\} & \text { if } j-w_{i} \geq 0 \\
V[i-1, j] & \text { if } j-w_{i}<0
\end{array}
$$

Initial conditions: $V[0, j]=0$ and $V[i, 0]=0$
Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Knapsack Problem by DP (example)

Example: Knapsack of capacity $W=5$

item	weight	value
1	2	$\$ 12$
2	1	$\$ 10$
3	3	$\$ 20$
4	2	$\$ 15$

$$
\text { capacity } j
$$

Knapsack Problem

FIGURE 8.12 Table for solving the knapsack problem by dynamic programming

Knapsack Problem

$\cdot V[i, j]=\max \underset{\text { object }_{i} \text { not used }_{\uparrow}^{(V[i-1, j]}, \frac{\left.V\left[i-1, j-w_{i}\right]+v_{i}\right)}{\text { object }_{i} \text { used }}}{\frac{V}{2}}$

	capacity j						
	i	0	1	2	3	4	5
	0	0	0	0	0	0	0
$w_{1}=2, v_{1}=12$	1	0	0	12	12	12	12
$w_{2}=1, v_{2}=10$	2	0	10	12	22	22	22
$w_{3}=3, v_{3}=20$	3	0	10	12	22	30	32
$w_{4}=2, v_{4}=15$	4	0	10	15	25	30	37

FIGURE 8.13 Example of solving an instance of the knapsack problem by the dynamic programming algorithm

Knapsack Problem - Memory Function

- Implement the recurrence recursively
- Do not calculate a value if it is not needed
- Do not recalculate a value
- Row 0 and column 0 of V are initialized to 0 , other entries are -1
- MFKnapsack(i, j)

```
if \(\mathrm{V}[\mathrm{i}, \mathrm{j}]<0\)
    if \(\mathbf{j}<\mathbf{w}[\mathbf{i}]\)
        value \(\leftarrow\) MFKnapsack \((\mathbf{i}-\mathbf{1}, \mathbf{j})\)
    else
        value \(\leftarrow \max (\) MFKnapsack \((\mathbf{i} \mathbf{- 1}, \mathbf{j})\),
                        MFKnapsack( \(\mathbf{i}-\mathbf{1}, \mathbf{j}-\mathbf{w}[\mathbf{i}])+\mathbf{v}[\mathbf{i}])\)
    \(\mathbf{V}[\mathbf{i}, \mathrm{j}] \leftarrow\) value
    return \(\mathrm{V}[\mathrm{i}, \mathrm{j}]\)
```


Knapsack Problem - Memory Function

	capacity j						
	i	0	1	2	3	4	5
	0	0	0	0	0	0	0
$w_{1}=2, v_{1}=12$	1	0	0	12	12	12	12
$w_{2}=1, v_{2}=10$	2	0	-	12	22	-	22
$w_{3}=3, v_{3}=20$	3	0	-	-	22	-	32
$w_{4}=2, v_{4}=15$	4	0	-	-	-	-	37

FIGURE 8.14 Example of solving an instance of the knapsack problem by the memory function algorithm

