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Warshall’s  Algorithm: Transitive Closure

• Computes the transitive closure of a relation

• (Alternatively: all paths in a directed graph)

• Example of transitive closure:• Example of transitive closure:

3
1

3
11 1

42 0  0  1  0
1 0 0 1

0  0  1  0
1 1  11  1 1

42
1 0 0 1
0  0  0  0
0  1  0  0

0  0  0  0
11 1 1  11  1

Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of Algorithms - Chapter 8 8-1



Warshall’s  Algorithm

• Main idea: a path exists between two vertices i, j, iff
• there is an edge from i to j; org j;
• there is a path  from i to j going through vertex 1; or
• there is a path  from i to j going through vertex 1 and/or 2; or
• there is a path  from i to j going through vertex 1, 2, and/or 3; or
•...
• there is a path  from i to j going through any of the other vertices
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Warshall’s  Algorithm

• On the kth iteration, the algorithm determine if a path exists , g p
between two vertices i, j using just vertices among 1,…,k allowed
as intermediate

R(k-1)[i,j]                            (path using just 1 ,…,k-1)
R(k)[i j] = or{R(k)[i,j] = or

(R(k-1)[i,k]   and R(k-1)[k,j])     (path from i to k
and from k to ik

{
using just 1 ,…,k-1)i

k

kth iteration

j
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Warshall’s  Algorithm: Transitive Closure
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Warshall’s  Algorithm (matrix generation)

Recurrence relating elements R(k) to elements of R(k-1) is:

R(k)[i,j] = R(k-1)[i,j] or (R(k-1)[i,k] and R(k-1)[k,j])

It implies the following rules for generating R(k) from R(k-1):

Rule 1 If an element in row i and column j is 1 in R(k-1),
it remains 1 in R(k)

Rule 2  If an element in row i and column j is 0 in R(k-1),
it has to be changed to 1 in R(k) if and only ifit has to be changed to 1 in R(k) if and only if
the element in its row i and column k and the element
in its column j and row k are both 1’s in R(k-1)
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in its column j and row k are both 1 s in R



Warshall’s  Algorithm: Transitive Closure
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Warshall’s Algorithm (pseudocode and analysis)

Time efficiency: �(n3)

Space efficiency: Matrices can be written over their predecessors
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Floyd’s  Algorithm: All pairs shortest paths

Problem:    In a weighted (di)graph, find shortest paths between
every pair of vertices

Same idea: construct solution through series of matrices D(0)Same idea: construct solution through series of matrices D( ), …,
D(n) using increasing subsets of the vertices allowed
as intermediate

• Example: 3
1

4

1

1
6

1

5

42 3

Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of Algorithms - Chapter 8 8-9



Floyd’s Algorithm (matrix generation)

On the k-th iteration, the algorithm determines shortest paths 
between every pair of vertices i j that use only vertices amongbetween every pair of vertices i, j that use only vertices among
1,…,k as intermediate

D(k)[i,j] =  min {D(k-1)[i,j], D(k-1)[i,k]  + D(k-1)[k,j]}

kD(k-1)[i,k]

i
D(k-1)[k,j]

j
D(k-1)[i,j]

[ ,j]
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Floyd’s  Algorithm: All pairs shortest paths
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Floyd’s Algorithm (pseudocode and analysis)

Time efficiency: �(n3)e e c e cy: �( )

Space efficiency: Matrices can be written over their predecessors
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Knapsack Problem by DP

Given n items  of 
integer weights: w w winteger weights: w1 w2 … wn

values: v1   v2 …  vn

a knapsack of integer capacity W
find most valuable subset of the items that fit into the knapsack

Consider instance defined by first i items and capacity j (j � W).
Let V[i,j] be optimal value of such instance.  Then

max {V[i-1,j], vi + V[i-1,j- wi]}   if j- wi� 0
V[i j] =V[i,j] =

V[i-1,j]                                          if j- wi < 0
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Initial conditions: V[0,j] = 0  and V[i,0] = 0

Knapsack Problem by DP (example)

Example:  Knapsack of capacity W = 5
item weight valueitem weight value

1             2             $12
2 1 $102 1 $10
3             3             $20
4             2             $15                capacity jp y j

0     1     2     3     4 5
0

w1 = 2, v1= 12    1
w2 = 1, v2= 10    22 , 2
w3 = 3, v3= 20    3
w4 = 2 v4= 15 4 ?
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w4 2, v4 15 4 ?



Knapsack Problem

• V[i, j] = max (V[i – 1, j], V[i – 1, j – wi] + vi)

objecti not used objecti used
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Knapsack Problem

• V[i, j] = max (V[i – 1, j], V[i – 1, j – wi] + vi)

objecti not used objecti used
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Knapsack Problem – Memory Function

• Implement the recurrence recursively 
• Do not calculate a value if it is not needed• Do not calculate a value if it is not needed
• Do not recalculate a value
• Row 0 and column 0 of V are initialized to 0, other entries are -1

• MFKnapsack(i, j)
if V[i, j] < 0if V[i, j] 0

if j < w[i]
value � MFKnapsack(i – 1, j)

lelse
value � max (MFKnapsack(i – 1, j),

MFKnapsack(i – 1, j – w[i]) + v[i])p ( , j [ ]) [ ])
V[i, j] � value

return V[i, j]
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Knapsack Problem – Memory Function
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