
CS 440 Theory of Algorithms /
CS 468 Al ith i Bi i f tiCS 468 Algorithms in Bioinformatics

Limitations of
Algorithm Power

Copyright © 2007 Pearson Addison-Wesley. All rights reserved
Copyright © 2007 Pearson Addison-Wesley. All rights reserved.

11-0

Lower Bounds

Lower bound: an estimate on a minimum amount of work
needed to solve a given problem

Examples:
� Number of comparisons needed to find the largest element

in a set of n numbers
� Number of comparisons needed to sort an array of size n
� Number of comparisons necessary for searching in a sorted

array
N b f l i li i d d l i l b� Number of multiplications needed to multiply two n-by-n
matrices

Copyright © 2007 Pearson Addison-Wesley. All rights reserved 11-1

Lower Bounds (cont.)

� Lower bound can be
• an exact count
• an efficiency class (�)

� Tight lower bound: there exists an algorithm with the same
efficiency as the lower boundefficiency as the lower bound

Problem Lower bound Tightness
Sorting �(nlog n) yes
Searching in a sorted array �(log n) yes
Element uniqueness �(nlog n) yesElement uniqueness �(nlog n) yes
n-digit integer multiplication �(n) unknown
Multiplication of n-by-n matrices �(n2) unknown

Copyright © 2007 Pearson Addison-Wesley. All rights reserved 11-2

Methods for Establishing Lower Bounds

� Trivial lower bounds� Trivial lower bounds

I f ti th ti t (d i i t)� Information-theoretic arguments (decision trees)

� Adversary arguments

� Problem reduction

Copyright © 2007 Pearson Addison-Wesley. All rights reserved 11-3

Trivial Lower Bounds

Trivial lower bounds: based on counting the number of items
that must be processed in input and generated as outputp p g p

Examples
� Finding max element� Finding max element

� Polynomial evaluation

� Sorting

� Element uniqueness

� Hamiltonian circuit existence

Conclusions
� May and may not be useful

Copyright © 2007 Pearson Addison-Wesley. All rights reserved

� Be careful in deciding how many elements must be processed
11-4

Decision Trees
Decision tree — a convenient model of algorithms involving
comparisons in which:

Internal nodes represent comparisons� Internal nodes represent comparisons
� Leaves represent outcomes

Decision tree for 3-element insertion sort

Copyright © 2007 Pearson Addison-Wesley. All rights reserved 11-5

Decision Trees and Sorting Algorithms

� Any comparison-based sorting algorithm can be represented
by a decision treeby a decision tree

� Number of leaves (outcomes) = n!

� Height of binary tree with n! leaves � �log2n!�

� Minimum number of comparisons in the worst case � �log2n!�
for any comparison-based sorting algorithm

� �log2n!� � n log2n

� This lower bound is tight

Copyright © 2007 Pearson Addison-Wesley. All rights reserved 11-6

Adversary Arguments

Adversary argument: a method of proving a lower bound by
playing role of adversary that makes algorithm work the hardestplaying role of adversary that makes algorithm work the hardest
by adjusting input. The adversary cannot lie, however.

Example 1: “Guessing” a number between 1 and n with yes/no
questions (e.g., are 4 questions enough to guess a number
between 1 and 17))

Adversary: Puts the number in a larger of the two subsets
generated by last question

Example 2: Merging two sorted lists of size n
a1 < a2 < … < an and b1 < b2 < … < bn

Ad b iff i jAdversary: ai < bj iff i < j
Output b1 < a1 < b2 < a2 < … < bn < an requires 2n-1 comparisons
of adjacent elements

Copyright © 2007 Pearson Addison-Wesley. All rights reserved

j

11-7

Lower Bounds by Problem Reduction

Idea: If problem P is at least as hard as problem Q, then a lower
bound for Q is also a lower bound for Pbound for Q is also a lower bound for P.
Hence, find problem Q with a known lower bound that can
be reduced to problem P in question.be reduced to problem P in question.

Q
P

Input Output
Transformation

i ht b d d
Transformation

i ht b d dmight be needed might be needed

Does the other way around, i.e., using Q with a known lower

Copyright © 2007 Pearson Addison-Wesley. All rights reserved

bound to solve P, show the lower bound of P?
11-8

Lower Bounds by Problem Reduction

Example:
P fi di h ll f i t i C t i lP: finding convex hull for n points in Cartesian plane
Q: comparison-based sorting problem (known to be in �(nlogn))
Show that convex hull problem is in �(nlogn)Show that convex hull problem is in �(nlogn)

Example: Is squaring large integers simpler than multiplying largeExample: Is squaring large integers simpler than multiplying large
integers?

� x2 = x � x
We can use multiply to do square � what does it tell us about the
complexity of the two operations?

2 2� x � y = ((x + y)2 – (x – y)2) / 4
We can use square to do multiply � what do we know now?

� Th h th l it
Copyright © 2007 Pearson Addison-Wesley. All rights reserved

� They have the same complexity
11-9

Our old list of problems

� Sorting
� Searching
� Shortest paths in a graph
� Minimum spanning tree
� Primality testing
� Traveling salesman problem
� Knapsack problemp p
� Chess
� Towers of Hanoi
� Program termination

Copyright © 2007 Pearson Addison-Wesley. All rights reserved 11-10

Classifying Problem Complexity
Is the problem tractable, i.e., is there a polynomial-time (O(p(n))

algorithm that solves it?

Possible answers:
� Yes
� No

b i ’ b d h l i h i ll• because it’s been proved that no algorithm exists at all
(e.g., Turing’s halting problem)

• because it’s been be proved that any algorithm takes• because it’s been be proved that any algorithm takes
exponential time � intractable

� Unknown� Unknown
� Unknown, but if such algorithm were to be found, then it would

provide a means of solving many other problems in polynomial

Copyright © 2007 Pearson Addison-Wesley. All rights reserved
time

11-11

Problem Types: Optimization and Decision

� Optimization problem: find a solution that maximizes or
minimizes some objective functionminimizes some objective function

� Decision problem: answer yes/no to a question
• A correct algorithm that solves a decision problem accepts the “yes-instances”

and rejects the “no instances ”and rejects the “no-instances.”

Many problems have decision and optimization versions.

E.g.: traveling salesman problem
optimization: find Hamiltonian cycle of minimum length� optimization: find Hamiltonian cycle of minimum length

� decision: given an additional bound m find Hamiltonian cycle of
length � m

Decision problems are more convenient for formal investigation of
their complexity.

Copyright © 2007 Pearson Addison-Wesley. All rights reserved

their complexity.
11-12

Problem Types: Optimization and Decision

� Example: Hamiltonian cycle problem (HAM)
• “Find a Hamiltonian cycle in an undirected graph G.” is not a

decision problem.
• But it can be rephrased into a decision problem: “Does graph G• But it can be rephrased into a decision problem: Does graph G

contain a Hamiltonian cycle?” (HAMD)
• And, given a path, it is easy to answer that “Is this path a

Hamiltonian cycle?”

Copyright © 2007 Pearson Addison-Wesley. All rights reserved 11-13

Some more problems

� Partition: Given n positive integers, determine whether it is possible to
titi th i t t di j i t b t ith thpartition them into two disjoint subsets with the same sum

� Bin packing: given n items whose sizes are positive rational numbers� Bin packing: given n items whose sizes are positive rational numbers
not larger than 1, put them into the smallest number of bins of size 1

� Graph coloring: For a given graph find its chromatic number, ie, the
smallest number of colors that need to be assigned to the graph’s
vertices so that no two adjacent vertices are assigned the same colorj g

� CNF satisfiability: Given a boolean expression in conjunctive normal
f (j ti f di j ti f lit l) i th t thform (conjunction of disjunctions of literals), is there a truth
assignment to the variables that makes the expression true?

Copyright © 2007 Pearson Addison-Wesley. All rights reserved 11-14

Class P

P: the class of decision problems that are solvable in O(p(n)) time,
where p(n) is a polynomial of problem’s input size nwhere p(n) is a polynomial of problem’s input size n

Examples:Examples:
� Searching

� Element uniqueness

� Graph connectivity

� Graph acyclicity

P i lit t ti (fi ll d i 2002)
Copyright © 2007 Pearson Addison-Wesley. All rights reserved

� Primality testing (finally proved in 2002)
11-15

Class NP

NP (nondeterministic polynomial): class of decision problems whose
d l ti b ifi d i l i l ti l blproposed solutions can be verified in polynomial time = solvable

by a nondeterministic polynomial algorithm

A nondeterministic polynomial algorithm is an abstract two-stage
procedure that:

� Nondeterministic (“guessing”) stage:
Generates a random string purported to solve the problem

D t i i ti (“ ifi ti ”) t� Deterministic (“verification”) stage:
Checks whether this solution is correct in polynomial time

By definition, an NP algorithm solves the problem if it’s capable of
generating and verifying a solution on one of its tries in

Copyright © 2007 Pearson Addison-Wesley. All rights reserved

polynomial time
11-16

Example: CNF satisfiability

Problem: Is a boolean expression in its conjunctive normal
form (CNF) satisfiable i e are there values of itsform (CNF) satisfiable, i.e., are there values of its
variables that makes it true?

This problem is in NP. Nondeterministic algorithm:
� Guess truth assignment
� Substitute the values into the CNF formula to see if it� Substitute the values into the CNF formula to see if it

evaluates to true

E l () () () ()Example: () () () ()
Truth assignments:

0 0 0 0 00 0 0 0 0
. . .

1 1 1 1 1
Checking phase: O()

Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Checking phase: O(n)
11-17

What problems are in NP?

� CNF-SAT
� Hamiltonian circuit existence
� Partition problem: Is it possible to partition a set of n

integers into two disjoint subsets with the same sum?integers into two disjoint subsets with the same sum?
� Decision versions of TSP, knapsack problem, graph

coloring, and many other combinatorial optimizationcoloring, and many other combinatorial optimization
problems. (Few exceptions include: MST, shortest paths)

� All the problems in P can also be solved in this manner (but
no guessing is necessary), so we have:

P NPP 	 NP

� Big question: P = NP ?
Copyright © 2007 Pearson Addison-Wesley. All rights reserved

� Big question: P = NP ?
11-18

NP-Complete Problems

A decision problem D is NP-complete if it’s as hard as any
problem in NP, i.e.,
� D is in NP
� Every problem in NP is polynomial-time reducible to D

Copyright © 2007 Pearson Addison-Wesley. All rights reserved 11-19

NP-Complete Problems (cont.)

Other NP-complete problems are obtained through polynomial-
time reductions from a known NP-complete problem

But we need to have the first NP-Complete problem to start:
Cook’s theorem (1971): CNF-SAT is NP-complete

Copyright © 2007 Pearson Addison-Wesley. All rights reserved 11-20

P = NP ? Dilemma Revisited

� P = NP would imply that every problem in NP, including all
NP-complete problems, could be solved in polynomial timeNP complete problems, could be solved in polynomial time

� If a polynomial-time algorithm for just one NP-completeIf a polynomial time algorithm for just one NP complete
problem is discovered, then every problem in NP can be solved
in polynomial time, i.e., P = NP

� Most but not all researchers believe that P
 NP , i.e. P is a
proper subset of NPproper subset of NP

Copyright © 2007 Pearson Addison-Wesley. All rights reserved 11-21

