CS 440 Theory of Algorithms /
CS 468 Algorithms in Bioinformatics

Brute Force

Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of Algorithms - Chapter 3
Copyright © 2007 Pearson Addison-Wesley. All rights reserved.

3-0

Brute Force

A straightforward approach usually based on problem
statement and definitions

Examples:

1. Computing a” (a > 0, n a nonnegative integer)
2. Computing n!

3. Multiply two n by n matrices

4. Selection sort

5. Sequential search

Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of Algorithms - Chapter 3

3-1

Brute-Force Sorting Algorithm

Selection Sort Scan the array to find its smallest element and
swap it with the first element. Then, starting with the
second element, scan the elements to the right of it to find
the smallest among them and swap it with the second
elements. Generally, on pass i (0 <i < n-2), find the
smallest element in A[i..n-1] and swap it with A]i]:

A[0] £ . . . LAli-1] | Ald), . . . ,A|min],. . ., A[n-1]
in their final positions

Example: 7 3 2 §

Copyright © 2007 Pearson Addison-Wesley. Al rights reserved Design and Analysis of Algorithms - Chapter 3 3-2

Analysis of Selection Sort

ALGORITHM SelectionSort(A[0..n — 1])

[ISorts a given array by selection sort
/Input: An array A[0..n — 1] of orderable elements
//Output: Array A[0..n — 1] sorted in ascending order
fori < Oton—2do

min < i

for j < i+1ton—1do

if A[j] < A[min] min « j
swap Ali] and A[min]

Time efficiency:
Space efficiency:

Stability:

Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of Algorithms - Chapter 3 3-3

Brute-Force String Matching

e Pattern: a string of m characters to search for
o Text: a (longer) string of n characters to search in
e Problem: find a substring in the text that matches the pattern

Brute-force algorithm

Step 1 Align pattern at beginning of text

Step 2 Moving from left to right, compare each character of
pattern to the corresponding character in text until
e All characters are found to match (successful search); or
e A mismatch is detected

Step 3 While pattern is not found and the text is not yet

exhausted, realign pattern one position to the right and
repeat Step 2

Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of Algorithms - Chapter 3 3-4

Examples of Brute-Force String Matching

1. Pattern: 001011
Text: 10010101101001100101111010

2. Pattern: happy
Text: It is never too late to have a happy

childhood.

Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of Algorithms - Chapter 3 3-5

Pseudocode and Efficiency

ALGORITHM BruteForceStringMatch(T[0..n — 1], P[0..m —1])

//Tmplements brute-force string matching
/Input: An array T[0..n — 1] of n characters representing a text and
/1l an array P[0..m — 1] of m characters representing a pattern
//Output: The index of the first character in the text that starts a
/ matching substring or —1 if the search is unsuccessful
fori <~ 0Oton —mdo

Jj<0

while j <m and P[j]|=T][i + j]do

j<«—j+1

if j = m return

return —1

Number of comparisons:

Efficiency:

Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of AIgorithms - Chapter 3 3-6

Brute Force Polynomial Evaluation

e Problem: Find the value of polynomial
px)=ax"+a, x"'+...+ax'+a,
at a point x = x,

e Algorithm:

p:=0.0
for i := n down to 0 do
power :=1
for j:=1toido
power := power * x
p :=p+ali] * power
return p

o Efficiency:

Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of Algorithms - Chapter 3 37

Polynomial Evaluation: Improvement

e We can do better by evaluating from right to left:
e Algorithm:

p = al0]
power :=1
fori:= 1tondo
power := power * x
p :=p +ali] * power
return p

o Efficiency:

e Discussion: why is this algorithm more efficient than the
previous one?

Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of AIgorithms - Chapter 3 3-8
Closest-Pair Problem
Find the two closest points in a set of » points (in the two-
dimensional Cartesian plane).
Brute-force algorithm
Compute the distance between every pair of distinct points
and return the indexes of the points for which the distance
is the smallest.
Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of Algorithms - Chapter 3 39

Closest-Pair Brute-Force Algorithm (cont.)

ALGORITHM BruteForceClosestPoints(P)
/Mnput: A list P of n (n > 2) points Py = (xy, 1), - - - Py = (X, ¥)
//Output: Indices index1 and index2 of the closest pair of points
dmin < o0
fori < 1ton—1do
for j «i+1tondo
d < sqri((x; — x;)*+ (3; — y;)*) llsqrt is the square root function
ifd <dmin
dmin «—d; index] «i; index2 « j
return index1, index2

Efficiency:

How to make it faster?

Copyright © 2007 Pearson Addison-Wesley. Al rights reserved Design and Analysis of Algorithms - Chapter 3 3-10

Convex Hull Problem

e Convex hull

e Problem: Find smallest convex polygon enclosing » points on the
plane

e Algorithm: For each pair of points p, and p, determine whether all
other points lie to the same side of the straight line through p, and p,

e Efficiency:

o

Copyright © 2007 Pearson Addison-Wesley. (3) (b) 3-11

FIGURE 3.4 (a) Convex sets. (b) Sets that are not convex.

Convex Hull Problem

10 =Ty

LI

FIGURE 3.5 Rubber-band interpretation of the convex hull

FIGURE 3.6 The convex hull for this set of eight points is the convex polygon with 3-12
vertices at Py, P;, Ps, P, and P;.

Brute-Force Strengths and Weaknesses

e Strengths
e Wide applicability
e Simplicity
e Yields reasonable algorithms for some important
problems
(e.g., matrix multiplication, sorting, searching, string
matching)

o Weaknesses
e Rarely yields efficient algorithms
e Some brute-force algorithms are unacceptably slow
e Not as constructive as some other design techniques

Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of Algorithms - Chapter 3 3-13

Exhaustive Search

A brute force solution to a problem involving search for an
element with a special property, usually among
combinatorial objects such as permutations, combinations,
or subsets of a set.

Method:

e Generate a list of all potential solutions to the problem
in a systematic manner

e all solutions are eventually listed

® no solution is repeated

e Evaluate potential solutions one by one, disqualifying
infeasible ones and, for an optimization problem,
keeping track of the best one found so far

e When search ends, announce the solution(s) found

Copyright © 2007 Pearson Addison-Wesley. Al rights reserved Design and Analysis of Algorithms - Chapter 3 3-14

Example 1: Traveling Salesperson Problem (TSP)

e Given n cities with known distances between each pair, find
the shortest tour that passes through all the cities exactly
once before returning to the starting city.

e Alternatively: Find shortest Hamiltonian circuit in a
weighted connected graph.

o Example:

Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of Algorithms - Chapter 3 3-15

TSP by Exhaustive Search

Tour Cost
a—b—c—d—a 2+3+7+5 =17
a—b—d—c—a 2+4+7+8 = 21
a—c—b—d—a 8+3+4+5 =20
a—c—d—b—a 8+7+4+2 =21
a—d—b—c—a 5+4+3+8 =20
a—d—c—b—a 5+7+3+2 =17

More tours?
Less tours?

Efficiency:

Copyright © 2007 Pearson Addison-Wesley. Al rights reserved Design and Analysis of Algorithms - Chapter 3 3-16

Example 2: Knapsack Problem

Given n items:

e weights: w; w, ... w,
o values: Vi YV, e V,
e a knapsack of capacity W

Find most valuable subset of the items that fit into the knapsack

Example: Knapsack capacity W=16

item _weight value

1 2 $20
2 5 $30
3 10 $50
4 5 $10

Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of Algorithms - Chapter 3 3-17

Knapsack Problem by Exhaustive Search

Subset Total weight

Total value

13

2

3}

4
1,2}
1,3}
1,4}
{2,3}
2,4}
3,4}
{1,2,3}
{1,2,4}
{1,3,4}
{2,3,4}
{1,2,3,4}

Copyright © 2007 Pearson Addison-Wesley. All rights reserved

2

5
10

5

7
12

7

15
10
15
17
12
17
20
22

$20

$30

$50

$10

$50

$70

$30

$80

$40

$60

not feasible

$60

not feasible

not feasible

not feasible Efficiency:
Design and Analysis of Algorithms - Chapter 3 3-18

Example 3: The Assignment Problem

There are n people who need to be assigned to » jobs, one
person per job. The cost of assigning person i to job j is C|i,j].
Find an assignment that minimizes the total cost.

Person 1
Person 2
Person 3
Person 4

9

6
5
7

2

4
8
6

Job1l Job2 Job3 Job4

7 8

3 7
1 8
9 4

Algorithmic Plan: Generate all legitimate assignments, compute

their costs, and select the cheapest one.

How many assignments are there?
Pose the problem as the one about a cost matrix:

Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Design and Analysis of Algorithms - Chapter 3 3-19

Assignment Problem by Exhaustive Search

9 2 7 8

6 4 3 7
C=538138

7 6 9 4

Assignment (col.#s) Total Cost

1,2,3,4 9+4+1+4=18

1,2,4,3 9+4+8+9=30

1,3,2,4 9+3+8+4=24

1,3,4,2 9+3+8+6=26

1,4,2,3 9+7+8+9=33

1,4,3,2 9+7+1+6=23

etc.

(For this particular instance, the optimal assignment can be found by
exploiting the specific features of the number given. It is:)
Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of Algorithms - Chapter 3 3-20

Final Comments on Exhaustive Search

o Exhaustive-search algorithms run in a realistic amount of time
only on very small instances

o In some cases, there are much better alternatives!
e Euler circuits
e Shortest paths
e Minimum spanning tree
e Assignment problem

e In many cases, exhaustive search or its variation is the only
known way to get exact solution

e Are we guaranteed to find the optimal solution?

Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of Algorithms - Chapter 3 3-21

Tackling Difficult Combinatorial Problems

There are two principal approaches to tackling difficult
combinatorial problems:

o Use a strategy that guarantees solving the problem exactly
but doesn’t guarantee to find a solution in polynomial time
e E.g., Back-Tracking and Branch-and-Bound

e Use an approximation algorithm that can find an
approximate (sub-optimal) solution in polynomial time

Copyright © 2007 Pearson Addison-Wesley. Al rights reserved Design and Analysis of Algorithms - Chapter 3 3-22

Branch-and-Bound

e An enhancement of backtracking
o Applicable to optimization problems

e For each node (partial solution) of a state-space tree,
computes a bound on the value of the objective function for
all descendants of the node (extensions of the partial
solution)

e Uses the bound for:

e Ruling out certain nodes as “nonpromising” to prune
the tree — if a node’s bound is not better than the best
solution seen so far

e Guiding the search through state-space

Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of Algorithms - Chapter 3 3-23

State and State Space of Problem

State of a problem
e Specific combination from all possibilities

e Two important states in a problem
e Initial State: first state given by the problem
e Goal State: solution state where the problem wants to reach

e State Space of a problem
e Space containing all possible states of the problem
e Usually represented by a graph or a tree

e Rules are needed for changing from one state to another.

e Solving a problem means searching for a path in the state space
from a initial state to a goal state.

e Especially useful for solving puzzles, games, etc.

Copyright © 2007 Pearson Addison-Wesley. Al rights reserved Design and Analysis of Algorithms - Chapter 3 3-24

River Crossing Problem: Relationship between states

Pg
Pwgc | | wc || Pg

e Where are the

. P
“solutions”?
]3
Pwcllg W cllPwg
Pc Pg
Pw
Pwgllc gllPwc
P

Pg
Pgllwc | Pwgc
3-25

FIGURE 6.18 State-space graph for the peasant, wolf, goat, and cabbage puzzle

State-Space Tree of the 4-Queens Problem

4-Queens Problem: Place 4 queens on an 4-by-4 chess board so that no two
of them are in the same row, column, or diagonal

]

Copyright © 2007 Pears 3-26
aalution

Example: Assignment Problem

Select one element in each row of the cost matrix C so that:
* No two selected elements are in the same column
* The sum is minimized

Example
Jobl Job2 Job3 Job4
Persona 9 2 7 8

Personb 6 4 3 7
Person ¢ 5 8 1 8
Persond 7 6 9 4

Lower bound: Any solution to this problem will have total cost
atleast: 2+3+1+4(or5+2+1+4)

Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of Algorithms - Chapter 3 3-27

Example: First two levels of the state-space tree

0
Start

th = 2+3+1+4=10

N\

a—-1 a—-> 2 a—> 3 a—s 4
= 3 3+144=17 fh=2+3+1+4=10 b =F+4+5+4=2{) fh = §+3+1+6=18

Figure 11.5 Levels 0 and 1 of the state-space tree for the instance of

the assignment problem being solved with the best-first branch-and-bound
algorithm. The number above a node shows the order in which the node
was generated. A node’s flelds indicate the job number assigned to person
¢ and the lower bound value, b, for this node.

Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of Algorithms - Chapter 3 3-28

Example (cont.)

0
Start
=10
1/ 2 \3 A
a—1 a—2 a—3 a— 4
=17 =10 b =20 h = 18
b—1 b—3 b—4
=13 =14 b =17

Figure 11.6 Levels (, 1, and 2 of the state-space tree for the instance of the
assignment problem being sclved with the best-first branch-and-bound algorithm

Copyright © 2007 Pearson Addison-Wesley. All rights reserved Design and Analysis of Algorithms - Chapter 3 3-29

Example: Complete state-space tree

0
Start
=10
1 2 3 4
a—1 a— 2 a—>3 a—4
=17 ih = 10 i =20 ih =18
X X X
5 6 7
h—s1 b—3 h—4
=13 B =14 b =17
/ X X
8 g
o— 3 o0— 4
d— 4 d— 3
cost= 13 cost= 25
solution inferior solution

Figure 11.7 Complete state-space tree for the instance of the assignment
problem solved with the best-first branch-and-bound algorithm

