
CS 440 Theory of Algorithms /
CS 468 Al ith i Bi i f tiCS 468 Algorithms in Bioinformatics

Brute Force

Design and Analysis of Algorithms - Chapter 3 3-0Copyright © 2007 Pearson Addison-Wesley. All rights reserved
Copyright © 2007 Pearson Addison-Wesley. All rights reserved.

Brute Force

A straightforward approach usually based on problem
t t t d d fi itistatement and definitions

Examples:
1 Computing an (a > 0 n a nonnegative integer)1. Computing an (a > 0, n a nonnegative integer)

2 Computing n!2. Computing n!

3. Multiply two n by n matrices3. Multiply two n by n matrices

4. Selection sort

5. Sequential search

Design and Analysis of Algorithms - Chapter 3 3-1Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Brute-Force Sorting Algorithm

Selection Sort Scan the array to find its smallest element and
swap it with the first element. Then, starting with the
second element, scan the elements to the right of it to find
the smallest among them and swap it with the secondthe smallest among them and swap it with the second
elements. Generally, on pass i (0 � i � n-2), find the
smallest element in A[i..n-1] and swap it with A[i]:smallest element in A[i..n 1] and swap it with A[i]:

A[0] � . . . � A[i-1] | A[i], . . . , A[min], . . ., A[n-1]
in their final positions

Example: 7 3 2 5

Design and Analysis of Algorithms - Chapter 3 3-2Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Analysis of Selection Sort

Time efficiency:

Space efficiency:

St bilit
Design and Analysis of Algorithms - Chapter 3 3-3Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Stability:

Brute-Force String Matching

� Pattern: a string of m characters to search for
� Text: a (longer) string of n characters to search in� Text: a (longer) string of n characters to search in
� Problem: find a substring in the text that matches the pattern

Brute-force algorithm
Step 1 Align pattern at beginning of textp g p g g
Step 2 Moving from left to right, compare each character of

pattern to the corresponding character in text until
� All characters are found to match (successful search); or
� A mismatch is detected

Step 3 While pattern is not found and the text is not yetStep 3 While pattern is not found and the text is not yet
exhausted, realign pattern one position to the right and
repeat Step 2

Design and Analysis of Algorithms - Chapter 3 3-4Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Examples of Brute-Force String Matching

1. Pattern:
Text:

2. Pattern:
T tText:

Design and Analysis of Algorithms - Chapter 3 3-5Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Pseudocode and Efficiency

Number of comparisons:

Design and Analysis of Algorithms - Chapter 3 3-6Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Efficiency:

Brute Force Polynomial Evaluation

� Problem: Find the value of polynomial
() 1 1p(x) = anxn + an-1xn-1 +… + a1x1 + a0

at a point x = x0
� Algorithm:� Algorithm:

p := 0.0
for i := n down to 0 dofor i := n down to 0 do

power := 1
for j := 1 to i doj

power := power * x
p := p + a[i] * power

� Efficiency:
return p

Design and Analysis of Algorithms - Chapter 3 3-7Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Polynomial Evaluation: Improvement

� We can do better by evaluating from right to left:
� Algorithm:

p := a[0]p : a[0]
power := 1
for i := 1 to n do

power := power * x
p := p + a[i] * power

t

� Efficiency:

return p

� Efficiency:
� Discussion: why is this algorithm more efficient than the

previous one?

Design and Analysis of Algorithms - Chapter 3 3-8Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Closest-Pair Problem

Find the two closest points in a set of n points (in the two-
dimensional Cartesian plane).

Brute-force algorithm
Compute the distance between every pair of distinct points
and return the indexes of the points for which the distance
is the smallest.

Design and Analysis of Algorithms - Chapter 3 3-9Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Closest-Pair Brute-Force Algorithm (cont.)

Efficiency:

How to make it faster?
Design and Analysis of Algorithms - Chapter 3 3-10Copyright © 2007 Pearson Addison-Wesley. All rights reserved

How to make it faster?

Convex Hull Problem

� Convex hull
P bl Fi d ll t l l i i t th� Problem: Find smallest convex polygon enclosing n points on the
plane

� Algorithm: For each pair of points p1 and p2 determine whether all g p p p1 p2
other points lie to the same side of the straight line through p1 and p2

� Efficiency:

Design and Analysis of Algorithms - Chapter 3 3-11Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Convex Hull Problem

Design and Analysis of Algorithms - Chapter 3 3-12Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Brute-Force Strengths and Weaknesses

� Strengths
� Wide applicability
� Simplicity

i i f i� Yields reasonable algorithms for some important
problems
(e.g., matrix multiplication, sorting, searching, string(e.g., matrix multiplication, sorting, searching, string
matching)

W k� Weaknesses
� Rarely yields efficient algorithms
� Some brute force algorithms are unacceptably slow� Some brute-force algorithms are unacceptably slow
� Not as constructive as some other design techniques

Design and Analysis of Algorithms - Chapter 3 3-13Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Exhaustive Search

A brute force solution to a problem involving search for an
element with a special property usually amongelement with a special property, usually among
combinatorial objects such as permutations, combinations,
or subsets of a set.

Method:
� Generate a list of all potential solutions to the problem� Generate a list of all potential solutions to the problem

in a systematic manner
� all solutions are eventually listed
� no solution is repeated

� Evaluate potential solutions one by one, disqualifying
infeasible ones and for an optimization probleminfeasible ones and, for an optimization problem,
keeping track of the best one found so far

� When search ends, announce the solution(s) found

Design and Analysis of Algorithms - Chapter 3 3-14Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Example 1: Traveling Salesperson Problem (TSP)

� Given n cities with known distances between each pair, find
the shortest tour that passes through all the cities exactly
once before returning to the starting city.
A i i il i i i i� Alternatively: Find shortest Hamiltonian circuit in a
weighted connected graph.
E l� Example:

a b
2

8
5 3

4

c d7

Design and Analysis of Algorithms - Chapter 3 3-15Copyright © 2007 Pearson Addison-Wesley. All rights reserved

TSP by Exhaustive Search

Tour Cost
a b c d a 2+3+7+5 = 17a�b�c�d�a 2+3+7+5 = 17
a�b�d�c�a 2+4+7+8 = 21

b d 8+3+4+5 20a�c�b�d�a 8+3+4+5 = 20
a�c�d�b�a 8+7+4+2 = 21

d b 5+4+3+8 20a�d�b�c�a 5+4+3+8 = 20
a�d�c�b�a 5+7+3+2 = 17

More tours?

Less tours?

Efficiency:
Design and Analysis of Algorithms - Chapter 3 3-16Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Efficiency:

Example 2: Knapsack Problem

Given n items:
� weights: w w w� weights: w1 w2 … wn

� values: v1 v2 … vn

k k f it W� a knapsack of capacity W
Find most valuable subset of the items that fit into the knapsack

Example: Knapsack capacity W=16
i i h litem weight value
1 2 $20
2 5 $30
3 10 $50

Design and Analysis of Algorithms - Chapter 3 3-17Copyright © 2007 Pearson Addison-Wesley. All rights reserved

4 5 $10

Knapsack Problem by Exhaustive Search

Subset Total weight Total value
{1} 2 $20{1} 2 $20
{2} 5 $30
{3} 10 $50
{4} 5 $10

{1,2} 7 $50
{1,3} 12 $70
{1,4} 7 $30
{2,3} 15 $80
{2,4} 10 $40{2,4} 10 $40
{3,4} 15 $60

{1,2,3} 17 not feasible
{1 2 4} 12 $60{1,2,4} 12 $60
{1,3,4} 17 not feasible
{2,3,4} 20 not feasible

{1 2 3 4} 22 not feasible Efficiency:
Design and Analysis of Algorithms - Chapter 3 3-18Copyright © 2007 Pearson Addison-Wesley. All rights reserved

{1,2,3,4} 22 not feasible Efficiency:

Example 3: The Assignment Problem

There are n people who need to be assigned to n jobs, one
person per job The cost of assigning person i to job j is C[i j]person per job. The cost of assigning person i to job j is C[i,j].
Find an assignment that minimizes the total cost.

Job 1 Job 2 Job 3 Job 4
Person 1 9 2 7 8
Person 2 6 4 3 7Person 2 6 4 3 7
Person 3 5 8 1 8
Person 4 7 6 9 4

Algorithmic Plan: Generate all legitimate assignments, compute
their costs, and select the cheapest one.their costs, and select the cheapest one.

How many assignments are there?
Pose the problem as the one about a cost matrix:

Design and Analysis of Algorithms - Chapter 3 3-19Copyright © 2007 Pearson Addison-Wesley. All rights reserved

p

Assignment Problem by Exhaustive Search

9 2 7 8
6 4 3 76 4 3 7
5 8 1 8
7 6 9 4

C =

Assignment (col.#s) Total Cost
1, 2, 3, 4 9+4+1+4=181, 2, 3, 4 9+4+1+4 18
1, 2, 4, 3 9+4+8+9=30
1, 3, 2, 4 9+3+8+4=24
1, 3, 4, 2 9+3+8+6=26
1, 4, 2, 3 9+7+8+9=33
1, 4, 3, 2 9+7+1+6=23, , ,

etc.
(For this particular instance, the optimal assignment can be found by
exploiting the specific features of the number given It is:)

Design and Analysis of Algorithms - Chapter 3 3-20Copyright © 2007 Pearson Addison-Wesley. All rights reserved

exploiting the specific features of the number given. It is:)

Final Comments on Exhaustive Search

� Exhaustive-search algorithms run in a realistic amount of time
l ll i tonly on very small instances

� In some cases, there are much better alternatives!� In some cases, there are much better alternatives!
� Euler circuits
� Shortest paths
� Minimum spanning tree
� Assignment problem

� In many cases, exhaustive search or its variation is the only
known way to get exact solutiony g

� Are we guaranteed to find the optimal solution?

Design and Analysis of Algorithms - Chapter 3 3-21Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Tackling Difficult Combinatorial Problems

There are two principal approaches to tackling difficult
combinatorial problems:

i� Use a strategy that guarantees solving the problem exactly
but doesn’t guarantee to find a solution in polynomial time
� E g Back Tracking and Branch and Bound� E.g., Back-Tracking and Branch-and-Bound

� Use an approximation algorithm that can find an� Use an approximation algorithm that can find an
approximate (sub-optimal) solution in polynomial time

Design and Analysis of Algorithms - Chapter 3 3-22Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Branch-and-Bound

� An enhancement of backtracking

� Applicable to optimization problems

� For each node (partial solution) of a state-space tree,
computes a bound on the value of the objective function for
all descendants of the node (extensions of the partial
solution)

� Uses the bound for:
� Ruling out certain nodes as “nonpromising” to prune g p g p

the tree – if a node’s bound is not better than the best
solution seen so far
G idi th h th h t t

Design and Analysis of Algorithms - Chapter 3 3-23Copyright © 2007 Pearson Addison-Wesley. All rights reserved

� Guiding the search through state-space

State and State Space of Problem

�� State of a problemState of a problem
�� Specific combination from all possibilitiesSpecific combination from all possibilities�� Specific combination from all possibilitiesSpecific combination from all possibilities

�� Two important states in a problemTwo important states in a problem
�� Initial State: first state given by the problemInitial State: first state given by the problem
�� Goal State: solution state where the problem wants to reachGoal State: solution state where the problem wants to reach

�� State Space of a problemState Space of a problem
�� Space containing all possible states of the problemSpace containing all possible states of the problem
�� Usually represented by a graph or a treeUsually represented by a graph or a treey p y g py p y g p

� Rules are needed for changing from one state to another.

� Solving a problem means searching for a path in the state space
from a initial state to a goal state.

E i ll f l f l i l tE i ll f l f l i l t
Design and Analysis of Algorithms - Chapter 3 3-24Copyright © 2007 Pearson Addison-Wesley. All rights reserved

�� Especially useful for solving puzzles, games, etc.Especially useful for solving puzzles, games, etc.

River Crossing Problem: Relationship between states

� Where are the
“solutions”?

Design and Analysis of Algorithms - Chapter 3 3-25Copyright © 2007 Pearson Addison-Wesley. All rights reserved 25

State-Space Tree of the 4-Queens Problem
4 Q P bl Pl 4 4 b 4 h b d th t t4-Queens Problem: Place 4 queens on an 4-by-4 chess board so that no two

of them are in the same row, column, or diagonal

Design and Analysis of Algorithms - Chapter 3 3-26Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Example: Assignment Problem

Select one element in each row of the cost matrix C so that:
• No two selected elements are in the same columnNo two selected elements are in the same column
• The sum is minimized

E lExample
Job 1 Job 2 Job 3 Job 4

Person a 9 2 7 8Person a 9 2 7 8
Person b 6 4 3 7
Person c 5 8 1 8
Person d 7 6 9 4

L b d A l ti t thi bl ill h t t l tLower bound: Any solution to this problem will have total cost
at least: 2 + 3 + 1 + 4 (or 5 + 2 + 1 + 4)

Design and Analysis of Algorithms - Chapter 3 3-27Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Example: First two levels of the state-space tree

Design and Analysis of Algorithms - Chapter 3 3-28Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Example (cont.)

Design and Analysis of Algorithms - Chapter 3 3-29Copyright © 2007 Pearson Addison-Wesley. All rights reserved

Example: Complete state-space tree

Design and Analysis of Algorithms - Chapter 3 3-30Copyright © 2007 Pearson Addison-Wesley. All rights reserved

