
Specifying method preconditions
and postconditions

2

!  A client queries and
commands a server:
!  Queries ascertain values

of properties
!  Commands change its

state
!  A client uses a server.

3

!  Specification
!  an object’s features, as seen by its clients

!  Implementation
!  the “internals” that make up the features

!  Specifications isolate you from the details of the implementation:
!  “I don’t care how you do it, just get the job done” (as long as it meets

the specifications).
!  How the features are actually implemented by the server, is of no

concern to the client.
!  Preserving the distinction between specification and

implementation is absolutely essential:
!  Java syntax does not allow us to separate a class specification from

its implementation.
!  We will make this distinction using Javadoc comments.

4

!  postcondition
!  a condition the implementor (server) guarantees will hold when a

method completes execution
!  invariant

!  a condition that always holds true
!  class invariant

!  an invariant regarding properties of class instances: that is, a
condition that will always be true for all instances of a class

5

!  Enumerate the object’s responsibilities:
!  Identify queries:

!  properties of the object that define its state
!  Identify commands:

!  ways in which an object can change state

!  A simple counter’s responsibilities:
!  Know (two queries):

!  The value of the count
"  currentCount()

"  a non-negative integer
!  Is the count zero?

"  isZero()
"  boolean result

!  Do (two commands):
!  Set the count to 0

"  reset()
"  set the count to 0

!  Increment the count by 1
"  incrementCount()

"  increments the count
by 1

6

!  A class invariant for Counter is that the instance
(component) variable count will always be greater than
or equal to zero.

!  Class invariants for instance variables will appear as
postconditions to their accessor methods (e.g.,
currentCount() for count).

!  Each class invariant must also hold true for all of the
methods of the class.

!  Thus, the postcondition to the incrementCount()
method must make sure that count is greater or equal to
zero when it completes execution.

7

!  Class invariants and postconditions are part of class
specification but not the implementation.

!  They should be included in comments but not in the
implementation.

!  Consider an object’s data areas.
!  We will add a simple line comment to indicate constraints

on each instance variable:

private int count; //current count
 // invariant:
 // count >= 0

8

!  Postconditions are specified using the @ensure Javadoc tag:

/**
 * The number of items counted.
 *
 * @ensure result >= 0
 */
public int currentCount () {
 return count;
}

!  Note the use of the special “keyword” result to represent the
value that is returned from a method.

9

!  Now consider the postcondition to the reset() method:

/**
 * Reset the count to 0.
 *
 * @ensure currentCount() == 0
 */
public void reset () {
 count = 0;
}

10

!  Note that the postcondition we have given for reset()
is:

 @ensure currentCount() == 0

!  We have said currentCount() == 0 instead of
count == 0 because count is a private variable and
therefore not known to the client.

!  Clearly, this postcondition is accurate and valid.

!  Furthermore, this postcondition also maintains the class
invariant because currentCount() == 0 implies
currentCount() >= 0.

11

!  Now consider the postcondition to the incrementCount()
method:

/**
 * Increments the count by 1.
 *
 * @ensure currentCount() >= 0
 */
public void incrementCount () {
 …
}

12

!  Note that the postcondition we have given for
incrementCount() is:

 @ensure currentCount() >= 0

!  As with reset(), we have used currentCount()
instead of count in the postcondition because count is
a private variable and therefore not known to the client.

!  This postcondition is accurate and valid and it clearly
maintains the class invariant.

!  However, it doesn’t accurately describe the state change
resulting from the incrementCount() method.

!  Can we make the postcondition more precise?

13

!  For incrementCount(), the postcondition should say that
the new count is 1 more than the old count

!  More precisely, we say that the new count == old count + 1

!  To avoid confusion, we use the old prefix to denote a state
prior to execution of a method.

!  We could write count == old.count + 1

!  But count is private, not known to the client.

!  Postcondition:

 currentCount() == old.currentCount() + 1

!  Note that this postcondition implies that the class invariant is
maintained.

14

!  Let’s try to implement incrementCount():
/**
 * Increment count by 1.
 *
 * @ensure currentCount() == old.currentCount() + 1
 */
public void incrementCount () {
 count = count + 1;
}

!  This implementation ensures that new count is 1 more than the
old count so we consider it correct with respect to its
specification

15

!  For decrementCount(), the postcondition should say that
the new count is 1 less than the old count

!  Postcondition:

 currentCount() == old.currentCount() - 1
!  Note that, unlike the incrementCount() case, this does

not imply that the class invariant is maintained.

!  Thus we need to add currentCount() >= 0 to the
postcondition.

!  Updated Postcondition:
 currentCount() >= 0 &&

 currentCount() == old.currentCount() – 1

!  What if the count is 0 prior to execution?

if (condition)
 statement

16

if (condition)
statement1

else
statement2

17 18

 “dangling else”

19 20

!  We need to say, if count is 0, then the new count remains the
same as the old count, otherwise the new count is 1 less than
the old count
/**
 * Decrement positive count by 1; zero count remains 0.
 *
 * @ensure currentCount() >= 0 &&
 * if (old.currentCount() == 0) {
 * currentCount() == old.currentCount();
 * }
 * else {
 * currentCount() == old.currentCount() – 1;
 * }
 */
public void decrementCount () {
 …
}

!  What is wrong with this specification?

X

!  A conditional expression consists of a boolean
expression and two component expressions:

 booleanExpression ? expression1 : expression2
!  The boolean expression is first evaluated.

!  If it evaluates to true then the value of the
conditional expression is the value of
expression1

!  If it evaluates to false then the value of the
conditional expression is the value of
expression2

21

!  Note that if and if-else are statements, not
expressions. They do not evaluate to anything, but
rather conditionally execute statements.

!  Conditional expressions are expression, not
statements. As such, they evaluate to something.

!  Conditional expressions give us a way to capture the
notion of choice within an expression.

22

23 24

!  We can capture the postcondition with a conditional expression:

/**
 * Decrement positive count by 1; zero count remains 0.
 *
 * @ensure currentCount() >= 0 &&
 * (old.currentCount() == 0) ?
 * (currentCount() == old.currentCount()) :
 * (currentCount() == old.currentCount() – 1)
 */
public void decrementCount () {
 …
}

25

!  An alternate way of expressing the postcondition:
/**
 * Decrement positive count by 1; zero count remains 0.
 *
 * @ensure currentCount() >= 0 &&
 * currentCount() == ((old.currentCount() == 0) ?
 * old.currentCount() :
 * old.currentCount() – 1)
 */
public void decrementCount () {
 …
}

26

!  Let’s try to implement decrementCount():

/**
 * Decrement positive count by 1; zero count remains 0.
 *
 * @ensure currentCount() >= 0 &&
 * currentCount() == ((old.currentCount() == 0) ?
 * old.currentCount() :
 * old.currentCount() – 1)
 */
public void decrementCount () {
 count = count – 1;
}

!  What’s wrong with the implementation?
!  In order to handle the zero count case, we must guard the

assignment statement with a conditional statement.
X

27

!  Let’s fix our implementation of decrementCount():
/**
 * Decrement positive count by 1; zero count remains 0.
 *
 * @ensure currentCount() >= 0 &&
 * currentCount() == ((old.currentCount() == 0) ?
 * old.currentCount() :
 * old.currentCount() – 1)
 */
public void decrementCount () {
 if (count > 0)
 count = count – 1;
}

!  This implementation ensures the validity of its postcondition:
!  correct with respect to its specification

28

!  We use postconditions (using @ensure tags) as part of a
contract to guarantee to the client that our methods actually
do what they are supposed to do.

!  In general, it is difficult (and sometimes even impossible) to
make such guarantees in a vacuum.

!  We (as the server) need to set some boundaries (or
constraints) for the client in order to guarantee our results.

!  We do this with preconditions.
!  A precondition is a condition the client of a method must

make sure holds when the method is invoked.
!  Together, the precondition and the postcondition form a

contract between the client and the server.

29

!  Recall our implementation of the incrementCount() method of the
Counter class:

/**
 * Increment count by 1
 *
 * @ensure currentCount() == old.currentCount() + 1
 */
public void incrementCount () {
 count = count + 1;
}

!  Does this really work for all possible values of count?

30

!  Recall that the data type of count is int.

!  The int data type is 4 bytes long and has a range of
!2,147,483,648 to +2,147,483,647.

!  This determines an upper bound on the range for our counter:
!  It cannot exceed 2,147,483,647.

!  Thus, a counter can only be legitimately incremented if its value
is less than this limit.

!  We can express this a precondition to the incrementCount()
method using the @require tag:

 @require currentCount() < 2147483647

31

/**
 * Increment count by 1
 *
 * @require currentCount() < 2147483647
 * @ensure currentCount() == old.currentCount() + 1
 */
public void incrementCount () {
 count = count + 1;
}

!  This specifies a contract between the server and client such that the
server guarantees to correctly increment count if and only if the
client guarantees that count has not already reached the
maximum.

32

!  Note that in the precondition:

 @require currentCount() < 2147483647
 currentCount() refers to the value of count when the method is
invoked (i.e., before execution of the method).

!  In the postcondition:

 @ensure currentCount() = old.currentCount() + 1
 currentCount() refers to the value of count when the method
completes (i.e., after execution of the method) whereas
old.currentCount() refers to the value of count when the
method is invoked (i.e., before execution of the method).

33

!  It is important to note that it is not the responsibility of the server
to check the precondition:
!  That is the responsibility of the client

!  In essence, the precondition is an “escape clause” for the server
!  It allows the server to say in effect that it can do anything it wants

if the client fails to ensure the validity of the precondition prior to
invoking it

!  Thus, incrementCount() does not need to check the value of
count before it increments it
!  It can assume that count < 2147483647

!  If the count == 2147483647 then incrementCount() will
cause it to wrap into a negative value:
!  That’s fine
!  The problem is not with incrementCount(), the problem is that the

client failed to ensure count < 2147483647
34

!  Recall our implementation of the decrementCount() method:

/**
 * Decrement positive count by 1; zero count remains 0
 *
 * @ensure currentCount() >= 0 &&
 * currentCount() == (old.currentCount() == 0) ?
 * old.currentCount() :
 * old.currentCount() – 1
 */
public void decrementCount () {
 if (count > 0)
 count = count - 1;
}

!  For what values of count does decrementCount() work?

35

!  Because of the guard, the count is only decremented if it is
positive. Otherwise, it remains unchanged.

!  The class invariant guarantees that currentCount() >= 0.

!  Since there is no need to further restrict the set of possible states
that Counter can be in, we specify the precondition as true
which means that any possible (legal) state of Counter is
acceptable.

!  A precondition of true in essence tells the client that there is
actually no precondition to invoking the method – it can always be
invoked.

36

!  We have the following implementation of the decrementCount() method:
/**
 * Decrement positive count by 1; zero count remains 0
 *
 * @require true
 * @ensure currentCount() >= 0 &&
 * currentCount() == (old.currentCount() == 0) ?
 * old.currentCount() :
 * old.currentCount() – 1
 */
public void decrementCount () {
 if (count > 0)
 count = count - 1;
}

37

!  Since it doesn’t matter what the current value of count is
when the reset() method is invoked, its precondition
should be true:

/**
 * Reset the count to 0.
 *
 * @require true
 * @ensure currentCount() == 0
 */
public void reset () {
 count = 0;
}

!  Tools such as javadoc generate sets of HTML
documents containing specifications extracted from
program source files.

38

!  Let’s return to the Explorer class.
!  Consider the explorer’s tolerance.
!  We will consider an explorer with a tolerance of 0

to be defeated. Therefore, we will restrict the
tolerance to be a non-negative integer.

!  We will designate that as a class invariant and it
needs to be specified as a postcondition to its
accessor method tolerance().

39

private int tolerance; //current tolerance
 //invariant:
 // tolerance >= 0
 …

/**
 * Damage (hit points) required to defeat
 * this Explorer.
 *
 * @ensure result >= 0
 */
public int tolerance () {
 return tolerance;
}

40

!  Now let’s consider the takeThat() method.
!  It must maintain the class invariant tolerance >= 0:

/**
 * Receive a poke of the specified number
 * of hit points.
 *
 * @ensure tolerance() >= 0
 */
public void takeThat (int hitStrength){
 …

}

41

!  The class invariant tolerance() >= 0 makes a
valid postcondition, but does it really describe the
state change resulting from the method?

!  What is the purpose of the takeThat() method?
!  The takeThat() method models the act of a
Denizen (or whatever) poking the Explorer.

!  When the Explorer is poked, his/her tolerance
will decrease by an amount relative to the argument
hitStrength. If we assume that
hitStrength >= 0 then we know that the
tolerance() <= old.tolerance().

42

!  Since tolerance() <= old.tolerance() does not
imply the class invariant tolerance() >= 0, we will
add it to the postcondition:

/**
 * Receive a poke of the specified number
 * of hit points.
 *
 * @ensure tolerance() <= old.tolerance()
 * && tolerance() >= 0
 */
public void takeThat (int hitStrength){
 …
}

43

!  Remember that if tolerance reaches 0, an explorer
is defeated.

!  One possible implementation:

public void takeThat (int hitStrength) {
 if (hitStrength <= tolerance)
 tolerance = tolerance - hitStrength;
}

!  But this rarely lets the tolerance reach zero.

44

!  Another possible approach:
public void takeThat (int hitStrength) {
 if (hitStrength <= tolerance)
 tolerance = tolerance - hitStrength;
 if (hitstrength > tolerance)
 tolerance = 0;

}

!  What is wrong with this approach?

45

!  It may meet the first
condition and then in its
changed state, meet
the second condition as
well.

46

/**
 * Receive a poke of the specified number
 * of hit points.
 *
 * @ensure tolerance() <= old.tolerance()
 * && tolerance() >= 0
 */
public void takeThat (int hitStrength) {
 if (hitStrength <= tolerance)
 tolerance = tolerance - hitStrength;
 else
 tolerance = 0;

}
47

!  What should we do if the constructor is called with a
negative value for the parameter tolerance?

public Explorer (String name,
 int strength,

 int tolerance) {
 …
 if (tolerance >= 0)
 this.tolerance = tolerance;
 else
 this.tolerance = 0;
 …
}

48

!  Syntax: { statement1 statement2 … }
!  Assume that an explorer’s strength should be set to 0

whenever his/her tolerance reaches 0.
!  Consider the following code fragment:

 if (hitStrength <= tolerance)
 tolerance = tolerance - hitStrength;
 else
 tolerance = 0;
 strength = 0;

!  What’s wrong with this solution?
!  The last statement is not part of the else condition.

49 50

!  Braces are used to create a block or compound
statement, which is a single composite statement.

if (condition) { if (condition) {
 statement1 statement1
 … …
 statementn statementn

} }
 else {
 statement1
 …
 statementn
 }

51 52

if (hitStrength <= tolerance)
 tolerance = tolerance - hitStrength;

else {
 tolerance = 0;
 strength = 0;

}

53

!  Consider the takeThat() method of the Explorer class again:
/**
 * Receive a poke of the specified number
 * of hit points.
 *
 * @ensure tolerance() <= old.tolerance()
 * && tolerance() >= 0
 */
public void takeThat (int hitStrength) {
 if (hitStrength <= tolerance)
 tolerance = tolerance - hitStrength;
 else {
 tolerance = 0;

 strength = 0;
 }
}

!  Is the postcondition really accurate?
54

!  The postcondition accurately indicates that the explorer’s
strength decreases when it is attacked by a denizen, but
it is not specific about how much damage is inflected.

!  Should it be more specific?
!  Actually, one could argue either way.
!  The authors feel that it is specific enough. They’re

probably correct.
!  But it is possible to strengthen the postcondition to make

it describe the outcome of the attack more precisely.
Consider the following postcondition:
 @ensure tolerance() == old.tolerance() - hitstrength

!  What’s wrong with this postcondition?
55

!  This postcondition has a problem if hitStrength exceeds
the explorer’s tolerance. In this situation, the class
invariant (which insists that tolerance >= 0) would be
violated.

!  We can correct this problem and describe the outcome
of the attack more precisely with the following
postcondition:
 @ensure tolerance() == (hitStrength <= old.tolerance()) ?
 old.tolerance() – hitStrength : 0

!  So we can be more explicit if we want to be, but we’ll
return to our original postcondition to allow our
implementation more flexibility.
!  Maybe our explorer is wearing a magic cape!

56

!  So back to the takeThat() method:
/**
 * Receive a poke of the specified number
 * of hit points.
 *
 * @ensure tolerance() <= old.tolerance()
 * && tolerance() >= 0
 */
public void takeThat (int hitStrength) {
 if (hitStrength <= tolerance)
 tolerance = tolerance - hitStrength;
 else {
 tolerance = 0;

 strength = 0;
 }
}

!  Should hitStrength <= tolerance be a precondition? 57

!  If we make hitStrength <= tolerance the
precondition to takeThat() then it is not possible for a
denizen to attack an explorer with a poke that is stronger
than really necessary.

!  That is probably is too restrictive.
!  But clearly the hitStrength must not be negative.
!  Does it make sense to allow hitStrength to be 0?
!  Actually, one can argue that hitStrength must be

strictly positive, but it is also reasonable to allow a poke
with hitStrength of 0 – it’s just a futile attempt by the
denizen to poke the explorer.

58

!  So let’s make the precondition to takeThat() be
hitStrength >= 0:

/**
 * Receive a poke of the specified number
 * of hit points.
 *
 * @require hitStrength >= 0
 * @ensure tolerance() <= old.tolerance()
 * && tolerance() >= 0
 */
public void takeThat (int hitStrength) {
 if (hitStrength <= tolerance)
 tolerance = tolerance - hitStrength;
 else {
 tolerance = 0;

 strength = 0;
 }
}

59

!  Consider the poke() method:

/**
 * Poke the specified Denizen.
 *
 * @require ???
 * @ensure ???
 */
public void poke (Denizen opponent) {
 opponent.takeThat(strength);
}

!  What would be an appropriate precondition and
postcondition for this method?

60

!  What would be an appropriate precondition and
postcondition for the other methods of the Explorer
class?

!  name()

!  strength()

!  tolerance()

!  What about the constructor for Explorer?

61

/**
 * Create a new Explorer with specified name,
 * strength, and tolerance.
 *
 * @require strength >= 0 && tolerance >= 0
 * @ensure name() == name &&
 * strength() == strength &&
 * tolerance() == tolerance
 */
public Explorer (String name,
 int strength,
 int tolerance) {
 this.name = name;
 this.strength = strength;
 this.tolerance = tolerance;
}

62

!  Let’s bring up Explorer.java in DrJava
!  PP. 185-186

63 64

!  We want to model a simple lock with an integer combination
!  A combination is set into the lock when it is created
!  To open a closed lock, the client must provide the correct

combination
!  A lock must know its combination and whether it is locked or

unlocked
!  It must be able to lock itself and also unlock itself when it is

provided with the proper combination
!  We will define a single class CombinationLock

65

!  Know:
!  the combination
!  whether opened or closed (i.e., unlocked or locked)

!  Do:
!  close (lock)
!  open (unlock), when given proper combination

66

!  Class: CombinationLock

!  Query:
!  isOpen whether or not the lock is open

!  Commands:
!  close lock the lock
!  open unlock the lock (combination)

!  Notice that we did not supply a query for the combination.
Why not?

67

!  Component variables:

private int combination; // lock’s combination
 // invariant:
 // 0 <= combination &&
 // combination <= 999

private boolean isOpen; // the lock is unlocked

68

!  Let’s consider the constructor
!  What should the initial state be for a CombinationLock?
!  The constructor specification leaves a couple questions:

!  Is any integer a legal combination?
!  Does a newly minted lock start life opened or closed?

!  Let’s assume that a lock should initially be open
!  We can express this as a postcondition

!  Let’s further assume that only combinations in the range 0-999
are legal
!  We can express this as a precondition (and it will be a class

invariant as well)

69

!  Constructor:

/**
 * Create a lock with the specified
 * combination.
 *
 * @require 0 <= combination &&
 * combination <= 999
 * @ensure isOpen()
 */

 public CombinationLock (int combination)

70

!  Query:

/**
 * This CombinationLock is unlocked.
 *
 * @require true
 * @ensure true
 */

 public boolean isOpen ()

71

!  Commands:

/**
 * Lock this CombinationLock.
 *
 * @require true
 * @ensure !isOpen()
 */

 public void close ()

72

!  Commands:

/**
 * Unlock this CombinationLock if the correct
 * combination is provided.
 *
 * @require 0 <= combinationToTry &&
 * combinationToTry <= 999
 * @ensure isOpen() == (old.isOpen() ||
 * combinationToTry == combination)
 */

 public void open (int combinationToTry)

73

!  Note that we needed to specify a private variable in the
postcondition

!  Can we avoid this?

!  We certainly don’t want to make the combination to the
lock publicly available to the client via an accessor, …

!  So we either need to have a design variable that talks
about the concept of the combination, or …

!  We can use a private data area since the client is aware
of the combination, he/she simply can’t access or change
its value

74

!  What is the purpose of an accessor?

!  It enables the client to access the value of a private
instance variable

!  It provides a way to specify the value of a private data
area in the precondition

!  Note that although we can use a private data area in the
specification of the postcondition, we cannot use a
private data area in the specification of the precondition

!  Clients need to be able to test the validity of the
precondition in order to prevent invoking the method in
an invalid state

!  Clients do not need to validate the correctness of the
postcondition

75

/**
 * Create a lock with the specified
 * combination.
 *
 * @require 0 <= combination &&
 * combination <= 999
 * @ensure isOpen()
 */
public CombinationLock (int combination) {
 this.combination = combination;
 isOpen = true;

}

76

/**
 * Indicates if CombinationLock is open.
 *
 * @require true
 * @ensure true
 */
public boolean isOpen () {
 return isOpen;

}

77

/**
 * Lock this CombinationLock.
 *
 * @require true
 * @ensure !isOpen()
 */
public void close () {
 isOpen = false;

}

78

/**
 * Unlock this CombinationLock if the correct
 * combination is provided.
 *
 * @require 0 <= combinationToTry &&
 * combinationToTry <= 999
 * @ensure isOpen() == (old.isOpen() ||
 * combinationToTry == combination)
 */
public void open (int combinationToTry) {
 isOpen = combination == combinationToTry;

}

!  What is wrong with this implementation? X

79

/**
 * Unlock this CombinationLock if the correct
 * combination is provided.
 *
 * @require 0 <= combinationToTry &&
 * combinationToTry <= 999
 * @ensure isOpen() == (old.isOpen() ||
 * combinationToTry == combination)
 */
public void open (int combinationToTry) {
 if (combination == combinationToTry)

 isOpen = true;
} 80

!  Preconditions must be satisfied by the client when invoking the
method:
!  Preconditions are usually used to constrain values that the

client can provide as arguments when invoking a method.
!  Occasionally, preconditions are also used to constrain the

order in which methods can be invoked or require that an
object be in a certain state before a given method can be
invoked.

81

!  Postconditions are guarantees made by the server when its
method is invoked:
!  Query postconditions generally provide a value to the client

using the result “keyword”.
!  Command postconditions typically describe the new state of

the object.
!  Constructor postconditions typically describe the initial state

of the newly created object.

!  Preconditions and postconditions are part of the specification,
forming a contract between the client and the server.

!  The assert statement was added to Java in release
1.4.

!  It can be used to verify preconditions at runtime.
!  There are two formats for the assert statement:

 assert booleanExpression;

 assert booleanExpression : expression;

82

!  Consider the constructor for Explorer again:
/**
 * Create a new Explorer with specified name,
 * strength, and tolerance.
 *
 * @require strength >= 0 && tolerance >= 0
 * @ensure this.name == name &&
 * this.strength == strength &&
 * this.tolerance == tolerance
 */
public Explorer (String name,
 int strength,
 int tolerance) {
 assert strength >= 0;
 assert tolerance >= 0 : “precondition: tolerance (“ + tolerance + “) >= 0”;
 this.name = name;
 this.strength = strength;
 this.tolerance = tolerance;
} 83

!  Assertions must be explicitly enabled with command
line switches.

!  Because of the possibility that a program might be
run without precondition testing, some programmers
prefer to test preconditions explicitly with if
statements.

!  An if statement implies an ordinary, expected case
that must be handled by the program.

!  A precondition failure, on the other hand, is an error
and occurs only in an incorrect program.

84

!  Let’s bring up DrJava
!  p. 240

85

