Programming By
Contract

Specifying method preconditions
and postconditions

Specification and implementation

e Specification
e an object’s features, as seen by its clients
e Implementation
o the “internals” that make up the features
e Specifications isolate you from the details of the implementation:
e “I don’t care how you do it, just get the job done” (as long as it meets
the specifications).
e How the features are actually implemented by the server, is of no
concern to the client.
e Preserving the distinction between specification and
implementation is absolutely essential:

e Java syntax does not allow us to separate a class specification from
its implementation.

e We will make this distinction using Javadoc comments.

Client and Server relationship o

Query

e A client queries and S What's your position? [coror = whita
commands a server: ply = fom user [;Ty =
o ueries ascertain values position = c5
5 T

of properties
e Commands change its

state command—‘
e Aclient uses a server. (P color = white
I color = white Move to a3. name =gq
play = from user inPlay = yes
position = c5

client J
server before executing

command

time;

state change

server after executing

comman timez

inPlay
position =a3

Programming by contract e

e postcondition

e a condition the implementor (server) guarantees will hold when a
method completes execution

e invariant
e a condition that always holds true
e class invariant

e an invariant regarding properties of class instances: that is, a
condition that will always be true for all instances of a class

A counter example o

e Enumerate the object’s responsibilities:
e |dentify queries:
properties of the object that define its state
e |dentify commands:
ways in which an object can change state

e A simple counter’s responsibilities:

e Know (two queries): e Do (two commands):

The value of the count Set the count to 0
= currentCount () = reset()
a non-negative integer set the count to 0
Is the count zero? Increment the count by 1
= isZero() = incrementCount ()
boolean result increments the count
by 1
5
[X X)
(X X X]
(X X X]
[X X}
Counter class ... oo

e Class invariants and postconditions are part of class
specification but not the implementation.

e They should be included in comments but not in the
implementation.

e Consider an object’s data areas.

e We will add a simple line comment to indicate constraints
on each instance variable:
private int count; //current count
// invariant:
// count >= 0

[X X)
(X X X J
(XXX)
[X X J
Counter class oo

e A class invariant for Counter is that the instance
(component) variable count will always be greater than
or equal to zero.

e Class invariants for instance variables will appear as
postconditions to their accessor methods (e.g.,
currentCount() for count).

e Each class invariant must also hold true for all of the
methods of the class.

e Thus, the postcondition to the incrementCount ()
method must make sure that count is greater or equal to
zero when it completes execution.

6
[X X)
(X X X J
(XXX)
[X X J
Counter class ... oo

e Postconditions are specified using the Gensure Javadoc tag:
[**
* The number of items counted.
*
* @ensure result >= 0
*/
public int currentCount () {
return count;

}

e Note the use of the special “keyword” result to represent the
value that is returned from a method.

(X X X]
(X X X]
e0o
Counter class ... oo
e Now consider the postcondition to the reset () method:
/**
* Reset the count to 0.
*
* @ensure currentCount() ==
*/
public void reset () {
count = 0;
}
9
YY)
(X X X]
(X X X]
e0o
Counter class ... oo

e Now consider the postcondition to the incrementCount ()
method:

/**

* Increments the count by 1.
*

* @ensure currentCount() >= 0
*/

public void incrementCount () {

}

(X X X]
(X X X]
[X X J
Counter class ... oo
¢ Note that the postcondition we have given for reset ()
is:
@ensure currentCount () ==
e \We have said currentCount () == 0 instead of
count == 0 because count is a private variable and
therefore not known to the client.
e Clearly, this postcondition is accurate and valid.
e Furthermore, this postcondition also maintains the class
invariant because currentCount () == 0 implies
currentCount () >= 0
10
[X X)
(X X X]
(X X X]
[X X J
Counter class ... oo

e Note that the postcondition we have given for
incrementCount () is:

@ensure currentCount() >= 0

e As with reset (), we have used currentCount ()
instead of count in the postcondition because count is
a private variable and therefore not known to the client.

e This postcondition is accurate and valid and it clearly
maintains the class invariant.

e However, it doesn’t accurately describe the state change
resulting from the incrementCount () method.

e Can we make the postcondition more precise?

Counter class ... oo

e For incrementCount (), the postcondition should say that
the new count is 1 more than the old count

e More precisely, we say that the new count == old count + 1

e To avoid confusion, we use the o1d prefix to denote a state
prior to execution of a method.

e We could write count == old.count + 1
e But count is private, not known to the client.
e Postcondition:
currentCount () == old.currentCount() + 1

o Note that this postcondition implies that the class invariant is
maintained.

Counter class ... oo

e For decrementCount (), the postcondition should say that
the new count is 1 less than the old count

e Postcondition:
currentCount () == old.currentCount() - 1

e Note that, unlike the incrementCount () case, this does
not imply that the class invariant is maintained.

e Thus we need to add currentCount () >= 0 to the
postcondition.

e Updated Postcondition:

currentCount () >= 0 &&
currentCount() == old.currentCount() - 1

e What if the count is O prior to execution?

if statements s

e0o
XXX
eooo
e0o
Counter class ... oo
e Let's try to implement incrementCount ():
/**
* Increment count by 1.
*
* (@ensure currentCount() == old.currentCount() + 1

*/
public void incrementCount () {
count = count + 1;

}

e This implementation ensures that new count is 1 more than the
old count so we consider it correct with respect to its
specification

if (condition)
statement

_s!alsrnent

if-else statements

if (condition)
statement,

else
statement,

statement,

Lab #4

A

false

true

/

condition

A J

statement;

if‘else Statemeﬂts (11

if (conditionl) {
if (condition2)
statementl
} else
statement2

BEGIN
Y

false - true
condition1

y

statement2

true
condition2

statement1 ‘
false

L

END

Counter class ...

if (conditionl)
if (condition2)

statementl
else
statement2
(BEGIN
true
condition1
false . true
false [condition2
statement2 statement1
-
]

e We need to say, if count is 0, then the new count remains the
same as the old count, otherwise the new count is 1 less than

the old count

* Decrement positive count by 1; zero count remains 0.

/**
*
* @ensure cu
*
*
L }
*
*
L }
*/

tCount () == 0) {

t() == old.currentCount()

public void decrementCount () {

}

e What is wrong with this specification?

== old.currentCount() ;

-1;

20

Conditional Expressions

e A conditional expression consists of a boolean
expression and two component expressions:

booleanExpression ? expression,

e The boolean expression is first evaluated.

expression,

e If it evaluates to true then the value of the

conditional expression is the value of

expression,

e If it evaluates to false then the value of the

conditional expression is the value of

expression,

Lab #5

21

23

Conditional Expressions ...

e Note that if and if-else are statements, not
expressions. They do not evaluate to anything, but
rather conditionally execute statements.

e Conditional expressions are expression, not
statements. As such, they evaluate to something.

e Conditional expressions give us a way to capture the
notion of choice within an expression.

Counter class ...

22

e We can capture the postcondition with a conditional expression:

[**

* Decrement positive count by 1; zero count remains 0.

*

* @ensure currentCount() >= 0 &&

*
*

*

*/

(old.currentCount () ==
(currentCount () == old
(currentCount () == old

public void decrementCount () {

0) ?
.currentCount())
.currentCount () - 1)

24

Counter class ... 53‘ Counter class ... E:.

e An alternate way of expressing the postcondition: o LU el SR e (e

/**
/** * Decrement positive count by 1; zero count remains 0.
* Decrement positive count by 1; zero count remains 0. *
w2 * @ensure currentCount() >= 0 &&
* @ensure currentCount() >= 0 && * currentCount () == ((old.currentCount() == 0) ?
* currentCount() == ((old.currentCount() == 0) ? * old.currentCount ()
* old.currentCount () * old.currentCount() - 1)
* old.currentCount () - 1) */
*/ public w mentCount () {

public void decrementCount () {

e e Inor zero count case, we must guard the 2
assignment statement with a conditional statement.

[X X)
(X X X J
eoss ooo
Counter class ... e Contracts e
e Let’s fix our implementation of decrementCount (): e We use postconditions (using Gensure tags) as part of a
’ contract to guarantee to the client that our methods actually
/** do what they are supposed to do.
* Decrement positive count by 1; zero count remains 0. e In general, it is difficult (and sometimes even impossible) to
* make such guarantees in a vacuum.
¥ @ensure currentCount() >= 0 && e We (as the server) need to set some boundaries (or
* crprREemmiay) == ((osl.emaiEterma() == W) © constraints) for the client in order to guarantee our results.
w3 old.currentCount () . . .
* old.currentCount() - 1) e We do this with preconditions.
*/ e A precondition is a condition the client of a method must
public void decrementCount () { make sure holds when the method is invoked.
if (count > 0) e Together, the precondition and the postcondition form a
count = count - 1; contract between the client and the server.

}

e This implementation ensures the validity of its postcondition:

e correct with respect to its specification
27 28

Counter class ... oo

e Recall our implementation of the incrementCount () method of the

Counter class:
/**

* Increment count by 1
*
* @ensure currentCount() == old.currentCount() + 1
*/
public void incrementCount () {
count = count + 1;

}

e Does this really work for all possible values of count?

29

o0
o000
o000
o000
Counter class ... oo
/ * %
* Increment count by 1
*
* @require currentCount() < 2147483647
* @ensure currentCount() == old.currentCount() + 1

*/
public void incrementCount () {
count = count + 1;

}

This specifies a contract between the server and client such that the
server guarantees to correctly increment count if and only if the
client guarantees that count has not already reached the
maximum.

31

Counter class ... oo

Counter class ... oo

Recall that the data type of count is int.

The int data type is 4 bytes long and has a range of
—2,147,483,648 to +2,147,483,647.

This determines an upper bound on the range for our counter:
e It cannot exceed 2,147,483,647.

Thus, a counter can only be legitimately incremented if its value
is less than this limit.

We can express this a precondition to the incrementCount ()
method using the @require tag:

@require currentCount() < 2147483647

30

e Note that in the precondition:

@require currentCount() < 2147483647

currentCount () refers to the value of count when the method is
invoked (i.e., before execution of the method).

In the postcondition:
@ensure currentCount() = old.currentCount() + 1

currentCount () refers to the value of count when the method
completes (i.e., after execution of the method) whereas
old.currentCount () refers to the value of count when the
method is invoked (i.e., before execution of the method).

32

0000 0000
(L X XJ (L X XJ
(X X J (X X4
Counter class ... e Counter class ... e
e lItis important to note that it is not the responsibility of the server e Recall our implementation of the decrementCount () method:
to check the precondition:
/**

e That is the responsibility of the client

i, . « ” * Decrement positive count by 1l; zero count remains 0
e |n essence, the precondition is an “escape clause” for the server

*
e |t allows the server to say in effect that it can do anything it wants * @ensure currentCount() >= 0 &&
if the client fails to ensure the validity of the precondition prior to * currentCount () == (old.currentCount() == 0) ?
invoking it * old.currentCount ()
e Thus, incrementCount () does not need to check the value of * old.currentCount() - 1
count before it increments it */
e It can assume that count < 2147483647 public void decrementCount () {
e Ifthe count == 2147483647 then incrementCount () will if (count > 0)
cause it to wrap into a negative value: count = count - 1;
e That's fine }
e The problem is not with incrementCount (), the problem is that the e For what values of count does decrementCount () work?

client failed to ensure count < 2147483647
33 3

[X X)
(X X X J
eoss
Counter class ... e Counter class ...
Because of the guard, the count is only decremented if it is e We have the following implementation of the decrementCount () method:
positive. Otherwise, it remains unchanged. o
The class invariant guarantees that currentCount () >= 0. * Decrement positive count by 1; zero count remains 0
Since there is no need to further restrict the set of possible states : . -
that Counter can be in, we specify the precondition as true . B) (S
which means that any possible (legal) state of Counter is @ensure currentCount() >= 0 &&
acceptable. £ currentCount () == (old.currentCount() == 0) *?
. . . . £ old.currentCount ()
A precondition of true in essence tells the client that there is * old.currentCount() - 1
actually no precondition to invoking the method — it can always be y

invoked. public void decrementCount () {

if (count > 0)
count = count - 1;

35 36

(X X X J (X X X J
eoes eoes
Counter class ... e Specification Documentation e
e Since it doesn’t matter what the current value of count is e Tools such as javadoc generate sets of HTML
‘é"hh(f’d‘k}hbeerfrieet. () meiued {5 uelee, [peeentien documents containing specifications extracted from

T program source files.

* Reset the count to 0.
*

* @require true
* @ensure currentCount() ==
*/
public void reset () {
count = 0;

}

37 38

oo oo
eooo eooo
oo oo
oo0 oo0o
Explorer class e Explorer class ... e
e Let's return to the Explorer class. private int tolerance; //current tolerance
//invariant:

e Consider the explorer's tolerance.

e We will consider an explorer with a tolerance of 0
to be defeated. Therefore, we will restrict the

// tolerance >= 0

tolerance to be a non-negative integer. A
. * Damage (hit points) required to defeat
e We will designate that as a class invariant and it * thingxplorei, .
needs to be specified as a postcondition to its *
accessor method tolerance (). * @ensure result >= 0
*/

public int tolerance () {
return tolerance;

}

39 40

Explorer class ... e

e Now let's consider the takeThat () method.

e |t must maintain the class invariant tolerance >= 0:

/**
* Receive a poke of the specified number

* of hit points.
*

* @ensure tolerance() >= 0
*/
public void takeThat (int hitStrength) {

}

41

Explorer class ... e

e Since tolerance () <= old.tolerance () does not

imply the class invariant tolerance () >= 0, we will
add it to the postcondition:

/**

* Receive a poke of the specified number
* of hit points.

*

* @ensure tolerance() <= old.tolerance()
* && tolerance() >= 0

*/

public void takeThat (int hitStrength) {

}

43

Explorer class ... e

e The class invariant tolerance () >= 0 makes a
valid postcondition, but does it really describe the
state change resulting from the method?

e What is the purpose of the takeThat () method?

e The takeThat () method models the act of a
Denizen (or whatever) poking the Explorer.

e When the Explorer is poked, his/her tolerance
will decrease by an amount relative to the argument
hitStrength. If we assume that
hitStrength >= 0 then we know that the
tolerance () <= old.tolerance().

42

Explorer class ... e

e Remember that if tolerance reaches 0, an explorer
is defeated.

e One possible implementation:

public void takeThat (int hitStrength) {
if (hitStrength <= tolerance)
tolerance = tolerance - hitStrength;

}

e But this rarely lets the tolerance reach zero.

44

G35 4

BEGIN
esss
Explorer class ... e Explorer class ...
hhSirgng:h true
. tolerance
« Another possible approach: o It fneEky meet the flrs.t _
public void takeThat (int hitStrength) { condition and then inits T
if (hitStrength <= tolerance) changed state, m?et . e
tolerance = tolerance - hitStrength; the second condition as
if (hitstrength > tolerance) well.
tolerance = 0;
}
« What is wrong with this approach? :“f1;°"9‘“ true
false
tolerance = 0;
45 \ 46
END
[X X) [X X)
(X X X J (X X X J
(XXX J (XXX)
[X X J [X X J
Explorer class ... e Explorer class ... e
o e What should we do if the constructor is called with a
i ?
® PeEee O e GF (e GeeeEier sunhes negative value for the parameter tolerance”
* of hit points. public Explorer (String name,
* int strength,
* (@ensure tolerance() <= old.tolerance() int tolerance) {
* && tolerance() >= 0
*/
if 1 >=
public void takeThat (int hitStrength) { if (tolerance 0)
if (hitStrength <= tolerance) this.tolerance = tolerance;
tolerance = tolerance - hitStrength; else
else this.tolerance = 0;

tolerance = 0;

47 48

Compound Statements se?

e Syntax: { statement,; statement, .. }

e Assume that an explorer’s strength should be setto 0
whenever his/her tolerance reaches 0.

e Consider the following code fragment:

if (hitStrength <= tolerance)
tolerance = tolerance - hitStrength;
else
tolerance = 0;
strength = 0;
e What's wrong with this solution?
e The last statement is not part of the else condition.

49

Compound Statements ... se?

e Braces are used to create a block or compound
statement, which is a single composite statement.

if (condition) { if (condition) {

statement,; statement,;
statement statement,
} }
else {
statement,
statement

51

Compound Statements ...

BEGIN

false hitStrength true
tolerance

tolerance = 0; tolerance = tolerance - hitStrength;

strength = 0;

50

Compound Statements ...

BEGIN

false hitStrength true

tolerance

tolerance = 0; = - hi
strength = 0;

END

52

4 N

Compound Statements ...

if (hitStrength <= tolerance)

tolerance = tolerance - hitStrength;
else {

tolerance = 0;

strength = 0;

53

- /
Explorer class ... ses

e The postcondition accurately indicates that the explorer’s
strength decreases when it is attacked by a denizen, but
it is not specific about how much damage is inflected.

e Should it be more specific?
e Actually, one could argue either way.

e The authors feel that it is specific enough. They’re
probably correct.

e But it is possible to strengthen the postcondition to make
it describe the outcome of the attack more precisely.
Consider the following postcondition:

@ensure tolerance() == old.tolerance() - hitstrength

e What's wrong with this postcondition?

55

eces
eses
Explorer class ... e

« Consider the takeThat () method of the Explorer class again:
/**
* Receive a poke of the specified number
* of hit points.
*
* @ensure tolerance() <= old.tolerance()
* && tolerance() >= 0
*/
public void takeThat (int hitStrength) {
if (hitStrength <= tolerance)
tolerance = tolerance - hitStrength;
else {
tolerance = 0;
strength = 0;
}
}

« |s the postcondition really accurate?

54

eces
eses
Explorer class ... e

e This postcondition has a problem if hitStrength exceeds
the explorer’s tolerance. In this situation, the class
invariant (which insists that tolerance >= 0) would be
violated.

e We can correct this problem and describe the outcome
of the attack more precisely with the following
postcondition:

@ensure tolerance() == (hitStrength <= old.tolerance()) ?
old.tolerance() - hitStrength : 0

e So we can be more explicit if we want to be, but we’ll
return to our original postcondition to allow our
implementation more flexibility.

e Maybe our explorer is wearing a magic cape!

56

(X X X J (X X X J
(XXX) (XXX)
[X X J [X X J
Explorer class ... e Explorer class ... e
» So back to the takeThat () method: e If we make hitStrength <= tolerance the
Jxk precondition to takeThat () then it is not possible for a
* Receive a poke of the specified number denizen to attack an explorer with a poke that is stronger
* of hit points. than really necessary.
*
* @ensure tolerance() <= old.tolerance () e That is probably is too restrictive.
:/ && tolerance() >= 0 e But clearly the hitStrength must not be negative.
public void takeThat (int hitStrength) { e Does it make sense to allow hitStrength to be 07
if (hitStrength <= tolerance) .
tolerance = tolerance - hitStrength; e Actually, one can argue that hitStrength must be
else { strictly positive, but it is also reasonable to allow a poke
tolerance = 0; with hitStrength of 0 — it’s just a futile attempt by the
, strength = 0; denizen to poke the explorer.
}
o Should hitStrength <= tolerance be a precondition? =
[X X) [X X)
(X X X J (X X X J
(XXX J (XXX)
[X X J [X X J
Explorer class ... e Explorer class ... e
e So let’s make the precondition to takeThat () be i _
hitStrength >= 0: e Consider the poke () method:
[** VEL
: Rece%ve a_poke of the specified number * Poke the specified Denizen.
of hit points.
* *
* @require hitStrength >= 0 * @require ??°?
* @ensure tolerance() <= old.tolerance() o .
* && tolerance() >= 0 Gensure o

*/ */

public void takeThat (int hitStrength) ({
if (hitStrength <= tolerance)

tolerance = tolerance - hitStrength; opponent. takeThat (strength) ;

else { }

t°1eran§e_= b e What would be an appropriate precondition and
strength = 0; postcondition for this method?

public void poke (Denizen opponent) {

60

(X X X J (X X X J
(XXX) (XXX)
[X X J [X X J
Explorer class ... e Explorer class ... e
e What would be an appropriate precondition and /** _ o
postcondition for the other methods of the Explorer * Create a new Explorer with specified name,
class? * strength, and tolerance.
*
® name () * @require strength >= 0 && tolerance >= 0
* @ensure name() == name &&
® strength() = strength() == strength &&
* tolerance () == tolerance
e tolerance () */
public Explorer (String name,
e What about the constructor for Explorer? s AR

int tolerance) {
this.name = name;
this.strength = strength;
this.tolerance = tolerance;

61 62

Using the Debugger in Drlava ses A lock example se

o We want to model a simple lock with an integer combination
e A combination is set into the lock when it is created

e PP. 185-186 e To open a closed lock, the client must provide the correct
combination

e A lock must know its combination and whether it is locked or
unlocked

e It must be able to lock itself and also unlock itself when it is
provided with the proper combination

o We will define a single class CombinationLock

e Let’'s bring up Explorer.java in Drdava

63 64

CombinationLock Responsibilities o

o Know:

the combination

whether opened or closed (i.e., unlocked or locked)
e Do:

close (lock)

open (unlock), when given proper combination

65

CombinationLock Specification o

e Component variables:

private int combination; // lock’s combination
// invariant:
// 0 <= combination &&
// combination <= 999

private boolean isOpen; // the lock is unlocked

67

CombinationLock Responsibilities ... o

e Class: CombinationLock

e Query:

e isOpen whether or not the lock is open
e Commands:

e close lock the lock

e open unlock the lock (combination)

e Notice that we did not supply a query for the combination.
Why not?

66

CombinationLock Specification ... o

e Let’s consider the constructor
e What should the initial state be for a CombinationLock?
e The constructor specification leaves a couple questions:

e |s any integer a legal combination?

e Does a newly minted lock start life opened or closed?
e Let’'s assume that a lock should initially be open

e We can express this as a postcondition

e Let's further assume that only combinations in the range 0-999
are legal

e We can express this as a precondition (and it will be a class
invariant as well)

68

CombinationLock Specification ... o

e Constructor:

/**
Create a lock with the specified
combination.

*
*
*
* @Qrequire 0 <= combination &&
* combination <= 999
* @ensure isOpen/()

*/

public CombinationLock (int combination)

69

CombinationLock Specification ... o

e Commands:
/**
* Lock this CombinationLock.

* @require true
* @ensure !isOpen()
*/

public void close ()

71

CombinationLock Specification ... o

e Query:
/**

* This CombinationLock is unlocked.

* @require true
* @ensure true
*/

public boolean isOpen ()

70

CombinationLock Specification ...

e Commands:

Unlock this CombinationLock if the correct
combination is provided.

combinationToTry <= 999

*
*

*

* @require 0 <= combinationToTry &&

*

* @ensure isOpen() == (old.isOpen() ||
*

combinationToTry == combination)

public void open (int combinationToTry)

72

CombinationLock Specification ... o CombinationLock Specification ... o

e What is the purpose of an accessor?

¢ lr;lgstsc‘ghnac}imenneeded D E2E) [NVELD TEIEIED [0 71D e It enables the client to access the value of a private

c id this? instance variable
e Can we avoid this?

e We certainly don’t want to make the combination to the o NERMEES & TEY U Epcel e (el @/e Ve eEia

lock publicly available to the client via an accessor, ... area in the precondition
e So we either need to have a design variable that talks Note that although we can use a private data area in the
about the concept of the combination, or ... specification of the postcondition, we cannot use a

« We can use a private data area since the client is aware private data area in the specification of the precondition

of the combination, he/she simply can’t access or change

: Clients need to be able to test the validity of the
its value

precondition in order to prevent invoking the method in
an invalid state

Clients do not need to validate the correctness of the

73 postcondition ©
[X X) [X X)
(X X X J (X X X J
(XXX J (XXX)
[X X J [X X J

CombinationLock Implementation o CombinationLock Implementation ... o

/** J**
* Create a lock with the specified * Indicates if CombinationlLock is open.
* combination. *
&5 * @require true
* @require 0 <= combination && * @ensure true
* combination <= 999 */
* @ensure isOpen () public boolean isOpen () {
*/ return isOpen;
public CombinationLock (int combination) { }

this.combination = combination;
isOpen = true;

75 76

CombinationLock Implementation ...

/**

*

*

*

*

Lock this CombinationLock.

@require true
@ensure !isOpen ()

*/
public void close () {

isOpen = false;

CombinationLock Implementation ...

/**
*
*
*
*
*
*
*

*/

public void open (int combinationToTry) {

Unlock this CombinationLock if the correct

combination is provided.

@require 0 <= combinationToTry &&
combinationToTry <= 999
@ensure isOpen() == (old.isOpen() ||

combinationToTry == combination)

if (combination == combinationToTry)
isOpen = true;

77

79

CombinationLock Implementation ... o

/**
Unlock this CombinationlLock if the correct
combination is provided.

@require 0 <= combinationToTry &&
combinationToTry <= 999
@ensure isOpen() == (old.isOpen() ||
* combinationToTry == combination)
*/
public void op i combinationToTry) ({
isOpen = comb n == combinationToTry;

* % Ok Ok X * F

}

e What is wrong i mentation? 78

Preconditions s’

e Preconditions must be satisfied by the client when invoking the
method:

e Preconditions are usually used to constrain values that the
client can provide as arguments when invoking a method.

e Occasionally, preconditions are also used to constrain the
order in which methods can be invoked or require that an
object be in a certain state before a given method can be
invoked.

80

Postconditions se?

e Postconditions are guarantees made by the server when its
method is invoked:

e Query postconditions generally provide a value to the client
using the result “keyword”.

e Command postconditions typically describe the new state of
the object.

e Constructor postconditions typically describe the initial state
of the newly created object.

e Preconditions and postconditions are part of the specification,
forming a contract between the client and the server.

81

[X X J
[X X X}
(X X X J
(X X}
assert statements ... e
- Consider the constructor for Explorer again:
/**
* Create a new Explorer with specified name,
* strength, and tolerance.
*
* @require strength >= 0 && tolerance >= 0
* @ensure this.name == name &&
& this.strength == strength &&
@ this.tolerance == tolerance
<
public Explorer (String name,
int strength,
int tolerance) {
assert strength >= 0;
assert tolerance >= 0 : “precondition: tolerance (“ + tolerance + “) >= 07;

this.name = name;
this.strength = strength;

this.tolerance = tolerance;
83
}

assert statements

e The assert statement was added to Java in release
1.4

e It can be used to verify preconditions at runtime.
e There are two formats for the assert statement:

assert booleanExpression;

assert booleanExpression . expression,

82

assert statements ... oo

e Assertions must be explicitly enabled with comman
line switches.

e Because of the possibility that a program might be
run without precondition testing, some programmers
prefer to test preconditions explicitly with if
statements.

e An jf statement implies an ordinary, expected case
that must be handled by the program.

e A precondition failure, on the other hand, is an error
and occurs only in an incorrect program.

84

assert statements ...

e Let's bring up DrJava
e p. 240

85

