
Learning Computer Science in the “Comfort Zone of
Proximal Development”

Nicole Anderson Tim Gegg-Harrison
Department of Computer Science

Winona State University
Winona, Minnesota 55987

{nanderson,tgeggharrison}@winona.edu

ABSTRACT
As computer science faculty, we are always looking for bet-
ter ways to recruit and retain new majors. One way to
achieve this goal is to incorporate material into the introduc-
tory courses that lies within the intersection of the student’s
“zone of proximal development” (which contains concepts
that the student is capable of understanding) and “comfort
zone” (which contains concepts that motivate the student
and are presented in a way in which the student is familiar
and comfortable). We refer to this region as the “comfort
zone of proximal development.” In this paper, we present a
“comfort zone of proximal development” that we have cre-
ated for computer science students which consists of a collab-
orative learning environment where programming concepts
are introduced with gaming applications.

Categories and Subject Descriptors
[Computing education]: Computing education programs—
Computer science education

General Terms
Algorithms, Design

Keywords
Active Learning, Scaffolding, Pair Programming/Teaching,
Mobile Game Development

1. INTRODUCTION
Students enter the world of computer science expecting

to harness new and exciting technology. When the intro-
ductory courses fail to realize their expectations, many stu-
dents leave the major. Teachers want to make introduc-
tory courses enjoyable for their students, and are looking
to recruit and retain new majors. However, they under-
stand that strong fundamental knowledge must be conveyed
in these courses in order for students to be successful in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’13,March 6–9, 2013, Denver, Colorado, USA.
Copyright 2013 ACM 978-1-4503-1775-7/13/03 ...$15.00.

the field. The core concepts cannot be sacrificed. We have
found a solution that provides the best of both worlds. In
our approach, the introductory programming sequence is not
disturbed. Instead, we developed companion courses which
reinforce fundamental concepts using mobile game develop-
ment and a collaborative approach, giving both students and
faculty what they want.

We believe that optimal learning takes place for students
when the material is within their cognitive capabilities, it
is presented in a way that is familiar to them, and uses an
application that is relevant or interesting to them. This is a
region that lies within the intersection of the zone of proxi-
mal development [28] and their comfort zone (which contains
concepts and topics that the students are interested in and
comfortable with, and that are presented in a way in which
they are familiar and comfortable) as depicted in Figure 1.
To be effective, we need to both stay within the students’ de-
velopmental zone of proximal development as well as within
their comfort zone. In other words, we need to be talking
about something of interest in an environment that moti-
vates them and it needs to be concepts that the students
are capable of understanding. Our notion of a comfort zone
of proximal development is related to situated cognition (or
authentic learning) [6]. Situated cognition relies on the idea
that conceptual knowledge can be more easily internalized
when context is provided, especially when that context is in-
tegrated with everyday life activities. According to Brown,
Collins, and Duguid, “Activity, concept, and culture are in-
terdependent. No one can be totally understood without the
other two. Learning must involve all three” [6]. By relating
problems to the students’ lives, authentic learning occurs.

Figure 1: Comfort Zone of Proximal Development

Children’s playgrounds are significantly different today
than they were 50 years ago. They are safer, void of“danger-
ous” equipment, made from various composites that provide
an environment for children to play without the risk of get-
ting hurt. That’s a good thing, right? The simple answer
is yes. Upon closer analysis, however, it is possible that the
benefits in safety come at a price. Sandseter and Kennair
argue that playgrounds have become too safe [27]. They see
playgrounds as environments where children “test possibili-
ties and boundaries for action,” arguing that “the rehearsal
of handling real-life risky situations through risky play is
thus an important issue.” In essence, the playground and
the other children are part of the child’s comfort zone. A
playground with proper equipment (i.e., equipment that is
safe enough but also capable of providing physical and men-
tal challenges for children of all ages) becomes the child’s
zone of proximal development. Together, with an attentive
parent who places restrictions when necessary, these aspects
of the playground become a comfort zone of proximal devel-
opment for the child. Our pair2 learning environment that
introduces computer programming through gaming appli-
cations provides an appropriate playground for individuals
wanting to learn computer science. They have an oppor-
tunity to collaborate with their peers, construct useful ar-
tifacts like computer games, and challenge themselves with
the security of a partner and an attentive teacher to help
keep them from becoming overwhelmed. As a side-effect of
“playing” in this comfortable environment, they learn com-
puter science.

2. COMFORT ZONE OF PROXIMAL DE-
VELOPMENT FOR CS

Over the past several years, we have been developing a
comfort zone of proximal development for our computer sci-
ence students. We began by updating the discrete mathe-
matics course to make the material more relevant to com-
puter science students [12], and more recently changed the
introductory programming sequence. The comfort zone of
proximal development contains both concept-dependent and
concept-independent components. The zone of proximal de-
velopment is concept-dependent, requiring the selection of a
concept (or topic) that is within the student’s intellectual ca-
pability and one that the student is interested in so as to help
motivate her to learn the new concept (or topic area). The
comfort zone, on the other hand, is concept-independent, re-
quiring the creation of a learning environment that is more
conducive to student learning.

2.1 Zone of Proximal Development
Vygotsky introduced the zone of proximal development

(ZPD) as “the distance between the actual developmental
level as determined by independent problem solving and the
level of potential development as determined through prob-
lem solving under adult guidance or in collaboration with
more capable peers” [28]. In other words, the zone of prox-
imal development is what a child or individual can achieve
with some guidance that they would be unable to achieve
independently. The goal is to stretch the learner beyond
her innate capabilities, challenging her while providing sup-
port to meet her challenges. The ZPD is unique to each
individual, and varies according to her capabilities and the

environment and context in which the development is occur-
ring.

Apprenticeship and scaffolding are some common approaches
to reaching the ZPD [10]. Scaffolding involves the construc-
tion of appropriate supportive conditions for a learner [11,
13]. Consider the scaffolding that is constructed for mainte-
nance or repair of a building. It allows a worker to do jobs
that they would not be capable of doing without climbing
on the scaffolding. For example, scaffolding allows a worker
to wash higher windows, provides a work surface for hold-
ing necessary construction tools, and often provides a level
of safety and stability that gives comfort to the worker and
thus the confidence to perform the job at hand. The term
scaffolding may be used more abstractly in our context, but
with familiar goals. Scaffolding for a learner may consist
of providing the appropriate tools, support, and confidence
building to allow the learner to succeed. When these types
of models are employed, after spending time working with
an expert to grasp a new concept an individual is able to
internalize what she has learned, and eventually the scaf-
folding/assistance can be removed. This is reflected by Vy-
gotsky, as he believed that “what the child is able to do
in collaboration today he will be able to do independently
tomorrow” [29].

In the ZPD the expert engages in a “dialogue with the
novice (learner) to focus on emerging skills and abilities”
[24]. Another method in which knowledge can be passed
from an expert to a novice is when the novice utilizes imita-
tion to mirror what the expert has already mastered. How-
ever, this is only effective when the action being imitated
is at the appropriate developmental level. “It is well estab-
lished that the child can imitate only what lies within the
zone of his intellectual potential... [T]he child can enter into
imitation through intellectual actions more or less far be-
yond what he is capable of in independent mental and pur-
poseful actions or intellectual operations” [30]. One of the
authors is the parent of a young child, and witnesses this
phenomenon frequently. As an example, describing how to
blow up a balloon to a child is a futile task. But while blow-
ing up a balloon for the child, the author noted how the child
began to purse his lips, puff out his cheeks, and blow out air
through his mouth. Without an intended lesson, the child
was imitating the actions of the “balloon blowing expert.”
Later, the author witnessed the child blowing up the bal-
loon independently. The child could not inflate the balloon
as large as the adult, nor could he tie the balloon to keep it
inflated, but incremental development was indeed occurring
to move him toward mastering these skills.

What we see is that these types of collaborations occur
intentionally and unintentionally, they occur with teacher-
student pairs, when mentoring and apprenticeship roles have
been established, and also seemingly randomly through im-
itation or observation when the necessary context and en-
vironment are present. It has been noted that “the term
‘collaboration’ should not be understood as a joint, coordi-
nated effort to move forward, where the more expert partner
is always providing support at the moments where maturing
functions are inadequate. Rather it appears that this term
is being used to refer to any situation in which a child is be-
ing offered some interaction with another person in relation
to a problem to be solved” [7].

As teachers, we wish to utilize these ideas to make our
interaction with students as effective as possible. According

to Vygotsky, teaching “is effective only when it awakens and
rouses to life those functions which are in a stage of ma-
turing, which lie in the zone of proximal development” [30].
The expert is able to empower the learner through dialogue
and guided participation [26]. While some prior research en-
courages the teacher to attempt to find each student’s ZPD,
Meira and Lerman argue that the “ZPD emerges, or not, in
the moment, as part of the microculture of the classroom”
[17]. We believe this emergence is really the discovery of the
student’s comfort zone of proximal development (CZPD),
where each individual’s ZPD intersects with their comfort
zone.

2.2 Comfort Zone
One of the most important factors that impacts college

students’ persistence is the degree of social connectedness
that they experience [14, 19]. Bean argues that “few would
deny that the social lives of students in college and their
exchanges with others inside and outside the institution are
important in retention decisions” [4]. The teacher’s role in
establishing the sense of connectedness is vital. Roberts
and Styron argue that “effective faculty-student interaction
will help establish an environment where students feel that
faculty members truly care about them as individuals, which
will facilitate the attainment of academic success” [25].

According to Oblinger, today’s millennial students gravi-
tate towards groupwork, preferring “teamwork, experiential
learning, structure, and the use of technology” [21]. Ironi-
cally, however, social networking technologies appear to have
a negative impact on students’ social connectedness at uni-
versities. Because of the ease with which to stay “connected”
with their friends from high school via FaceBook and text
messaging, even those attending colleges that are geograph-
ically disconnected, today’s college students do not feel the
need to establish new friendships. We are finding that over
half of our students will choose to have the teachers define
groups rather than self-selecting partners for group work
claiming that they “really don’t know anyone in the class.”
The computer science discipline tends to attract individu-
als who have more introverted personality types. As such,
the need to establish connectedness is both more difficult
and more important for the retention of computer science
students.

When properly administered, pair teaching increases both
the amount and quality of teacher-student interaction. Pair
programming [32] appears to be a mechanism that forces
computer science students to establish a social connected-
ness with fellow students, something they would likely not
do on their own. In addition to their social uneasiness,
many of today’s students have helicopter parents [9] with
whom they have become very dependent. When pair teach-
ing is employed, students have more opportunity to establish
relationships and build stronger bonds with their teachers,
which provides them with a“safety net”away from home and
enables them to establish some independence and thereby
feel a higher degree of connectedness to the university com-
munity. In an effort to harness the positive benefits to stu-
dent learning from both pair programming and pair teach-
ing, we recently employed pair2 learning, which combines
pair programming with pair teaching, in the first course of
our introductory Computer Science programming sequence
[1]. We believe that the combination of pair programming
and pair teaching produces a learning environment that is

better than when one or both of these techniques is not
used, creating an appropriate comfort zone of learning for
beginning CS students.

Having two teachers enables the distribution of course
preparation work, placing a second set of eyes on the course
material to help make it more effective. Responsibility for
preparing the course materials can be divided up between
topics. For each topic, one of the teachers takes on the
role of the driver, the teacher responsible for both prepar-
ing the lecture notes and corresponding evaluations (in-class
laboratory assignments, out-of-class programming assign-
ments, and examinations), and the other teacher assumes
the role of navigator, the teacher responsible for reviewing
the course materials for defects (typos, ambiguities, and po-
tential points of confusion). The driver then delivers the
lecture with the navigator advancing the slides and demon-
strating the in-class programming examples. There is con-
stant feedback and communication between the driver and
navigator during the preparation phase, delivery phase, and
reflection phase. Williams argues that one of the benefits
of pair programming results from the fact that “because the
navigator is not as deeply involved with the design, algo-
rithm, code or test, he or she can have a more objective
point of view and can better think strategically about the
direction of the work” [32]. The same applies to pair teach-
ing. When pair teaching is employed in developing a course,
the teacher’s time is shifted somewhat from preparing course
materials to time spent in the classroom. Of course, even
though the primary responsibility for material development
for a given section of the course is given to one teacher, ad-
ditional time is spent by the other teacher to review the ma-
terials produced. We believe the end result is higher quality
materials, which will be beneficial to the students.

2.3 CZPD for CS Students
Although it is hard to imagine anything more awe-inspiring

than the closed form of the Fibonacci sequence, most of to-
day’s potential computer science students are not that im-
pressed. As a general rule, computer science faculty mem-
bers expect that every student who arrives at her university
with an intention to major in computer science is excited
by computation and formal reasoning. It is a reasonable
assumption given that many computer science faculty mem-
bers pursued advanced degrees in computer science precisely
because they were awed with the beauty and elegance of
computation and formal reasoning. The new generation of
computer scientists, on the other hand, does not share that
intrinsic love of formalism. There are other things that ex-
cite them. Towards the top of this list is their iPhone and
the various gaming apps that it contains. Studies have found
that students prefer gaming assignments to non-gaming as-
signments. Cliburn and Miller found that 78.9% of their
students preferred projects that were game related, and 84%
of their students claimed that games provided extra motiva-
tion to both complete their projects and improve the quality
of their projects [8].

Mobile game development provides a new and exciting av-
enue to recruit and retain the new generation of computer
scientists. There have been various approaches to incorpo-
rate game and/or mobile device programming into the com-
puter science curriculum as a way of making the curriculum
more inviting to today’s college student. Several programs
have restructured their introductory programming sequence

courses to incorporate game development [3, 5, 16, 22, 33].
Other programs introduce students to mobile game devel-
opment after they have already gained some programming
experience [15], some provide game development in upper-
level courses [2, 31], while still others have threaded gaming
throughout their curriculum [18]. All of these approaches
required significant revisions to their curriculum. Although
we share their enthusiasm of using mobile game develop-
ment to better engage today’s students, we believe that we
can achieve the same goal without completely restructuring
the curriculum. We have developed an approach that cap-
tures the enthusiasm that students have with mobile devices
and gaming without sacrificing the integrity of the computer
science curriculum.

Rather than changing the introductory programming se-
quence courses to teach mobile game programming, we in-
troduced an optional one credit companion course that aug-
ments the fundamental concepts of object-oriented program-
ming and problem solving that are taught in the first pro-
gramming course. The introductory programming course
continues to introduce computer science students to object-
oriented programming in Java using an objects-first approach
[20], while the companion course introduces students to iPhone
app development using Objective C. By using Objective C to
create apps on an iPhone, the companion courses serves two
primary purposes: (1) it provides students with a fun envi-
ronment that increases their motivation to continue studying
computer science, and (2) it strengthens their understand-
ing of the underlying object-oriented programming concepts
by reinforcing the concepts using a different programming
environment.

One of the potential concerns with our approach is that
we are forcing the students to switch programming languages
from Java to Objective C. Although it does pose some dif-
ficulties for some of the students, we believe that the use
of multiple programming languages is actually good from a
pedagogical point of view. It forces students to transition
from a “what do I type in” mode of thinking to the “what
do I need to do” mode. Because the syntax of Objective C
and Java are sufficiently different from one another, the stu-
dents shift their focus from what they need to type to what
they are trying to accomplish. Thus, they become more
concerned with the semantics than the syntax of the pro-
gramming language. This belief is supported by the results
of a survey given at the end of class.

We created a set of seven iPhone labs for the companion
course. The companion course meets every other week, so
the students were exposed to two weeks of material in the
introductory Java programming course between each lab as-
signment in the companion course. In the first lab, students
install XCode, Apple’s IDE for developing iPhone apps. The
students are given a sliding puzzle iPhone app that they are
able to compile and run on the iPhone simulator provided by
XCode. We chose this particular app because sliding puzzles
are familiar to students, it is a fairly straightforward app to
implement, it has different levels (starting with a 3×3 board
and going up to a 12 × 12 board), and it has a slight twist
on standard sliding puzzle apps in that the solution to this
puzzle is to find a configuration in which no two tiles of the
same color are adjacent to one another.

The second lab takes the app from the first lab and has
students add a Counter class that supports the timer and
move counts that are displayed at the top of the screen. This

(a) ColorClash app (b) SlidingTile app

Figure 2: iPhone Apps

is an example of scaffolding the app so that the students are
able to produce an app without having to code the entire
app from scratch. The Counter class is the first class that
is presented in Niño and Hosch’s text, so the students have
already studied and produced this class in Java. The key
concepts for this lab include classes, variables, and meth-
ods. None of the methods and the constructor for this class
have parameters. We use this class to introduce the differ-
ences between Java and Objective C. We also talk about
specification and implementation (.h vs. .m files) and the
difference in compilation between Objective C and Java as
well as import issues. Note that in the first lab, the students
merely load XCode on their machines and run the Color-
Clash app. In this second lab, they create the ColorClash
app by adding the Counter class. Rather than merely con-
structing a Counter class that they can create, increment,
and test with various values, they are able to construct a
Counter class that has an actual purpose. They can test
the class by playing a game and checking the timer and
move counts to ensure that their implementation is correct.
Rather than relying on their imaginations (or suggestions
provided by the instructor) that their Counter class is use-
ful, they see first hand the role that it plays with the imple-
mentation of the sliding puzzle as shown in Figure 2(a).

In the third lab, the students create the HelloWorld app.
Traditionally, the HelloWorld app is the first app that stu-
dents write. Although it is nice tradition to write Hel-
loWorld as the first program when learning a new program-
ming language, it is not particularly useful for a student
learning to program for the first time. It is, however, useful
for a student who has already constructed a component of
larger, more sophisticated app. The key concepts for this
lab include an introduction to XCode projects (including
the creation of an iPhone app from scratch), the declaration
and allocation of objects (specifically a UILabel), and the
invocation of methods with parameters. Students are also
introduced to the Cocoa Touch API. It is important to note
that we do not use Interface Builder in our app development,

so students create and place labels (and all other views) pro-
grammatically. Thus, they learn about the geometry of the
views along with the use of Cocoa Touch objects.

The fourth lab is another scaffolded lab. In the introduc-
tory Java programming course, students are introduced to
class interaction with a maze game example. The key con-
cept introduced with this lab is the construction of methods
and constructors with parameters. Students have the con-
cept of parameter passing reinforced by seeing the difference
between the way in which parameters are expressed in Ob-
jective C vs. Java. In Objective C, parameters are labeled
as compared to having unlabeled parameters defined by po-
sition in Java. Students see, however, that parameters are
still defined by position in Objective C, they are just labeled
as well for better readability. Parameters provide an ideal
example for discussing syntactic differences and the pros and
cons of these decisions. Students are reminded that the con-
cept and underlying use of parameters is the same in both
Objective C and Java. It is merely two different syntactic
approaches to the same problem. Such discussion helps dif-
ferentiate the key conceptual similarities from the superficial
syntactic differences in the two programming languages.

The remaining labs have the students creating their own
sliding puzzle. In the end, they create a 3 × 3 standard
sliding puzzle as shown in Figure 2(b). In the first of the
SlidingPuzzle app labs, the students start by creating an
app from scratch that contains one tile which is stored as
a UIImageView. They complete the lab by adding several
more tiles at various places on the screen. The second of the
SlidingPuzzle app labs introduces the students to event han-
dling through the touchesBegan, touchesMoved, and touch-
esEnded methods. Students practice with conditionals to
identify when the user is touching one of the tiles. Stu-
dents begin by tracking the finger movement precisely by
updating the x and y coordinates of the tile to match the
x and y coordinates of the touch. They then modify their
code to restrict moving the tiles to strict vertical and hori-
zontal movement. This lab activity is useful at this stage in
the student programmer’s development because it eliminates
any lingering belief in the magic of computing, since they
see firsthand that what is displayed on the screen is dictated
by their code, not the actual finger movement. In the final
SlidingPuzzle app lab, students complete the sliding puzzle
by creating an array of tiles.

Scaffolding in the initial labs is at the code implementa-
tion level, where students are given a partial program so-
lution and are asked to complete the app by writing the
missing code. This implementation-level scaffolding is im-
portant for beginning programmers because they lack suffi-
cient programming experience and knowledge to construct a
complete solution on their own. Scaffolding in the final labs
is at the design level, where students are guided through
the design steps for the program solution and are asked to
complete all of the coding. This design-level scaffolding is
important for beginning programmers as they transition into
more independent programmers.

3. RESULTS AND CONCLUSION
We recently offered two sections of the first course in

the Computer Science introductory sequence along with the
companion courses, where both sections were pair taught.
We invited students to complete a survey that asked them
to give some feedback on how pair teaching was influenc-

ing them in terms of learning, attitudes, and likelihood to
continue on in the Computer Science course sequence. The
survey included some questions they answered using a mod-
ified Likert scale with four options. The neutral option was
removed so that students were forced to choose either a pos-
itive or negative response. It also included some open-ended
questions on the benefits and problems students experienced
from having a course that was pair taught. Finally, the sur-
vey asked students whether or not they planned to continue
with the next course in the CS introductory sequence, and
if their experiences in the current course influenced this de-
cision.

The results of the survey indicated that students liked
the the use of scaffolding with gaming applications in a
pair2 learning environment, with 92% indicating that they
“looked forward to coming to class each day” and 29% indi-
cating that they “greatly looked forward to coming to class
each day.” They also felt like they benefitted from the pair
teaching with 82% of students indicating that they received
“more individual attention” due to the pair model and 29%
indicating that they received “a lot more individual atten-
tion” than they would have received with a single teacher.
The students’ positive experience in the classroom lead to
higher retention, with 49% of them continuing to the next
course in the sequence. This represented a significant im-
provement in our retention rates. The average retention
rate (which is calculated based on the number of students
who continue into the second programming course in the
following semester) was 39% for the previous four semesters
when the pair2 learning environment was not used. We have
enjoyed a high success rate in the second course in the CS
introductory sequence, with 82% of our students receiving
a passing grade over the past four semesters. We continued
that success, with 91% of the students that participated in
the pair2 learning environment receiving a passing grade in
the follow-on course (that was not taught by either of the
instructors who taught the first course). These results sup-
port the claim that our approach improved retention without
sacrificing student learning outcomes.

Reynolds recently noted that “bringing a spirit of play
to work - and the feeling of exploration and discovery that
it instills in the moment - improves learning and stimulates
creative thinking” [23]. We believe that play for a child or an
adult, as well as specifically for a computer science student
includes two key factors. The first is exploring something
that is relevant and interesting to the individual, and the
second is doing this in a social environment. We have found
a formula that incorporates both of these factors into our
introductory CS course by using game development as our
application area and utilizing pair2 learning to create a truly
collaborative learning environment. This formula has pro-
duced successful results, both in terms of student feedback
and in terms of student retention in the CS program.

4. REFERENCES
[1] N. Anderson and T. Gegg-Harrison. Pair2 learning =

pair programming × pair teaching. In WCCCE 2012,
pages 2–6, Vancouver, Canada, May 2012.

[2] T. Barnes, E. Powell, A. Chaffin, A. Godwin, and
H. Richter. Game2Learn: Building CS1 learning
games for retention. In ITiCSE 2007, pages 121–125,
Dundee, Scotland, June 2007.

[3] J. D. Bayliss and S. Strout. Games as a “Flavor” of
CS1. In SIGCSE 2006, pages 500–504, Houston,
Texas, March 2006.

[4] J. P. Bean. Nine themes of college student retention.
In A. Seidman, editor, College Student Retention.
Praeger, 2005.

[5] H. Boudreaux, J. Etheridge, and T. Roden. Adding
handheld game programming to a computer science
curriculum. In GDCSE 2008, pages 16–20, Miami,
Florida, March 2008.

[6] J. S. Brown, A. Collins, and P. Duguid. Situated
cognition and the culture of learning. Educational
Researcher, 18(1):32–41, 1989.

[7] S. Chaiklin. The zone of proximal development in
Vygotsky’s analysis of learning and instruction. In
Vygotsky’s educational theory in cultural context.
Cambridge University Press, 2003.

[8] D. C. Cliburn and S. M. Miller. Games, stories, or
something more traditional: The types of assignments
college students prefer. In SIGCSE 2008, pages
138–142, Portland, Oregon, March 2008.

[9] F. W. Cline and J. Fay. Parenting with Love and
Logic: Teaching Children Responsibility. Pinon, 1990.

[10] A. Collins, J. S. Brown, and S. E. Newman. Cognitive
apprenticeship: Teaching the craft of reading, reading,
and mathematics. In L. B. Resnick, editor, Knowing,
Learning, and Instruction: Essays in Honor of Robert
Glaser, pages 453–494. Lawrence Erlbaum, 1989.

[11] R. Donato. Collective scaffolding in second language
learning. In Vygotskian approaches to second language
research. Ablex, 1994.

[12] T. S. Gegg-Harrison. Constructing contracts: Making
discrete mathematics relevant to beginning
programmers. ACM Journal of Educational Resources
in Computing, 5(2):3:1–3:28, 2005.

[13] P. M. Greenfield, B. Rogoff, and J. Lave. A theory of
the teacher in the learning activities of everyday life.
In Everyday cofnition: Its development in social
context, pages 117–138. Harvard University Press,
Cambridge, Massachusetts, 1984.

[14] G. D. Kuh, J. Schuh, E. Whitt, R. Andreas, J. Lyons,
and C. Strange. Involving Colleges: Successful
Approaches to Fostering Student Learning and
Personal Development Outside the Classroom.
Jossey-Bass, 2000.

[15] S. Kurkovsky. Engaging students through mobile game
development. In SIGCSE 2009, pages 44–48,
Chattanooga, Tennessee, March 2009.

[16] S. Leutenegger and J. Edgington. A games first
approach to teaching introductory programming. In
SIGCSE 2007, pages 115–118, Covington, Kentucky,
March 2007.

[17] L. Meira and S. Lerman. The zone of proximal
development as a symbolic space. Social Science
Research Papers, 1991.

[18] B. B. Morrison and J. A. Preston. Engagement:
Gaming throughout the curriculum. In SIGCSE 2009,
pages 342–346, Chattanooga, Tennessee, March
2009.

[19] D. Moxley, A. Najor-Durack, and C. Dumbrigue.
Keeping Students in Higher Education: Successful
Practices and Strategies for Retention. Kogan Page
Limited, 2001.

[20] J. Nino and F. A. Hosch. Introduction to Programming
and Object Oriented Design Using Java. John Wiley
and Sons, 3rd edition, 2008.

[21] D. Oblinger. Boomers, gen-xers, and milliennials:
Understanding the new students. Educause Review,
38(4):37–47, 2003.

[22] R. Rajarvivarma. A games-based approach for
teaching the introductory programming course.
SIGCSE Bulletin, 37(4):98–102, 2005.

[23] G. Reynolds. The secret to great work is great play.
http://www.presentationzen.com/presentationzen/
2010/03/we-were-born-to-play-play-is-how-we-learn-
and-develop-our-minds-and-our-bodies-and-its-also-
how-we-express-ourselves-play.html, 3/26/2010.

[24] P. Richard-Amato. Making it happen: Interaction in
the second language classroom. Longman, 1988.

[25] J. Roberts and R. Styron. Student satisfaction and
persistence: Factors vital to student retention.
Research in Higher Education Journal, 6(3):1–18,
2010.

[26] B. Rogoff. Apprenticeship in thinking. Oxford
University Press, 1990.

[27] E. B. H. Sandseter and L. E. O. Kennair. Children’s
risky play from an evolutionary perspective: The
anti-phobic effects of thrilling experiences.
Evolutionary Psychology, 9(2):257–284, 2011.

[28] L. S. Vygotsky. Mind in Society: The Development of
Higher Psychological Processes. Harvard University
Press, Cambridge, Massachusetts, 1978.

[29] L. S. Vygotsky. Thinking and speech. In The collected
works of L. S. Vygotsky, volume 1, pages 249–250.
Plenum, 1987.

[30] L. S. Vygotsky. The problem of age. In The collected
works of L. S. Vygotsky, volume 5, pages 187–205.
Springer, 1998.

[31] S. A. Wallace, I. Russell, and A. Markov. Integrating
games and machine learning in the undergraduate
computer science classroom. In GDCSE 2008, pages
56–60, Miami, Florida, March 2008.

[32] L. Williams. Pair programming. In P. A. Laplante,
editor, Encyclopedia of Software Engineering,
volume II. Taylor and Francis Group, 2011.

[33] D. Xu, D. Blank, and D. Kumar. Games, robots, and
robot games: Complementary contexts for
introductory computing education. In GDCSE 2008,
pages 66–70, Miami, Florida, March 2008.

